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INTRODUCTION

The task of classification (Mishra and Dehuri, 
2014) and prediction (Sarkar et al., 2020) in data 
mining (Sarkar, Salauddin, Hazra, et al., 2021) is 
a great challenge which appeals to many inves-
tigators and researchers to develop a robust and 

accurate model using the hidden data (Pati et al., 
2020). However, the accuracy of the developed 
model is restricted to the use of quality data being 
used in the process of data mining. The research-
ers who are working in the field of statistics, 
neural networks, and machine learning have de-
veloped different types of classification methods 
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ABSTRACT
Freshwater supply is critical for domestic, agricultural and industrial purposes. A good supply of clean water is nor-
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dataset and to determine the classification accuracy, respectively. Finally, the transmuted dataset is used for kernel 
estimator-based Bayesian and Decision tree (J48) classification approaches. The findings from the present study 
confirm that the preprocessing task using statistical analysis along with the combined method of hydro-geochemical 
attributes-based classification approach is encouraging while the decision tree approach is better than the Bayesian 
neural network classifier in terms of precision, recall, F-measures, and Kappa statistics.
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(Dehuri and Cho, 2010b). Here, the concept of 
Bayesian neural network has been used for ac-
curate classification impressed by probabilistic 
theory (Dehuri and Cho, 2010a).

Classification and prediction of ground-
water quality is very crucial, because it is the 
major source of drinking water in many soci-
eties. It is also used for agricultural, industri-
al, and various other domestic purposes (Pati 
et al., 2021; Nandi et al., 2015, 2016, 2017). 
The chemical composition and concentration 
of groundwater are subjected to various dam-
aging pollutants (Borowski and Ghazal, 2019; 
Kannan and Joseph, 2009; Mondal et al., 2011; 
Park et al., 2005). The method of groundwa-
ter quality assessment could therefore help in 
deciding to manage the environment properly 
(Yan et al., 2010). In recent years, research-
ers have used principal component analysis 
(PCA), discriminant function analysis, cluster 
analysis for groundwater quality assessment 
(Panda et al., 2006; Raghavachari, 2001). How-
ever, groundwater records are nonlinear and 
the afore-mentioned linear and semi-automated 
techniques seem to be inappropriate for data 
analysis. Hence, the probabilistic approach of 
the Bayesian neural network as classifier has 
become a suitable approach for solving the 
above problem (Lahiri et al., 2021). 

The objective of this paper was to develop 
a classifier to tackle the unpredictable data with 
a compromised architecture and simple learning 
methods to rebuild an ANN model which can 
evaluate, assess and classify the groundwater 
quality of the Bamanghati subdivision of May-
urbhanj district, Odisha, India. The article is or-
ganized into 5 sections. Section 1 gives an intro-
duction to the proposed research. Section 2 dis-
cusses the hydrogeologic framework through the 
Geographical Information System (GIS) along 
with hydro-geochemical information about 
the groundwater samples. It also discusses the 
boosting instance approach of attribute selection 
along with the descriptions of Bayesian Neural 
network architecture and learning process. Sec-
tion 3 proposes a boosting instance selection 
based Bayesian classifier for the classification 
groundwater quality and in Section 4 experi-
mental work is carried out followed by the result 
analysis. Finally, Section 5 gives the concluding 
remarks followed by references.

METHODS AND RELATED WORK

Geology and hydrogeology of the study area

The study area, Bamanghati, is one of the 
remote sub-division of the Mayurbhanj district 
of Odisha. It is one of the four subdivisions of 
Mayurbhanj also part of the Chhatonagpur pla-
teau, which falls in the survey of India Toposheet 
(73J/2, 73J/3, 73J/4, 73J/7, 73J/8, 73F/14, 73F/15, 
73F/16, 73K/1). The total area of the Bamanghati 
subdivision is 1917 Sq. Km. It is surrounded by 
the Singhbhum district in North and West, Pan-
chpir Subdivision in South, and Baripada Sub-
division in the East (Figure 1). The subdivision 
extends between 85°55ꞌE to 86°30ꞌE longitude 
and 22°.0ꞌN to 22°35ꞌN latitude. According to 
2011 census, the Bamanghati subdivision has a 
population of 4, 95,005 with 2, 42,020 male and 
2, 52,984 female. The study area represents con-
spicuous physiographic variations marked by hills 
with intervening narrow intermountain valleys.

