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INTRODUCTION

The use of satellite images and data to as-
sess and analyze changes in land use and land 
cover [Chowdhury et al., 2020; Congedo, 2020; 
Chavez, 1988], has become the most recognized 
and powerful technique to obtain more accurate 
information on land surface characteristics at 
different temporal and spatial scales. These im-
ages also allow the analysis of vegetation con-
ditions and their response to climate change. 
In Morocco, several researches have been con-
ducted to study land use using remote sensing 
data. [Barakat et al., 2018] used multispectral AS-
TER (Advanced Spaceborne Thermal Emission 

and Reflection Radiometer) and Sentinel-2A data 
acquired in 2001 and 2015, to monitor forest 
cover dynamics in the eastern area of Beni-Mellal 
province, the study was based on the supervised 
classification algorithm and NDVI combined in a 
GIS environment to quantify the extent of change 
in the density of forest stands, the result revealed 
an overall change in forest cover with an increase 
in the wooded area. [Gurgel et al., 2017] identified 
forest changes in argan forests (Morocco) using 
aerial photographs and satellite images between 
1970 and 2007. Their study revealed a decrease in 
forest density of 44.5% during this period.

For our case study, Landsat5-TM, Landsat7-
ETM+, Landsat8-OLI satellite images are used to 

Monitoring Land Use and Land Cover Changes Using 
Remote Sensing Techniques and the Precipitation-Vegetation 
Indexes in Morocco

Fatiha Ait El Haj1*, Latifa Ouadif2, Ahmed Akhssas2

1 L3GIE Laboratory, Mohammadia Engineering School, Mohammed V University in Rabat, Morocco
* Corresponding author’s e-mail: aitelhaj@emi.ac.ma

ABSTRACT
The study of land use and land cover change (LULC) is essential for the development of strategies, monitoring 
and control of the ecosystem. The present study aims to describe the dynamics of land cover and land use, and 
specially the impact of certain climatic parameters on the distribution of vegetation and land cover. For this study, 
multi-temporal remote sensing data are used to monitor land cover changes in Morocco, using a set of Landsat im-
ages, including Landsat 7 (ETM+), Landsat 5 (TM), and Landsat 8 (OLI), captured during the period 2000–2020, 
those changes were determined by adopting the maximum likelihood (ML) classification method. The classification 
results show good accuracy values in the range of 90% (2000), 80% (2007), 82% (2010), 93% (2020). The LU/LC 
change detection showed a decrease of agricultural and forest areas in the order of 5% between the year 2000 and 
2020, and an increase of bare soil of 5% to 6%, and a notable change in urban area from 97.31 ha (0.03%) in 2000 
to 2988.2637 ha (0.82%) in 2020. The overall results obtained from LULC show that the vegetation cover of the 
study area has undergone major changes during the study period. In order to monitor the vegetation status, an analy-
sis of the precipitation-vegetation interaction is essential. The normalized difference vegetation index (NDVI) was 
determined from 2000 to 2020, to identify vegetation categories and quantify the vegetation density in the Lakhdar 
sub-basin. The obtained NDVI was analyzed using climatic index SPI (Normalized Precipitation Index) based on 
rainfall data from five stations. The correlation study between NDVI and SPI indices shows a strong linear relation 
between these two indicators especially while using an annual index SPI12 however, the use of NDVI index based 
on remote sensing provides a significant result while assessing vegetation. The results of our study can be used for 
vegetation monitoring and sustainable management of the area, since it is one of the largest basins in the country.

Keywords: LULC, remote sensing, GIS, kappa, landsat, NDVI, SPI.

Received: 2022.09.15
Accepted: 2022.10.20
Published: 2022.11.01

Ecological Engineering & Environmental Technology 2023, 24(1), 272–286
https://doi.org/10.12912/27197050/154937
ISSN 2719-7050, License CC-BY 4.0

ECOLOGICAL ENGINEERING 
& ENVIRONMENTAL TECHNOLOGY



273

Ecological Engineering & Environmental Technology 2023, 24(1), 272–286

identify changes and map land cover, it consists 
of a set of images at different dates (from the year 
2000 to 2020) taken at the same period of the 
year, to capture the conditions of the study area 
and improve the classification of changes over 
different periods.

