Vött 2017; Sørensen et al. 2012; Syamsidik et al. 2019; Szczuciński et al. 2006; El Talibi et al. 2016; Vargas et al. 2011; Xie and Chu 2020; Yalciner et al. 2011). Coastal areas all over the world are confronted with serious threats (Ward et al. 2011), because of their ecosystem vulnerability and fragility and their continuous and intense urbanization, mainly in the developing countries (Al Hatrushi S 2014). The Greater national average concentration of infrastructure and economic activities is recently widely observed in or around the coastal cities (Jevrejeva et al. 2016; Qu et al. 2019). Therefore, the ecosystems of coastal areas are also threatened by the impact of human activities as well as by natural hazard (Rubinato, Heyworth, and Hart 2020).

Coastal flooding caused massive damages to natural and human resources such as coastal erosion (Al Hatrushi S 2014; Vargas et al. 2011), saltwater intrusion in coastal aquifers (Al Hatrushi S 2014; Nicholls and Cazenave 2010; Werner and Simmons 2009), fisheries, aquaculture, agriculture, tourism, transportation, urbanization also affected by inundation (Al Hatrushi S 2014). The coastal flooding impact increase in low-lying coastal environments and, because of their very low altitude, larger flooded areas and greater impacts were observed in small bays and estuaries (Becu et al. 2017; Bilskie et al. 2014; Röbke and Vött 2017; Samaras and Karambas 2021; Vargas et al. 2011). Therefore, damage estimation is important for the management strategies to protect the coastal areas (Becu et al. 2017; Al Hatrushi S 2014; Samaras and Karambas 2021).

The western Mediterranean has experienced a great development of the tourist and urban sectors during the last decades. The high concentration of population and the significant economic growth that followed in various countries (José A. Álvarez-Gómez et al. 2011) increased considerably the risk of exposure to coastal flooding and tsunami waves (Amir 2014; Danielsen et al. 2005; El Moussaoui et al. 2017; Papadopoulos et al. 2014; Yalciner et al. 2011). Historically, the region has been affected by a significant tsunami generated by the July 21, 365 AD earthquake (Röbke and Vött 2017). More recently, studies of moderate earthquakes such as the 2003 Zemmouri earthquake, show that they can also generate tsunamis (José A. Álvarez-Gómez et al. 2011). The catalog of events counts more than 300 tsunamis (Papadopoulos et al. 2014). Moreover, the Alboran seacoast has witnessed several tsunami events (Fig.

Figure 1. The historical tsunamigenic events in the Alboran Sea (Basquin, Mercier, and Creach 2021)

Figure 2. The Graph showing the wave elevation-run-up height relation (Synolakis 1987)

Tsunamis phenomenon is a series of traveling waves of extremely long length and period, usually generated by an abrupt deformation of seafloor (Bernard and Titov 2015; Estrada et al. 2021; Meyyappan et al. 2015; Papadopoulos et al. 2014; Röbke and Vött 2017), it is characterized by three phases: the generation, the propagation and the inundation (Fajri et al. 2021; Röbke and Vött 2017). Despite the inundation phase being very important, however, there are few studies concerning with the impact of coastal flooding due to tsunami wave run-up on the coastal areas. The run-up height is the vertical distance between the ground surface and the water surface (Röbke and Vött 2017), we have to take into account that the height of the run-up, will be much higher than the elevation (Fig. 2) (Álvarez-Gómez et al. 2011). Throughout, the run-up can calculate used this equation (1) proposed by (Synolakis 1987) in the case of breaking wave:

\[
R/d = 0.918 \cdot (H/d)^{0.606}
\]

where: R – the run-up height,
d – the depth where the elevation is obtained,
\(\beta\) – the slope of the bottom,
H – the value of the elevation.

This study aims at the risk mapping of coastal flooding areas due to tsunami wave run-up using a novel model which is DAS and geographic information system (GIS).

Study area

The Nekor bay is located in the Alboran Sea, which is one of the basins in the Mediterranean Sea that formed during the Neogene within a region of convergence between the African and Eurasian plates (Galindo-Zaldívar et al. 2018; Stich et al. 2020). The convergence between those tectonic plates is at a rate of 4–5 mm/yr (Estrada et al. 2021). Therefore, the Alboran Sea separates the Ibero area in Spain from the Maghreb in Morocco and the Western part of Algeria (Amir 2014). Moreover, the geomorphological and geophysical data show evidence of recent ruptures and faults large enough to generate great earthquakes (Mafrett et al. 2007). The tectonic features of the Alboran Sea are characterized by a fault system composed of short strike-slip faults and short dip-slip faults.