Hydro-geochemical information 
and model development

According to World Health Organization 
(WHO-1984), the groundwater quality index used 
in this paper is classified into three classes: (1) ex-
cellent, (2) good, and (3) bad, as shown in Table 1.

According to World Health Organisation 
(WHO-1984), the model is based on the follow-
ing parameters of hydro-geochemical information 
such as (1) hydrogen ion concentration (pH), (2) 
electrical conductivity (EC), (3) total dissolved 
solids (TDS), (4) bicarbonate (HCO3

-), (5) chlo-
ride (Cl-), (6) sulfate (SO4

2-), (7) nitrate (NO3
-), (8) 

calcium (Ca2+), (9) magnesium (Mg
2+), (10) sodi-

um (Na+), (11) potassium (K+), (12) fluoride (F-). 
The statistics of the hydro-geochemical attributes 
are given in Table 2.

The classification of the groundwater is made 
for the safe drinking purpose of the water. For 
example, the pH of the water is expressed on a 
scale ranging from 0–14, where 7 represents neu-
tral alkalinity. A pH value below 7 indicates the 
acidic nature, whereas a pH value above 7 repre-
sents the basic nature of the water. Accordingly, 
the pH value ranging within 7.5–8.5 represents the 
“excellent”, pH value ranging within 7.1–7.5 rep-
resents the “good”, and a value within the range 
0.01–7.0 and 8.51–14.00 is assigned for “bad”. 
According to WHO-1984, a value below 6.5 and 
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above 8.5 is considered to be appealing (Osmanaj 
et al., 2021). The groundwater is considered safe 
for drinking with the EC value below 1,500 μS/
cm, but it is considered as saline as per WHO-
1984 when the EC value is more than 1,500 μS/
cm (Brown et al., 1970).

According to WHO-1948, the TDS value 
below 1,000 mg/l of the groundwater is safe for 
drinking. Similarly, it is safe for use with a limit 
to 300 mg/l of HCO3

- ions, below the 200 mg/l 
of Cl- ions, below the 200 mg/l of SO4

2- ions, less 
than 45 mg/l of NO3

- ions, 75 mg/l Ca2+ and 30 
mg/l of Mg

2+
 ions, respectively. In saline water, 

Na+ K+ F- and ions also play a major role in the 
classification of groundwater to be considered for 
drinking. As per WHO-1948, the value of Na+ K+, 
and F- ions should have a value below 200 mg/l, 

100 mg/l, and 1.1 mg/l, respectively. The hydro-
geochemical attributes discussed above are taken 
as inputs to the model as shown in equation 1.
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(1)

where:	 pH, EC, TDS, HCO3
-, Cl-, SO4

-, NO3
-, 

Ca2+, Mg
2+, Na+, K+, F- hydrogen ion con-

centration, electrical conductivity, total 
dissolved solids, bicarbonate, chloride, 
sulfate, nitrate, calcium, magnesium, so-
dium, potassium, and fluoride of water 
samples, respectively. The mean, stan-
dard deviation, and skew of the model at-
tributes are shown in Figure 2.