In order to classify and analyze the changes 
LULC in the Morocco sub-basin, we performed 
the maximum likelihood method. This is the most 
efficient algorithm for supervised classification 
[Bonn & Rochon, 1993; Chatelain, 1996], which 
seeks to build a function called the likelihood 
function and to maximize its logarithm consider-
ing the unknown parameters. The coherence of the 
maps obtained was evaluated using the value of the 
Kappa coefficient. To measure and research how 
vegetation responds to climate change, meteorolo-
gists and climatologists from all over the world 
have developed a variety of drought indicators. 
Indicators that are simple to calculate and statis-
tically significant. McKee, Doesken, and Kleist, 
three American scientists, developed the Standard-
ized Precipitation Index (SPI) in 1993 [Mckee et 
al. 1995]. SPI is a powerful, flexible, and easy-to-
calculate index, precipitation is actually the only 
required input parameter. Furthermore, it works 
just as well for evaluating dry periods and cycles 
as it does for assessing wet ones. Landsat satellites 
have particular characteristics in terms of spatial, 
spectral and temporal resolution. The choice of 

this type of satellite favors the study and analysis 
of surface reflectance. Among the monitoring in-
dices of vegetation dynamics that is based on the 
monitoring of surface reflectance is the normal-
ized difference vegetation index (NDVI) used to 
better characterize the spatial extent of drought 
events and to monitor the vegetation status [Con-
gedo, 2020; Abebe et al. 2022; Jiang et al. 2022]. 
In summary, the objective of this study is to explore 
the changes of LU/LC of the sub-basin in Morocco 
and to monitor the vegetation status that is affected 
by precipitation inputs and drought status in the area. 
The results of this study could be useful for vegeta-
tion monitoring and sustainable management of the 
area as it is one of the largest basins in Morocco.

MATERIALS AND METHODS

Study area

The sub-basin of Lakhdar [AHT Group, 2016] 
belongs to the hydraulic system of wadi Oum Er-
Rbia Which belongs to the mountain area of the 
province of Beni-Mellal and has an area of 3503 
km2. The Lakhdar sub-basin is located at the east-
ern end of the Haouz Mejjate basin, bounded to 
the south and south-east by the High Atlas moun-
tains and to the west by the Tassaout sub-basin 
(Figure 1). The topography [AHT Group, 2016] 

Figure 1. Location map of the Lakhdar sub-basin
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of Lakhdar sub-basin is relatively rugged, and 
characterized by the variation in altitude between 
488 m at the Tensift wadi, to 4017 m at the High 
Atlas.The Lakhdar sub-basin is drained [AHT 
Group, 2016] by the main watercourse (Wadi 
Lakhdar) which drains the western and south-
western parts of the basin, its main tributary is 
Wadi Bernat which drains the northern and north-
eastern parts. It includes the Hassan I dam (built 
in 1986) and the Sidi Driss dam (built in 1984), 
which ensure the irrigation of agricultural pe-
rimeters and the supply of drinking water to the 
population of the area. The geological formations 
of the region [AHT Group, 2016] are composed 
mainly of conglomerates in a band of 2–3 km 
high aligned at the foot of the Atlas that extends 
northward in the axis of the current course of the 
wadi Lakhdar, and alluvial formations reworked 
in the quaternary, consisting of pebbles, gravels 
and sands with high permeability corresponding 
to former wadi beds, and permeable formations 
pass by going north to silty formations, some-
times encrusted surface. The rest of the northern 
part of the sub-basin Lakhdar is constituted of an 
alternation of Jurassic (Lias, Jurassic and Jurassic 
red sandstone of the High Atlas). In the southern 
part, formations of the older secondary (Triassic) 
and primary outcrop, including the unsubdivided 
Devonian and the unsubdivided Ordovician.

The studied area is categorized by an arid cli-
mate [AHT Group, 2016] with temperate winter 
covering the entire plain area of the sub-basin 
(18% of the sub-basin in terms of area), a semi-
arid stage with cool winter occupying the pied-
mont area (12% of the sub-basin), humid with 
temperate winter covers only 3% of the area of 
the sub-basin, and humid with cool winter which 
covers 46% of the area of the sub-basin and most 
of the mountain area.

Materials 

The majority of the data used for this study 
was gathered from two sources: satellites sourc-
es, and rainfall data collected from five ground 

stations. Satellite data – multispectral images 
from Landsat satellite sensor, and depending on 
the date search and image quality used to map 
land use from the year 2000 to 2020, several types 
were used: Landsat 7 – Enhanced Thematic Map-
per Plus (ETM+), Landsat 5 – Thematic Map-
per (TM), Landsat 8 – Operational Land Imager 
(OLI) sensor images, which were obtained from 
the U.S. Geological Survey (USGS) (http://earth-
explorer. usgs.gov//). All images were acquired 
during sunny periods, without cloud cover, and 
were pre-processed (geometric correction with a 
UTM WGS84 projection and atmospheric correc-
tion) in order to compare changes in land cover 
and land use, all images were acquired at the 
same period between June and September, which 
is the period with the stable vegetation stage.

