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INTRODUCTION

The Second Sustainable Development Goal 
(SDG-2) ‘Zero Hunger’ of United Nation (UN) 
primary objective is to feed 8 billion people in 
world every day without hunger. But SDG-13 
‘Climate Action’ became a major constraint to 
achieve SDG by 2030 (Gil et al., 2019). The Indo-
Australia and India Large-scale flood events from 
1985 to 2016 has shown greater impact on the 
food production. In addition the past two decades 
the world is facing either severe drought condi-
tions or cloud burst scenarios results in wetlands 
to desertification or floods situation (Halgamuge 
et al., 2017). In most cloud burst cases, there is a 
big effect on farming, and this effect is bigger on 

farms and the country’s GDP. (Singh et al., 2022). 
For instance, in Pakistan due to floods in 2022 has 
affected approximately 33 million people and es-
pecially in state of Sindh nearly 4.9 million hect-
ares of agricultural land, almost 57% (2.8 million 
ha) of the cropland was impacted. The disaster 
scenario is also similar in India and neighbour-
ing countries. The top five states with the highest 
reported agricultural losses due to rain and flood-
ing are West Bengal, Madhya Pradesh, Karnata-
ka, Rajasthan, Bihar. Madhya Pradesh witnessed 
extreme crop destruction on 60.47 lakh hectares 
in 2019–20 due to heavy floods (Nanditha et al., 
2022; Kumar et al., 2020). The major crop loss is 
happening not only due to floods inundations, but 
also change in rainfall patterns that is affecting 
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with bacterial, pests, bugs, virus, fungus etc. 
Many of these illnesses, including Magnaporthe 
oryzae (Germany), Botrytis cinerea, Puccinia 
spp., Fusarium graminearum, Fusarium oxys-
porum, Black Thrips (India), Blumeria graminis, 
Mycosphaerella graminicola, Colletotrichum 
spp., Ustilago maydis, and Melampsora lini, have 
been identified by researchers and practitioners in 
recent times (Ceballos et al., 2020; Singh et al., 
2023; Chen et al., 2023; Carreón-Anguiano et 
al., 2020). The states of India such as Telangana, 
Karnataka, and Andhra Pradesh saw significant 
crop loss because of the new invasive thrips spe-
cies, Thrips parvispinus, particularly the ”Black 
Thrips” on chillies (Lodaya et al., 2022; Sireesha 
et al., 2021). Due to Thrips attack on Chilli crop, 
approximate 191.17 m.t crop loss is observed 
in India during 2021–22 (Figure 1). Especially 
these sorts of pests and diseases are increasing 
day-to-day due climate action that implies on na-
tion’s economy and leading obstacle parameter 
for countries GDP. India is an agriculture-based 
country, where approximate 70% countries peo-
ple livelihood. It contributes 4% of the world’s 
gross domestic product (GDP) worldwide, and in 
certain least developed nations, it may represent 
almost 25% of GDP. In many nations, agriculture 
plays a vital role in the economy by producing 
food and raw materials for a variety of businesses 
(Khan et al., 2020).

There are four main types of leaf diseases in 
agriculture: fungus diseases, bacterial diseases, 
viral diseases, and environmental leaf damage. 
This study is mostly about finding pests that 
spread these diseases with respect to chilli crop. 
The primary diseases affecting chilli plants in-
clude powdery mildew, leaf spot, leaf blight, vi-
ral infections, rust, and root rot. Every illness is 
caused by specific factors that are influenced by 
pests and climatic circumstances. In the out of 
chilli diseases a new disease is Thrips parvispinus 
(Black thrips), Farmers who cultivate chilli pep-
pers are facing a new pest problem that is Thrips 
parvispinus (Black thrips). Typically, pests infest 
the leaves of the plant, but this new type of pest 
only attacks the flower buds, causing them to 
wither and not produce fruit. This pest is not ef-
fectively controlled with chemical solutions, but 
experts are working on innovative agricultural 
practices. The advent of digital technologies has 
significantly transformed agricultural practices, 
particularly in duties linked to pre-harvesting and 
post-harvesting in the field of agriculture (Mushi 