Figure 1. Geological map

Table 1. The hydro-geochemical attributes/parameters for modeling
Hydro-geochemical 

attributes Excellent (1.00) Good (0.50) Bad (0.00) Permissible limit 
(WHO 1984)

pH (-log10H+) 7.51–8.5 7.1–7.5 0.01–7.0 and 8.51–14.0 7.5–8.5

EC (mS/cm) 0.01–750 751–1500 1501–3000 750

TDS (mg/l) 0.01–500 501–1500 1501–3000 1000

HCO3
– (mg/l) 0.01–200 201–300 301–500 300

Cl– (mg/l) 0.01–100 101–200 201–1000 200

SO4
2– (mg/l) 0.01–100 101–200 201–500 200

NO3
– (mg/l) 0.01–25 25–45 45–100 45

Ca2+ (mg/l) 0.01–50 51–75 76–500 75

Mg2+ (mg/l) 0.01–20 21–30 31–200 30

Na+ (mg/l) 0.01–50 51–200 201–500 200

K+ (mg/l) 0.01–10 11–100 101–200 100

F– (mg/l) 0.01–0.5 0.6–0.9 0.9–1.1 1.1
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Sources of Hydro-geochemical information 

For the study of groundwater quality as-
sessment, 89 water samples were systemati-
cally collected from different tube wells (TW), 
dug wells (DW), and bore wells (BW) of the 
Bamanghati subdivision during pre and post-
monsoon seasons (2017) in polyethylene bot-
tles with the capacity of one liter. The water 
samples were collected from the wells which 
are used regularly for domestic and irrigational 
purposes covering the whole area.

The bottles were cleaned with distilled wa-
ter, dried, and closed before their use for sample 
collection. Before collecting the respective wa-
ter sample, each bottle was first rinsed with the 
water from the respective well and then filled 
with the well water, and method of collection 

and analysis for the above-mentioned study was 
referred to the work of previous researchers 
(Brown et al., 1970; Rahman et al., 2021).

Boosting Instance Selection Approach

In data mining research, instance selection 
(Song and Shepperd, 2007) process plays a very 
important and relevant role. For managing the data 
in a proper way such as for efficiently process-
ing, efficient storage, and data reduction purpose 
boosting instance selection method is needed. It is 
also essential for avoiding needless precision, re-
moval of noise and outlier, smoothing of data, etc. 
(Benezzine et al., 2021; Loboichenko et al., 2021). 
Using these new developments and applications 
can be carried forward. Here, from the set of train-
ing instances, the task was to find a meaning for 

Table 2. Statistics of the hydro-geochemical attributes
Hydro-geochemical 

attributes Minimum Maximum Mean STD Skew Kurtosis

pH (-log10H+) 7.04 8.51 7.75 0.41 0.23 –1.15

EC (mS/cm) 148.5 1225.19 437.62 224.89 1.43 2.51

TDS (mg/l) 95.08 784.12 280.08 143.93 1.43 2.51

HCO3
– (mg/l) 44.8 390.4 156.58 76.11 0.93 0.64

Cl– (mg/l) 6.79 326.05 66.28 66.57 1.83 3.36

SO4
2– (mg/l) 2.8 60.55 18.66 12.96 1.43 2.16

NO3
– (mg/l) 0.0 25.0 10.20 5.68 0.36 –0.52

Ca2+ (mg/l) 7.65 158.0 48.55 32.25 1.66 2.71

Mg2+ (mg/l) 2.21 107.5 19.41 18.37 2.18 6.17

Na+ (mg/l) 2.34 174.0 33.09 29.49 2.30 6.78

K+ (mg/l) 0.7 17.5 4.68 3.94 1.74 2.43

F– (mg/l) 0.0 8.8 0.73 1.09 5.91 39.23

TH (mg/l) 22.5 756 200.83 139.31 1.86 4.25

Figure 2. The Mean, Standard deviation, and Skew of the model attributes
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the unidentified function f(x), where the mapping 
function is of a multi-class classifier mapping the 
instances to a component of Y (Dash et al., 2019; 
Vargas et al., 2018). Here, the authors used the sto-
chastic gradient boosting technique to avoid over-
fitting in the purpose of boosting instance selection.