The characteristics of the satellite images 
and resolution used in this study are summa-
rized in Table 1. Image processing, classification 
and analysis are performed in ArcGIS 10.3 and 
ENVI 5.3 software. The processed images have 
a resolution of about 30 m with multi-spectral 
bands which facilitates the extraction and char-
acterization of both vegetation cover and bare 
ground in the study area. The vegetation cover 
extracted according to these images and accord-
ing to the field survey, is divided into two main 
types, forests and cultivated land (arboriculture 
of different sizes, cereals, olive trees...), and for 
bare soil it is mainly rocky outcrops bare spaces 
and / or eroded, and exposed soil (urban areas, 
rural roads, tracks...). In order to verify and ana-
lyze the accuracy of the established maps, preci-
sion studies were conducted by determining the 
confusion matrices, the overly precision and the 
kappa coefficient [Faruque et al., 2022; Hasan et 
al. 2020; Kafy et al. 2021].

Meteorological data

The annual and monthly rainfall data made by 
the hydraulic agency of Oum er-rbia ABHO for 
the period of 2000 to 2020 were used. The unit 
of rainfall is the millimeter (mm). The data are 

Table 1. Detailed Information of acquired Landsat satellite imagery data used
Landsat Date (DD/MM/YY) Resolution (m) Cloud cover

Landsat 7-ETM+ 05 July 2000 30 m 0%

Landsat 5-TM 01July 2007
23 June 2010

30m
30m

0%
0%

Landsat 8-OLI 02 June 2020 30m 0%
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organized in a grid. Figure 2 shows the location 
of the weather stations (5 stations) in the Lakhdar 
sub-basin district.

Methods

The methodology adopted to study land cover 
at the different dates and to identify vegetation 
changes is summarized in Figure 3. The Land-
sat images used are mainly chosen according to 
their availability for the study area [Faruque et al. 
2022; Hasan et al. 2020]. The downloaded images 
followed radiometric corrections (Radiometric 

calibration extension) and atmospheric (semi-
automatic extension by the Dark object subtrac-
tion model DOS) on ENVI 5.3 software. for the 
extraction of the study area according to the basin 
boundaries we used the image mosaic method on 
Arcgis in order to identify the limits of the area 
of study.

Image pre-processing

The processing of the images was conducted 
under ENVI 5.3 software. The images had ini-
tialy undergone all geometric and radiometric 

Figure 2. Location of weather stations

Figure 3. Flowchart of the adopted methodology
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corrections in order to correct some variations in 
the distribution of data due to the time shift dur-
ing the acquisition of Landsat images Souidi et 
al., 2020; Vanjare et al., 2014].The radiometric 
correction aims to correct the scenes acquired ac-
cording to the properties of the Landsat sensor, it 
is therefore to impact factors such as the angle of 
elevation of the sun, the distance earth-sun, the 
calibration of the sensors, the atmospheric con-
ditions and the geometric sight affecting the nu-
merical value of the pixels [Eckhardt et al., 1990]. 
While the radiometric corrections applied in this 
study, consists of converting the raw numerical 
values (DN) into spectral radiance values under 
ENVI [Purwanto & al., 2016; Lounis & Aïssa, 
2005], by the following equation 1:

 Lλ = (Lλmax - Lλmin)/(DNmaxλ - DNminλ)*

 (DNλ-DNminλ) + Lλmin (1)

where: Lλ – spectral radiance at the sensor aper-
ture for a single band mW/(m2·sr·µm), 
Lλmax and Lλmin –scaled spectral radiance 
(provided in a header file of image in-
formation) W/(m2·sr·µm), DNmax – Maxi-
mum Digital Number, DNmin – minimum 
digital number. 

The images are also influenced by the effects 
of the atmosphere, hence the need for atmospheric 
corrections to facilitate the extraction of informa-
tion from the signal independently of the atmo-
spheric effects that are variable in time and space. 
The atmospheric correction has been applied by 
the semi-automatic classification plugin [Chow-
dhury et al. 2020] based on the Dark Object Sub-
traction (DOS) algorithm [Congedo, 2020].