Table 1.
The run-up elevation according to tsunami wave elevation (TWE) literature of the Al-Hoceima region

<table>
<thead>
<tr>
<th>Author</th>
<th>TWE (m)</th>
<th>Run-up (m)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Álvarez-Gómez et al. 2011</td>
<td>1 m</td>
<td>2.5</td>
</tr>
<tr>
<td>Sørensen et al. 2012</td>
<td>1 m</td>
<td>2.5</td>
</tr>
<tr>
<td>Basquin et al. 2021</td>
<td>1 m</td>
<td>2.5</td>
</tr>
</tbody>
</table>

![Figure 1](image1.png)

Figure 3. The distribution of earthquakes near to the Nekor bay.
(Gonzalez and Medina 1998), the strike-slip fault is thought to be capable of generating only moderate seafloor deformation (Estrada et al. 2021), whereas the new findings suggest that the tsunamigenic potential of strike-slip faults is more important than previously thought (Estrada et al. 2021). In this context, there are several strike-slip faults continued to the proximities of the Nekor bay (Buforn et al. 2017), these faults can generate tsunami waves. According to the National Geographic Institute (IGN), 10 earthquakes, recorded in the north of Nekor bay between 1927 and 2021, have magnitude greater than 5 (Fig. 3).

The Nekor bay is situated in the east of the Al Hoceima city, Northern of Morocco between 35.25434 N and 35.26583 N latitude, 3.91526W, and 3.75733 W longitude. It has a coast length of approximately 26 kilometers (Taher et al. 2021). It is located on the southern shore of the Alboran sea and bounded to the south by the Nekor quaternary, to the east by the Ras Tarf Neogene volcanic massif, and to the west by the Bokoya limestone massif (Fig. 4). Its territory belongs to two provinces: Al-Hoceima, Ajdir, Ait Youssef Ouali, and Driouch province with one municipality which is Trougout. Our study area is located in the most seismic and tectonic regions of north Africa that have witnessed several strong earthquakes (Buforn et al. 2017; Kariche et al. 2018; Stich et al. 2020), and contain many faults, especially at the west such as Ajdir fault, Boujibar fault, at the east Trougout is the main fault (Poujol et al. 2014).

MATERIALS AND METHODS

The DAS model

The current study presents a novel model to map coastal flooding potential zones in Nekor bay, which considers three important natural parameters for coastal flooding: Distance from the coastline, altitude and slope. By integrating the GIS environment and using several data sources (Google earth and digital elevation model) the inundation map was derived using equation 2. The methodology adopted in the study is shown in Figure 5.

\[
CF = D * A * S
\]

(2)

where:
- \(CF \) – Coastal Flooding,
- \(D \) – Distance from the coastline (m),
- \(A \) – Altitude (m),
- \(S \) – Slope (degree).

Distance from coastline factor (D)

The coastal flooding concerns only the areas near the coast. Therefore, the distance or proximity to the coastline is an important factor. The coastal flooding risk increases the closer to the coastline, and vice versa, especially for the lower altitude areas such as plains and estuaries. The distance from the coastline map (Fig. 6) was extracted using multiple buffer tools in a GIS environment. Based on Table 2, the distance from the coastline is divided into 4 classes. the highest score was assigned to the class with the shortest distance from coastline and vice versa.
The low-lying areas such as coastal plains could be threatened more than high areas. Therefore, the use of DEM in the GIS environment might be better in illustrating the low-lying areas along a coast that may be vulnerable to flooding (Seenath, Wilson, and Miller 2016). The Nekor bay contains Nekor plain (Fig. 7. Ph. 2) with lowers altitudes bordered by the limestone and volcanic (Fig. 7. Ph. 1 and 3) massif with the highest altitude.

The elevation map of Nekor bay was extracted from DEM (30m) downloaded from the United States Geological Survey (USGS). The results obtained show that the study area has elevations ranging from 0 to 608 m (Fig. 7). Based on Table 3, the elevation class is divided into 5 classes. the lowest score was assigned to the areas with the highest altitude and vice versa.