Bayesian Neural Network

As per the approach, it is assumed all the 
features are equally valuable and independent of 
each other. In order to mode a feature, the Gauss-
ian curve takes the role of the probability of 
membership. As per the work done by Moore and 
Zuev (Moore and Zuev, 2005), the above-men-
tioned approach is refined to explain the impact of 
classification accuracy by the enhanced features. 
Algorithmically, naïve Bayesian kernel estima-
tion and naïve Bayesian method are similar; the 
only difference is estimating the membership of 
an instance to a specific group 
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, j = 1, 
…, k. In contrast, Gaussian distribution is consid-
ered over data using naïve Bayesian (
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, j 
= 1, …k) and the estimation by the use of kernel 
function 
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 given below:
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where:	 h is called the kernel parameter and K(t) 
is any kernel, where a kernel is defined 
as any non-negative function normal-

ized such that
 



−
=1)( dttK  . Exam-

ples include Gaussian distribution like 
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 Due to 
the smoothness properties of Gaussian 
kernel, it is being used in the Bayesian 
Kernel estimation procedure (He et al., 
2016; Specht, 1990).

The model is trained using the finite data set 
having input/target pairs 1}),({ == kN

kk zys   by 
optimizing the misfit error as follows using equa-
tion (3) as given below by adjusting the network 
parameters (weight and bias).

2)};({
2
1

kkk
N

k
ks wyozE −=   (3)

The gradient of error Es is repeatedly evalu-
ated by the back-propagation learning algo-
rithm (Lauret et al., 2008; Sarkar, Salauddin, 

Choudhury, et al., 2021). The tan sigmoid func-
tion is also used as the cost function. The suitable 
prior probability distribution like P(w) of weights 
is considered in the Bayesian approach. The pos-
terior probability distribution for the weights, say 
P(w|s), can be given as follows:
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where:	P(w|s) is the data set likelihood function 
and the P(s) is the normalizing factor. The 
distribution of outputs for a given input 
vector x can be written in the form as giv-
en below (Maiti and Tiwari, 2010):

= dwswPwdxPsdxP )|(),|(),|(  (5)

Boosting instance selection base Bayesian 
neural network classification modeling 

The considered work involves such steps as 
preprocessing of data and classification, as shown 
in the proposed model (Figure 3). In the first step 
specific approaches for data preprocessing were 
considered. Then, for selecting the appropriate in-
stances, the preprocessed dataset was given as an 
input to the boosted instance selection approach. 
The boosting instance selection approach was ap-
plied to the classification process to remove the 
redundancy and insignificance in the instances. In 
the second step, the hydro-geochemical attributes 
and the Bayesian neural network were integrated 
for the construction of the classifier (Figure 3). In 
the proposed model, the input layer contains 12 
different features as described in section 2, with 
a hidden layer and output layer. In the considered 
work, these relate to the three classes of member-
ship. There can be more than one number of hidden 
layers comprising of the number of nodes within it. 
Each connection carries a weight wij.In the hidden 
layer, activation function gj(uj) is defined:

)( ii
i

ijj ugwu =  
 

(6)

where:	 the sum is over all nodes i. The bias node 
is to be 1. The hyperbolic tangent function 
(Eq. 7) was used for sake of non-linearity 
found in the problem domain.

gi(uj) = tanh(uj) (7)

 
The proposed work is enumerated broadly in 

the form of an Algorithm, as given below.
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Algorithm

1.	Collect the water samples for groundwater 
assessment.

2.	Perform their hydro-geochemical analysis and 
set their parameters.

3.	Then check the consistency of the dataset.
4.	Remove the irrelevant instances using the 

Boost Instance selection method.
5.	Then, use the Bayesian Neural Network for 

classification of dataset obtained after step 3.
6.	Then, built classifier is obtained.

EXPERIMENTAL STUDY

Description about the model 
setup and parameters

Here, a dataset was divided into reciprocally 
limited parts: a training set and a testing set. The 
model is built using a training and testing set. For 
obtaining the accuracy of the proposed model, 500 
iterations were considered. Bayesian neural net-
works and decision trees were used for comparing 
the classification exactness of the proposed work. 

The WEKA 3 tool was used to gauge the perfor-
mance of Naïve Bayes and decision tree classifiers 
(http://www.cs.waikato.ac.nz/ml/weka/).