Image classification

we used the Arcgis software (GIS) for the su-
pervised classification of the satellite’s corrected 
images [Mohajane et al., 2018; Schroede et al., 
2006; Shalaby & Tateishi, 2007]. The principle of 
this classification using the method of maximum 

likelihood [Abd El-Kawy et al. 2011; Abebe et al. 
2022] is to delimit at the level of the Raster image 
a set of polygons that will be assigned to a given 
class of LULC. The method is based on the clas-
sification of pixels surrounded by these polygons 
to create homogeneous spectral signatures, which 
will present the types of land cover recorded at 
the image, each class is differentiated from the 
other according to their characteristics and their 
spectral response. The training sites obtained 
will be validated from the visual interpretation of 
Google Earth images of the study area with the 
available field surveys.

Based on the field data and using Google 
Earth high resolution images as reference data, 
five categories of LULC were identified (Table 
2): (1) water body, (2) agriculture, (3) forest, (4) 
bareland, (5) urban area. These categories were 
identified and validated using GPS control points 
and reference data samples to generate training 
areas of each category.

Accuracy assessment

Accuracy assessment is a very important step 
in checking the accuracy of the classification re-
sults and to identify margin of error caused by the 
similarity of the spectral response in the distributed 
classes. The confusion matrix [Acharki et al. 2022; 
Kumar et al. 2020; Kafy et al. 2021] is the method 
used to analyze the accuracy in the post-classifica-
tion phase of LULC images at different dates.

The accuracy study is based on reference data 
that present the reality of the land cover, and the 
error evaluation is represented by a confusion or 
error matrix generated by ENVI 5.3 software. This 
matrix is in the form of a square table that gathers 
the pixels of the image where the row represents 
the classified category [Anand 2012; Jaouda et al. 
2018; Purwanto et al. 2016] and the column rep-
resents the reality of the field, and the non-diago-
nal row indicates the values that are misclassified 
or that are classified in another category. The ma-
trix is also used to calculate the global accuracy, 

Table 2. Details of the land use classes
No Types of land cover class Color Color description of classes

1 Water Blue River, Canals and Pounds

2 Agriculture Green Farmland, crops land and pasture

3 Forest Green 3 Plants

4 Bareland Orange Bare ground

5 Urban Red Urban-Inhabited area, Industrial, Mixed build-up Inhabited area,
villages and roads
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the producer’s accuracy, the user’s accuracy and 
the Kappa coefficient [Congalton & Green, 2008; 
Jazouli et al. 2019; Mohd et al. 2009] The kappa 
coefficient values are set between 0 and 1, a kap-
pa value higher than 0.80 representing a strong 
correspondence to reality and a good precision, 
between 0.4 and 0.8 indicate a medium precision 
and a value lower than 0.40 indicate a low corre-
spondence between the classification and the real 
field observation.

NDVI index

Based on Landsat images downloaded in 
Google Earth and according to the characteristics 
of the vegetation in the study area and soil type, the 
NDVI index was mapped to quantify the changes 
in vegetation over the period (2000–2020).

The NDVI is determined from information 
on the quantity and density of vegetation by con-
sidering the near infrared (NIR) and visible red 
bands of the electromagnetic spectrum, the in-
dex is calculated [Baral et al. 2011; Bijaber et al. 
2018; Tadeze et al. 2020], by the following Eq. 2:

 NDVI = (NIR - RED)/(NIR + RED) (2)

where: NIR – represents the reflectance in the 
near infrared, RED – represents the re-
flectance in the red band.

NIR and RED represent the radiated reflec-
tance in the near-infrared band 7 (0.8–1.1 μm) 
and visible red band 5 (0.6–0.7 μm) of the MSS 
Landsat 5 satellite, respectively. For the TM and 
ETM+ sensors, the NIR band is band 4, and the 
RED band is band 3. Finally, for the OLI sensor, 
the NIR and RED bands are band 5 (0.85–0.88 
μm) and band 4 (0.64–0.67 μm) respectively. The 
NDVI value ranges from -1 to 1. The highest val-
ue represents healthy vegetation, while the lowest 
NDVI value indicates non-vegetation cover.