Table 2. The variable distance and scoring

<table>
<thead>
<tr>
<th>Altitude (m)</th>
<th>Indice</th>
</tr>
</thead>
<tbody>
<tr>
<td>0–2</td>
<td>5</td>
</tr>
<tr>
<td>2–4</td>
<td>4</td>
</tr>
<tr>
<td>4–6</td>
<td>3</td>
</tr>
<tr>
<td>6–8</td>
<td>2</td>
</tr>
<tr>
<td>>8</td>
<td>1</td>
</tr>
</tbody>
</table>

Altitude factor (A)

The low-lying areas such as coastal plains could be threatened more than high areas. Therefore, the use of DEM in the GIS environment might be better in illustrating the low-lying areas...
The flat topography of the region at low altitudes increases the risk of inundation (Omira et al. 2010). Therefore, the Nekor plain (Fig. 7. Ph. 2) is the most threatened area by coastal inundation because of its flat topography, while the limestone and volcanic massif have incline topography. The slope map (Fig. 8) was also extracted from the same EDM mentioned above. The results obtained show that the slope rate range between 0 and 76 degrees (Fig. 8). Based on Table 4, the slope class is divided into 5 classes. The highest score was assigned to the areas with the lowest slope degree, and vice versa.

Slope factor (S)

The flat topography of the region at low altitudes increases the risk of inundation (Omira et al. 2010). Therefore, the Nekor plain (Fig. 7. Ph. 2) is the most threatened area by coastal inundation because of its flat topography, while the limestone and volcanic massif have incline topography.

Figure 7. The altitude map of the study area

Figure 8. The slope map of the study area
The coastal flooding simulation

The validation of the DAS model needs the coastal flooding simulation. The 4 scenarios (1 m, 2 m, 3 m, 4 m) of the inundation simulation are based on the run-up elevation according to tsunami wave elevation (TWE) literature of the Al-Hoceima region (Table 2). The data (DEM and google earth) used in this study are the same used in the DAS model. The methodology adopted is shown in Figure 9. Throughout, the coastal inundation simulation concerns only the Nekor plain because of its flat topography and the low altitude, whereas the two limestone and volcanic cliffs are not concerned. Recently, the Nekor coastal plain has been experiencing rapid development and its attractiveness will continue in the future due to the recent implementation of heavy touristic projects. The Nekor plain contains two rivers that flow into the Nekor coastline at Souani beach for Ghiss river and Tayath beach for Nekor river. The Ghiss river is the limit between the two communes Ait Youssef Ouali and Ajdir, while Oued Nekor makes the limit between the two communes Ait Youssef Ouali and Trougout.

The land use map

The land use map (Fig. 10) was obtained by mapping land use classes at inside three kilometers from the coastline using buffer tools in GIS. The

Figure 9. The flowchart of the coastal flooding simulation

Figure 10. The land use map of the study area
principal land use classes include agriculture (87%), Forest (9%), urban area (4%) (Table 5). Whereas the coastal forest in the study area has many functions and effects to reduce tsunami disaster as well as to reduce tsunami energy (Álvarez-Gómez et al. 2011; Estrada et al. 2021; Fajri et al. 2021; Szczuciński et al. 2006), and the coastal deforestation in Sfiha-Souani beaches to build touristic projects increase tsunami threat. The urban area includes habitations, schools, mosques, roads, health and social centers, wastewater treatment plant, desalination plant, airport, historical and archeological sites,…etc. The maximum population density of Ajdir, Ait youssef Ouali and Trougout municipalities are respectively 284, 333 and 101 population/km² (Fig. 11).

<table>
<thead>
<tr>
<th>Classe</th>
<th>km²</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Agriculture land</td>
<td>22.33024</td>
<td>87</td>
</tr>
<tr>
<td>Urban area</td>
<td>1.147082</td>
<td>4</td>
</tr>
<tr>
<td>Forest</td>
<td>2.176678</td>
<td>9</td>
</tr>
</tbody>
</table>

Table 5. The % of land use classes

Figure 11. The population map (2014) of the study area

Figure 12. The risk coastal flooding map of the study area
RESULT AND DISCUSSION

In this section, we present and discuss the results for the risk mapping using a novel DAS model and the coastal flooding simulation due to tsunami wave run-up. Moreover, we present the results pertaining to scenario analysis, besides the coastal flooding maps and damage exposure estimates were calculated for each scenario. The risk coastal flooding map of the Nekor bay by integrating the DAS model is shown in Figure 12 and was obtained by integrating the distance from the coastal, the Altitude and the Slope factors in GIS using Equation (2). The inland penetration is strongly influenced by these factors, besides wave energy (Röbke and Vött 2017). In this model the wave energy was not taken into account because it depends on many factors (refraction, diffraction, speed, height, steepness… etc.). The risk mapping map was classified into 5 categories (very low, low, moderate, height and very height), and the maximum length of height risk was 1 km from the coast to the Nekor plain. Furthermore, the areas which are more exposed to the impact of tsunamis generated in the Alboran Sea are the Nekor plain, the results obtained are logical and acceptable. Nevertheless, the coastal flooding simulation is using the GIS technique needed to confirm the result obtained by the DAS model. The use of GIS for coastal flood simulation is not new. There are many other methods available to simulate coastal inundation (e.g. (Al Hatrushi S 2014; Seenath, Wilson, and Miller 2016; Ward et al. 2011)). There are two main approaches: planar models and hydrodynamic models (Ward et al. 2011). The Planar models were used in this study, use as input the run-up elevation and distribute over a DEM. The risk coastal flooding map of the study area is shown in Figure 13, the area (Fig. 14a) and the