According to the WHO-1984 standard 
limit, the training samples were produced tak-
ing hydro-geochemical information, as given 
in Table 1. The neural network model used in 
this groundwater quality assessment is 12-7-3, 
i.e., there are twelve input nodes, seven hidden 
nodes, and three output nodes (Figure 4).

The input node takes the hydro-geochemical 
attributes. For the accuracy of the mode three-lay-
er architecture of a Bayesian neural network was 
used. For the better optimization process, seven 
numbers hidden nodes were found to be suffi-
cient. Three nodes at the output layer denote the 
groundwater quality assessment (GQA) index. 
Here, the cross-validation technique was used for 
keeping uniformity of the model development 
process. Throughout the model development pro-
cess, the two-parameter of the Bayesian approach 
were fixed, such as used the kernel estimator and 
10 fold cross-validation.

In the defined error model of the data like-
lihood, the objective functions are defined as 

Figure 3. Proposed model of classification
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required for the Bayesian neural network (Dash 
et al., 2015). In this study, the root mean square 
error (RMSE), Kappa statistics, and Precision, 
Recall, F-measure, and confusion matrix were 
employed as the performance measurement for 
the groundwater quality assessment classification 
using Bayesian neural network. The equations for 
the parameters are as follows:
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where: 	yi is the observed value, 
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iŷ   is the predict-
ed value. Similarly, cohen’s kappa (k) is 
represented by:
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Where iy is the observed value, iŷ is the predicted value. Similarly, cohen’s kappa (k) is represented by: 

 i

i

i

ii
y
y

y
yyk

ˆ1
11

ˆ1
ˆ

−
−

−=
−
−

=
 
 

iŷ  

(9)

where:	yi is the observed agreement, 
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iŷ   is the ex-
pected agreement. Similarly, precession is 
mathematically defined as follows:

FPTP
TPprecision
+

=  (10)

where:	 TP represents the True Positives and FP 
represents the False Positive. Similar-
ly, Recall is mathematically defined as 
follows:

FNTP
TPrecall
+

=  (11)

where:	TP represents the True Positive and FN 
represents the False Negative. Precision 
and recall play a tug of war in the classifi-
cation process. Thus, precision and recall 

play an important role in examining and 
evaluating the effectiveness of a model. 
Similarly, F-measure is mathematically 
defined as follows:

recallprecision
recallprecisionMeasureF

+


=−
2

 (12)

In the classification evaluation process, pre-
cision or recall alone can determine the effective-
ness of the model. There may be situations where 
alternate importance of precision and recall can be 
found, for which F-Measure has been taken into 
consideration which leads to significant score value.

Further, the confusion matrix and its associ-
ated metrics were taken as an alternative tool for 
the evaluation of the considered method. The per-
formance of a classification model (or “classifi-
er”) is determined by the confusion matrix which 
is a table represented in the form of a row and 
column applied on a set of test data for which the 
true values are known.

Result analysis

The groundwater quality governs the prac-
ticality of water for drinking, irrigation, and in-
dustrial uses. The chemical quality of the ground-
water is affected to some level by the rock’s 
chemical arrangement and mass of the soil. The 
chemical arrangement of groundwater is modi-
fied due to chemical reactions like oxidation and 
reduction (Schoeller, 1960). In the study, Table 2 
describes different statistical behaviors of the col-
lected groundwater samples (N=89). It was found 
that most of the parameters show wide ranges 
and high standard deviation (Table 2). Hence, it 
is very essential to study the performance of each 

Figure 4. Bayesian neural network of 12-7-3 architecture
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attribute in determining the quality of the ground-
water usable for a different purpose.

The performance of the classifiers obtained 
through the fifteen self-regulating runs of the con-
ducted experiment for the groundwater quality as-
sessment is illustrated through Tables 3 to 12. The 
Cohen’s Kappa (k) result and model classification 
accuracy obtained from the two classifiers named 
Bayesian and Decision tree used for groundwater 
quality assessment using the attributes taken for 
the classification is shown in Table 13.