Reference data was obtained on the area 
from field surveys and maps published by the 
hydraulic agency of the study area, and accord-
ing to extensive discussions with stakeholders, 
three density classes were determined, namely: 
The NDVI class with values below 0, presents 
areas without vegetation cover and according to 
the reference data they were considered as water 
bodies and bare soil; the positive values between 
0.15 and 0.3 were considered as medium density 
vegetation (cultivated area); and the positive val-
ues above 0.3 were considered as high density 
vegetation (forest).

SPI Index

SPI is an index developed in 1993 by Mc 
Kee [Mckee et al. 1995], the determination pur-
pose of this index is to know and monitor drought 
[Muliawan et al. 2013, Febrina 2017]. According 
to [Bordi et al. 2011] the SPI method is mainly 
used because it can give a reliable comparison 
and is relatively easy to use in various climatic 
conditions and locations. The rainfall data was 
provided by ABHO which covers a period of 20 
years (2000 to 2020), this data is used to calculate 
the SPI in R studio software. The SPI is used to 
measure drought for time scales ranging from 3 
months to 28 months. The authors of this index 
define a drought event when the SPI becomes less 
than or equal to -1.0 (Table 3). The end of the 
drought does not occur until the SPI is positive 
(Edwards et al., 1997). The Standardized Precipi-
tation Index has the following Equation 3:

 

1 
 

 
SPI = 𝑃𝑃−𝑃𝑃𝑃𝑃

𝜎𝜎𝜎𝜎  (3) 
 

 (3)

where: P – total rainfall of a period (mm), Pm 
– historical average rainfall of the period 
(mm), σp – historical standard deviation 
of rainfall for the period (mm).

This index defines the severity of drought in 
different classes (Table 3) [OMM, 2012]. Negative 
annual values indicate a drought compared to the 
chosen reference period and positive values indi-
cate a wet period. The SPI allows us to measure 
drought at different time scales that range from 
3 months to 28 months (Table 4) [OMM, 2012]., 
these indices offer temporal flexibility in assessing 
rainfall conditions in relation to water supply.

Table 3. SPI index classes
SPI classes Degree of drought

SPI >2 Exceptional wet

1<SPI<2 Severe wet condition

0<SPI<1 Medium wet condition

-1<SPI<0 Slight drought

-2<SPI<-1 Severe dought

SPI<-2 Exceptional drought

RESULTS 

Land uses/land cover changes 
monitoring LULC

The LULC classification map were conducted 
using Landsat multi-date images from the years 
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Table 4. SPI index application
Duration SPI Reflected  incidents Application

SPI 1 month Short-term conditions Short-term soil moisture and crop stress (especially during the 
growing season).

SPI 3 months Short and medium term humidity 
conditions A seasonal estimate of precipitation

SPI6 months Medium-term precipitation trends 
SPI

Ability to effectively show precipitation over separate sessions. For 
example, for California, the 6-month SPI can effectively show the 
amount of precipitation from October to March.

SPI9 months Precipitation motifs on a medium 
time scale

If SPI 9 < -1.5 then this is a good indication that substantial impacts 
may occur in agriculture (as well as the possibility of other sectors).

SPI12 months Forms of long-term precipitation Possible flows related to reservoir levels, and also groundwater 
levels.

Table 5. Land-cover (in hectare and percentage) from 2000 to 2020

LULC classes
2000 2007 2010 2020

Area (ha) % Area (ha) % Area (ha) % Area (ha) %

Agriculture 40798.66 11.21% 8809.60 2.42% 17232.32 4.74% 15751.47 4.33%

Forest 22818.38 6.27% 28478.18 7.83% 23312.42 6.41% 27312.89 7.51%

Bareland 297802.69 81.86% 323316.99 88.87% 318541.28 87.56% 315055.49 86.60%

Urban 97.31 0.03% 977.56 0.27% 980.63 0.27% 2988.26 0.82%

Water 2296.74 0.63% 2233.28 0.61% 3747.25 1.03% 2704.39 0.74%

Total 363813.78 100% 363815.62 100% 363813.91 100% 363812.51 100%

Figure 4. LULC maps for the years (a) 2000, (b) 2007, (c) 2010, and (d) 2020 in the studied area

a) b)

c) d)

2000 to 2020 by the ML maximum likelihood 
method, as shown in Figure 4. The results of this 
classification (Table 5 and Figure 4), show very 

significant changes in terms of vegetation cover, 
urban area, and bare soil. The most remarkable 
changes were noticed in terms of vegetation cover 



279

Ecological Engineering & Environmental Technology 2023, 24(1), 272–286

(agricultural and forest area) and urban area, veg-
etation area decreased from 63,617 ha (17%) in 
2000 to 43,064 ha (12%) in 2020, while the bare 
soil increased by 5% going from 297,802 ha (82%) 
in 2000 to 315,055 ha (87%) in 2020, the urban 
area also increased from 97.31 ha (0.03%) in 2000 
to 2988.26 ha (0.87%) in 2020, finally, the water 
body has remained more or less stable by 2296.74 
ha (0.63%) in 2000 to 2704.39 ha (0.74%) in 2020.