![Figure 13. The risk coastal flooding map of the study area.](image)

![Figure 14. The coastal flooding area (a) and length (b) according to run-up elevation.](image)
Figure 15. The 4 scenarios of coastal flooding: a = 1 m, b = 2 m, c = 3 m, d = 4 m
length (Fig. 14b) of the flooding increase with increasing of the run-up elevation. Therefore, the flooding area represents run-up elevation scenarios 1 m, 2 m, 3 m, and the worst scenario 4 m respectively 2%, 3%, 10%, and 23% of the study area. Furthermore, the damage estimation of urban area and agriculture was respectively 2%, 98% for run-up 1 m (Fig. 14a), 3%, 97% for run-up 2m (Fig. 15 b), 4%, 96% for run-up 3m (Fig. 15c), and for the worst scenario 4 m was 3%, 97% (Fig. 15d). Therefore, the results obtained show that the major potential impact of coastal flooding in Nekor plain is the salinization of agricultural land. The intersection between the two heights risk categories area and the 4 run-up scenarios (1, 2, 3, 4 m) are respectively 100%, 100%, 100% and 82%. Therefore, the DAS model using 3 natural parameters is useful for the risk mapping of coastal flooding, despite the neglect of other parameters such as wave energy.

According to the 4 scenarios of coastal flooding (Fig. 14), the Trougout municipality at the east of the study area is the most affected by coastal flooding, whereas the Ajdir municipality at the west is the least affected, besides the Ajdir coast is protected by densely coastal forest (Álvarez-Gómez et al. 2011; Estrada et al. 2021; Fajri et al. 2021; Szczuciński et al. 2006) counter to the Trougout coast. Furthermore, the urban area of the coastal Trougout contains 5 schools, 4 mosques, one touristic project, Hotel, beside the habitations, all this infrastructure are threatened by coastal flooding and its potential impact increase in summer with increasing population numbers (immigrants and tourists). The Ait Youssef Ouali municipality also threatened by the coastal inundation, especially in the worst scenarios (Fig. 14d), it is characterized by the agricultural activities and the height density population (Fig. 11), therefore the salinization of these agricultural lands is the major potential impact which it can lead to social problems.

Coastal areas are fragile ecosystems, it need a natural and sustainable solution. Furthermore, artificial coastal barriers are expensive, it also causes damage to the coastal environment (Harada and Imamura 2005). Therefore, one of new ways is to utilize a control forest along the coast to reduce future tsunami impacts on Nekor bay (Danielsen et al. 2005; Harada and Imamura 2005; Kathiresan and Rajendran 2005; Nandasena et al. 2008; Rubinato et al. 2020), especially at the East of the study area, the forest has many functions and effects to prevent tsunami disasters (Fig. 16), besides the use of the tsunami warning system (Bernard and Titov 2015).

CONCLUSIONS

In the current study, we have used a novel DAS model in the GIS to map the potential coastal flooding areas due to tsunami wave run-up in Nekor bay. In addition, the coastal inundation simulation scenarios for the estimation of the impacts exposure, and to compare it with the DAS model results. The comparison of the two results shows there are spatial agreements between them. Nevertheless, a perspective, the DAS model can be developed by adding other factors such as wave energy. Concerning the damage estimation of the urban area and the agriculture was respectively 2%, 98% for run-up 1 m, 3%, 97% for run-up 2 m, 4%, 96% for run-up 3 m, and for the worst scenario 4 m was 3%, 97%. The east region of the study area is the most exposing to coastal flooding. In this context, we propose a controlled forest along the coast to reduce future tsunami impacts on Nekor bay.
REFERENCES

Earthquake and Tsunami, 2(2), 157–171.

56. Yalciner, A.C. et al. 2011. Field Survey on the Coastal Impacts of March 11, 2011 Great East Japan Tsunami. Seismic Protection of Cultural Heritage - The World Council of Civil Engineers (WCCE), the European Council of Civil Engineers (ECCE) and the Turkish Chamber of Civil Engineers (TCCE) Joint Conference 2011, 123–40.