Moreover, the confusion matrix was used as 
the performance measure for Bayesian and Deces-
sion Tree (J48) classification algorithm. Here, the 
comparative analysis was performed using param-
eters classification accuracy, classification error, 
sensitivity or recall, specificity, precision, and Mat-
thew Correlation Coefficient (MCC) and the re-
sults obtained are shown in Table 14 and Figure 5. 
From the above-mentioned analysis, it was found 
that with some exceptions, the groundwater from 
both the shallow and deeper aquifers comes under 

Table 4. Classifier’s generated result for Electrical conductivity
Name of the 

classifier RMSE Kappa 
statistics Precision Recall F-measure EC (class) Classification 

accuracy

Bayesian 0.153 0.845
1.000 0.976 0.988 Excellent

97.75%
0.750 1.000 0.857 Good

Decision Tree

(J48)
0.0 1.000

1.000 1.000 1.000 Excellent
100.00%

1.000 1.000 1.000 Good

Table 5. Classifier’s generated result for Electrical conductivity
Name of the 

classifier RMSE Kappa 
statistics Precision Recall F-measure PH (class) Classification 

accuracy

Bayesian 0.240 0.729

0.957 0.971 0.964 Excellent

89.88%0.733 0.688 0.710 Bad

0.600 0.600 0.600 Good

Decision Tree

(J48)
0.122 0.942

1.000 0.985 0.993 Excellent

97.75%0.833 1.000 0.909 Bad

0.938 0.938 0.938 Good

Table 6. Classifier’s generated result for Chloride (Cl-)
Name of the 

classifier RMSE Kappa 
statistics Precision Recall F-measure PH (class) Classification 

accuracy

Bayesian 0.222 0.766

1.000 0.929 0.963 Excellent

91.01%0.667 0.500 0.571 Bad

0.667 0.933 0.778 Good

Decision Tree

(J48)
0.149 0.908

1.000 0.971 0.986 Excellent

96.62%0.800 1.000 0.889 Bad

0.875 0.933 0.903 Good

Table 3. Classifier’s generated result for Hydrogen ion concentration (PH)
Name of the 

classifier RMSE Kappa 
statistics Precision Recall F-Measure PH (class) Classification 

accuracy

Bayesian 0.455 0.290

0.824 0.750 0.785 Excellent

58.43%0.037 0.250 0.065 Bad

0.818 0.310 0.450 Good

Decision Tree

(J48)
0.208 0.862

0.964 0.964 0.964 Excellent

93.26%0.000 0.000 0.000 Bad

0.935 1.000 0.967 Good
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Table 7. Classifier’s generated result for Nitrate (NO3
_)

Name of the 
classifier RMSE Kappa 

statistics Precision Recall F-measure PH (class) Classification 
accuracy

Bayesian 0.106 0.0

0.989 1.000 0.994 Excellent

98.87%– 0.000 – Bad

Decision Tree

(J48)
0.022 0.0

0.989 1.000 0.994 Excellent

98.88%– 0.000 – Bad

Table 8. Classifier’s generated result for Calcium (Ca2+)
Name of the 

classifier RMSE Kappa 
statistics Precision Recall F-measure PH (class) Classification 

accuracy

Bayesian 0.281 0.744

0.946 0.930 0.938 Excellent

86.51%0.769 0.769 0.769 Bad

0.700 0.737 0.718 Good

Decision Tree

(J48)
0.122 0.957

1.000 0.982 0.991 Excellent

97.75%0.929 1.000 0.963 Bad

0.947 0.947 0.947 Good

Table 9. Classifier’s generated result for Magnesium (Mg2+)
Name of the 

classifier RMSE Kappa 
statistics Precision Recall F-measure PH (class) Classification 

accuracy

Bayesian 0.235 0.788

0.964 0.914 0.938 Excellent

88.76%0.667 0.875 0.757 Bad

0.923 0.800 0.857 Good

Decision Tree

(J48)
0.149 0.935

1.000 0.983 0.991 Excellent

96.62%0.938 0.938 0.938 Bad

0.875 0.933 0.903 Good

Table 10. Classifier’s generated result for Sodium (Na+)
Name of the 

classifier RMSE Kappa 
statistics Precision Recall F-measure PH (class) Classification 