Accuracy assessment 

The accuracy assessment using the confu-
sion matrix in the post classification phase. The 

results of this classification give values of Overly 
Accuracy of the order: 90%, 79%,82%,93% for 
the years 2000, 2007, 2010, 2020 respectively 
and a kappa coefficient of 0.8473, 0.7091, 0.7492, 
0.8814 respectively (Table 6). The Kappa coef-
ficient [Anand, 2012; Baral et al. 2011; Xie & 
Ren, 2011] is a statistical measurement technique 
of the gap between the reference value (real im-
age) and the identified classification value (classi-
fied image), the acceptable values which present a 
good correspondence between the classified pixels 
and the reference pixels set between 0.61 and 1 
[Anand, 2012; Baral et al., 2011], the blue cells of 

Table 6. Accuracy assessment of the land cover maps generated (2000–2020)
Year 2000

Classes Water Agriculture Forest Urban Bareland Producer’s accuracy User’s accuracy

Water 1093 29 11 12 135 75.07% 85.39%
Agriculture 119 920 47 11 197 91.82% 71.10%

Forest 37 16 1053 0 7 94.44% 94.61%
Urban 127 16 2 270 21 91.53% 61.93%

Bareland 80 21 2 2 4766 92.98% 97.84%

Overall Accuracy = (8196/9088)  90.1849%

Kappa Coefficient = 0.8473

Year 2007

Classes Vegetation Water Bareland Urban Producer’s accuracy User’s accuracy

Vegetation 1958 10 137 22 89.04% 92.05%
Water 42 368 133 5 91.32% 67.15%

Bareland 92 12 1480 166 68.90% 84.57%
Urban 107 13 398 321 62.45% 38.26%

Overall Accuracy = (4422/5559)  79.5467%

Kappa Coefficient = 0.7091

Year 2010

Classes Water Forest Agriculture Bareland Urban Producer’s accuracy User’s accuracy

Water 1737 25 3 280 58 76.05% 82.60%
Forest 96 3435 8 58 9 88.14% 95.26%

Agriculture 46 337 323 24 52 94.17% 41.30%
Bareland 171 43 0 6191 142 80.64% 94.56%

Urban 234 51 9 1124 1055 80.17% 42.66%

Overall Accuracy = (12922/15698)  82.3162%

Kappa Coefficient = 0.7492

Year 2020

Classes Water Bareland Agriculture Forest Urban Producer’s accuracy User’s accuracy

Water 113 18 0 0 20 83.70% 74.83%
Bareland 3 1431 0 2 5 92.38% 99.31%

Agriculture 0 4 131 12 3 97.04% 87.33%
Forest 1 0 0 236 0 94.40% 99.58%
Urban 18 96 4 0 243 89.67% 67.31%

Overall Accuracy = (2355/2541)  92.6800%

Kappa Coefficient = 0.8814
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the matrix (diagonal) present the acceptable clas-
sified pixels between the reference image and the 
classified image. The user and producer accura-
cies of the classes for the period under study are 
presented in Table 6, and the results obtained in-
dicate that almost all the classes present user and 
producer accuracy values higher than 80% prov-
ing a good accuracy of the classification method.

Spatial distribution of NDVI over 2000 to 2020

The NDVI measures the balance between 
the energy received and emitted by ground 

objects and thus characterizes the vegetation 
mass present in a given environment [Rouse 
et al., 1973]. In principle, positive values cor-
respond to denser vegetation and negative val-
ues to bare ground, clouds, lakes and rivers.  
In this study the NDVI is determined based on 
satellite images taken in the same period of the 
year (June & July). The values obtained vary from 
-0.55 to 0.75 over a period of 20 years (Figure 5). 
According to the results obtained (Figure 5), each 
map shows variations in NDVI values for the study 
area. NDVI varies from a positive value of 0 (very 
low to no photosynthetic activity) to 0.77 (very 

Figure 5. NDVI cover changes maps 2000 to 2020
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Figure 6. SPI Index 2000 to 2020

a)

b)

c)

d)
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heavy and dense vegetation). The values between 
0.15 and -0.28 are often assimilated to bare soil, 
while the very negative values below -0.28 present 
other forms of land use, they are attributed in this 
case and according to field surveys to water bod-
ies or snow. In terms of variation over time, the 
state of vegetation has undergone very significant 
changes from one year to another, where we can 
see from Figure 5 that the lowest values are ob-
served during the period 2000 to 2004 (drier pe-
riod) with indices of -0.55 to 0.58. On the other 
hand, the highest values, which present a more im-
portant vegetation activity, are detected from the 
year 2013 to 2020 (wetter period) with indices that 
vary between -0.20 to 0.75. For the rest of the time 
series the values present globally average indices 
of photosynthetic activity.

SPI Index

Being standardized, the SPI has the ad-
vantage of comparing drought conditions over 
various time periods. The values of SPI are cal-
culated using R studio software. Comparison 
of the 3-months, 6-months and 9-months sea-
sonal SPI indices highlights the seasonal char-
acteristics of rainfall and drought conditions.  
Figure 6 shows that during 2018–2020, the sum-
mer season SPI3 was particularly negative with 
values reaching -2.8. The variation of SPI6 shows 
negative values that do not exceed -1 in 2001 and 
2008. For SPI 9 and SPI12 it shows the same vari-
ation trend. SPI12 presents annual variations and 
highlights an alternation of dry and wet years dur-
ing the periods from 2000 to 2002 and from 2008 
to 2009, where the SPI values reach -1 resulting 
in strong drought, on the other hand the wet peri-
ods are from 2004 to 2005 and from 2012 to 2015 
which has positive values of the order of 1. 

DISCUSSION

LULC changes from 2000 to 2020

The analysis of land change (Table 5 and Fig-
ure 5) shows an increase in the urban area from 
0.03% to 0.83% between 2000 and 2020 caused 
by the population density increase and a remark-
able decrease in vegetation, mainly explained by 
the climate change impact causing frequent dry 
seasons. Among the strategies adopted for this 
area by the Hydraulic Agency of Oum-Erbia, 

building several dams to collect surface water 
aiming to improve the sustainability of these re-
sources. That improvement is clearly noticeable 
in our mapping according to Table 3 and Figure 
5, a significant increase in water resources from 
0.63% in 2000 to 1.03% in 2010, which gener-
ate an increase in the vegetation area that can be 
seen in Table 3 (jumping from 10.25% in 2007 to 
11.14% in 2010). Unfortunately, from 2010 other 
constraints cause the considerable decrease in 
these resources such as the accentuated impact of 
dry seasons and the important decrease of precip-
itation which result into a decrease of water cover 
from 1.03% in 2010 to 0.74% in 2020.The over-
all accuracy and Kappa coefficients for the LULC 
maps from 2000 to 2020 shows a good accuracy, 
which proves that the Maximum Likelihood Su-
pervised Classification method used in this study 
was very effective in improving the land use clas-
sification. The conditional Kappa statistics of 
each LULC class were all between 0.70 to 0.80, 
except for barren land. Barren land can be con-
fused with urban areas where the accuracy of the 
producer and user (Table 4) does not exceed 60%, 
this limitation of the obtained accuracy values is 
mainly due to the rather similar reflectance effect 
between the two categories.

Similarly Chooi et al. [2010], studied the ur-
banization and the resulting land use change by 
analyzing Landsat satellite images during the pe-
riod from 1999 to 2007 in Penang Island, Malay-
sia, they chosed the maximum likelihood classi-
fication method, their study reveal that the urban 
area increased dramatically, and the grassland area 
increased moderately. Conversely, barren land 
decreased obviously, and forest area decreased 
moderately. They found according to their study 
that the maximum likelihood classification pro-
duced superior results and achieved a high degree 
of accuracy and that The remote sensing tech-
nique used in their study proved to be effective; it 
reduced the analysis time of urban expansion and 
proved to be a useful tool for assessing the impact 
of urbanization on LST. Ozesmi & Bauer, [2002] 
confirmed that the MLC leads to higher accu-
racy than the decision tree (DT) classification. 
In a related investigation at the same profile re-
gion, remote sensing geospatial technologies 
have been used with great effectiveness. For in-
stance, based on the supervised classification 
algorithm and the normalized difference veg-
etation index NDVI, Barakat et al. [2018] used 
Sentinel-2A MSI images and ASTER (Advanced 
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Figure 7. Correlation between SPI Index and NDVI