accuracy

Bayesian 0.289 0.562

0.914 0.901 0.908 Excellent

85.39%– 0.000 – Bad

0.632 0.750 0.686 Good

Decision Tree

(J48)
0.143 0.899

1.000 0.986 0.993 Excellent

96.63%0.000 0.000 0.000 Bad

0.889 1.000 0.941 Good

Table 11. Classifier’s generated result for Potassium (K+)
Name of the 

classifier RMSE Kappa 
statistics Precision Recall F-measure PH (class) Classification 

accuracy

Bayesian 0.205 0.727 95.50%0.952 1.000 0.975 Bad

1.000 0.600 0.750 Good

Decision Tree

(J48)
0 1 100.00%1.000 1.000 1.000 Bad

1.000 1.000 1.000 Good
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Table 12. Classifier’s generated result for Fluoride (F-)
Name of the 

classifier RMSE Kappa 
statistics Precision Recall F-measure PH (class) Classification 

accuracy

Bayesian 0.415 0.400

0.673 0.846 0.750 Excellent

61.79%0.750 0.400 0.522 Bad

0.417 0.500 0.455 Good

Decision Tree

(J48)
0 1

1.000 1.000 1.000 Excellent

100.00%1.000 1.000 1.000 Bad

1.000 1.000 1.000 Good

Table 13. Result showing Kappa Statistics and Model Accuracy
Hydro–

geochemical 
attributes

Bayesian classifier Decision tree (J48)

Kappa statistics Model accuracy in (%) Kappa statistics Model accuracy in (%)

pH 0.290 58.43 0.862 93.26

EC 0.845 97.75 1.000 100.00

HCO3
– 0.729 89.88 0.942 97.75

Cl– 0.766 91.01 0.908 96.62

NO3
– 0.000 98.87 0.000 98.88

Ca2+ 0.744 86.51 0.957 97.75

Mg2+ 0.788 88.76 0.935 96.62

Na+ 0.562 85.39 0.899 96.63

K+ 0.767 95.50 1.000 100.00

F– 0.400 61.79 1.000 100.00

Table 14. Classification Result of groundwater
Hydro-geochemical 

attributes
Excellent classification

(in numbers)
Good classification

(in numbers)
Bad classification

(in numbers)

pH 56 29 4

EC 83 6 0

HCO3
– 68 16 5

Cl– 70 15 4

NO3
– 88 0 1

Ca2+ 57 19 13

Mg2+ 58 15 16

Na+ 71 16 2

K+ 0 10 79

F– 39 20 30

Figure 5. Graph showing a different class of classification values of groundwater
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the portable category with respect to the maximum 
permissible limit. It is also a general observation 
that the water from deeper aquifers has better qual-
ity than that of the shallow aquifers. Therefore, 
from the quality point of view, the water from deep 
bore wells is most suitable for drinking purposes.

CONCLUSIONS

Groundwater has more greater importance as 
compared to surface water. Thus, proper planning 
of the groundwater becomes more essential now-
adays. Hence, the efforts made by the authors for 
the classification of groundwater were carried out 
in two stages. In the first stage, the preprocessing 
task was carried out using the boosting instance ap-
proach. In the second stage of the suggested work, 
a hydro-geochemical attributes-based Bayesian 
classifier model was developed for the groundwa-
ter quality assessment using boosting approach and 
kernel estimator algorithm. Finally, the results ob-
tained were compared with the Decision Tree (J48) 
classification algorithm and concluded that the clas-
sification exactness of the Decision Tree (J48) clas-
sification algorithm is better than the Bayesian neu-
ral network classifier in terms of precision, recall, 
F-measures, and Kappa statistics. Furthermore, this 
effort may be prolonged to a natured inspired clas-
sification by seeing precision and recall as the two 
important parameters. The future study suggests 
other bio-inspired metaheuristic approaches with 
more numbers data for the classification of ground-
water of different geographical locations.
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