a)

b)

c)

d)
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Spaceborne Thermal Emission and Reflection 
Radiometer) images acquired from 2001 to 2015 
to quantify changes in the Eastern area of Béni-
Mellal province. According to their report, the 
amount of forest land has increased as a result of 
changes in land use. Haboudane & Bahri [2007] 
employed spectral mixture analysis (SMA) and 
maximum likelihood classification (MLC) to map 
multidate satellite images from Thermic Mapper 
(TM), Enhanced Thermic Mapper Plus (ETM+), 
and Advanced Spaceborne Thermal Emission and 
Reflection Radiometer (ASTER).

Vegetation monitoring NDVI and SPI indexes

The revelation of a relationship between NDVI 
and SPI was tested by calculating correlation co-
efficients “r” according to a multiple regression 
model and the coefficient of determination “R²” 
between the different variables. The scattering of 
points on the SPI3/NDVI and SPI6/NDVI scatter-
plot illustrates a weak correlation between these 
two indices (Figure 7). The coefficients of deter-
mination R² between NDVI and SPI vary accord-
ing to the time scale considered, which means that 
NDVI is not significantly correlated with SPI3 
and SPI6 which show seasonal variations. On the 
other hand, we can notice a slightly significant 
correlation with SPI9, which has an R2 of about 
0.489, and it is more correlated with SPI12 where 
we have an R2 of 0.61 (Figure 7).

Similar studies have been conducted, by Lei 
& Peters [2004] who confirms that the response of 
vegetation to precipitation is with a time lag, and 
the impact of water deficits on vegetation is cu-
mulative. Rokhmatullah et al. [2019] studied the 
problem of dryness that occurs in several regions 
in Indonesia (Bekasi), where they monitored this 
phenomenon by using SPI and NDVI index to 
find the relationship between these two, the result 
of this research shows that there is a close rela-
tionship between a region with high NDVI value 
and SPI value. But in a region with a low NDVI 
value, several regions have high SPI values.

CONCLUSIONS

The objective of our study was to determine the 
LULC status over the entire period from 2000 to 
2020, to characterize the vegetation cover that will 
influence the land erosion at Lakhdar sub-basin 
in Morocco. Thanks to processing and analyzing 

remote sensing and satellite images under computer 
tools (ENVI software and GIS), and field surveys 
a detailed study was conducted on the occupation 
and use of land in the area. The use of multi-date 
images and different satellites and sensors allowed 
to update the LULC over a period of 20 years. 

During the 20-year period, several changes 
are observed in the Lakhdar sub-basin. The results 
of the supervised classification by the method of 
maximum likelihood, can be summarized as fol-
lows: a significant decrease in the vegetation cover 
of (5%), and a considerable increase in the bare 
land and urban environment during this period. 
This classification accuracy is checked using a 
confusion matrix to determine the margin of error 
between the classified images and the reference im-
ages with control points based on the field survey. 

The accuracy values obtained show high val-
ues for all images where the value of OA shows a 
good classification and presentation of reality. The 
obtained results of accuracy using the value of OA 
and Kappa coefficient, prove that the supervised 
classification by the method of maximum likeli-
hood is an effective method to identify the changes 
of LULC and it is also a strong tool in decision 
making to have a better management and preser-
vation of this basin. The results of correlation be-
tween the point index based on climatic data (SPI) 
and the spatial index based on satellite images 
(NDVI), gave limited correlations with seasonal 
variations (SPI3 and SPI6), and a more significant 
correlation with the annual and average variation 
(SPI9 and SPI12). To characterize and monitor the 
state of vegetation, the SPI remains very limited 
in these applications, as it is based on defined lo-
cations data from weather stations and therefore 
does not present the spatial impact on the entire 
area, and it is an index that is calculated based on 
only rainfall data, and it neglects the influence of 
other phenomenon on the water status of the area, 
such as evaporation and temperature. On the other 
hand, the NDVI gives a better modeling of veg-
etation status and with more accuracy on the areas 
affected by drought. It is an index based on the use 
of satellite images, which allows a better map-
ping of daily luminance levels and it also clarified 
the inter and intra-annual variations of the greens 
which can be influenced by climatic conditions. 
The advantage of this approach is providing an im-
pact analysis of the different spatial and climatic 
components on the state of vegetation, moving 
from the location scale SPI to the regional scale 
NDVI while keeping the same scientific rigor.
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