et al., 2022; Hatanaka et al., 2022). To a large ex-
tent, the pest it is possible that farmers will not be 
able to see eggs because of their microscopic na-
ture. For most of pests, the egg period lasts for two 
to three days, the larval period lasts for five days, 
and the pupae develop inside the galleries. The 
pupal phase lasts for six days, and the life cycle is 
finished in thirteen to fourteen days. Beginning in 
December and continuing through April-May, the 
pest will have multiple broods. The lifespan of 
Red-mites ranges from 32 to 60 days, with adults 
typically living for seven to 10 days. Typically, 
the farmer will notice pests on a regular basis, 
usually after a few days (10–15 days), as a result 
of changes in color of leaves. Today’s agriculture 
is data-driven, precise, and wiser. Advanced IoT 
systems redesigned ‘smart farming’. Innovative 
farming technologies steadily raise crop yields, 
reduce irrigation waste, and boost profits. Scaling 
model learning performance is achieved by Deep 
Learning (Huo et al., 2024). The portion work is 
a component of the Smart Agriculture System 
Using IOT. In the near future, the proposed algo-
rithms will be integrated to benefit farmers. The 
development of deep learning techniques greatly 
facilitates the classification of diverse photos in 
actual scenarios. One of the most critical chal-
lenges that are regularly faced by for researchers 
and practitioners is the detection of multi-class 
Chilli crop pests with a high degree of accuracy 
using deep learning algorithms. Identifying pests 
on Chilli leaves is continually challenging for 
researchers and practitioners. Jayasuriya et al. 
(2021) found that deblurring VGG-19 improves 
its defect detection accuracy to 97.74%. The 
VGG-16 model detected pest infestations with 
99.35% accuracy after being upgraded with the 
Canny filter. When used with EfficientDet, VGG-
19 identified diseases with 99% accuracy. VGG 
primarily functions as a network for classifying 
data (Jayasuriya et al., 2021). It has a higher speed 
and can be trained more quickly. Nevertheless, 
its detection capabilities are below average com-
pared with You Only Look Once (YOLO) deep 
learning methods. The YOLO model demonstrat-
ed significantly higher accuracy in comparison to 
the VGG model (Chen, 2024). The inclusion of 
anchor boxes in the YOLO model potentially ex-
panded the receptive field for feature extraction, 
which could account for this result. The main aim 
of this work was to employ YOLO deep learning 
techniques to improve the precision of detecting 
chili pests. The v5 and v7 versions of YOLO have 
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been the most successful among all versions (v1 
to v9) in terms of achieving higher accuracies in 
object detection (Jiang et al. 2022; Gillani et al. 
2022). A diverse range of pests, including Black 
Thrips (Thrips parvispinus), Red Mites (Tetrahy-
chus), and White-fly (Bemesia Tabaci), damage 
the Chilli crop. The research area is plagued by 
common pests such as Black Thrips, Red Mites, 
and White-fly, which cause significant damage to 
the chilli crop. In order to minimize significant ag-
ricultural losses, this study focused on conducting 
experiments using commonly seen pest-infested 
leaves, including Black Thrips, Red Mites, and 
White-fly. The current study is centered around 
two crucial objectives: firstly, to identify pests in 
Chilli crop and secondly, it examines the relation 
between epochs and detection accuracy by mak-
ing learning rate. This research also involves a 
comprehensive evaluation of YOLO techniques 
that efficiently identify the Chilli pest. The present 
study has utilized two classification algorithms, 
namely YOLOv5s and YOLOv7, to accurately 
detect pests on chilli plants (Qi et al., 2023; Ama-
ra et al., 2023). In order to achieve greater preci-
sion, a new dataset for Chilli pests was produced 
using advanced image pre-processing techniques. 
The training and validation dataset includes three 
well-known groups of chilli pests: Thrips parvis-
pinus, Tetrahychus, and Bemesia Tabaci (Horow-
itz et al., 2020; Santamaria et al., 2020). The 
YOLOv5 and v7 versions were applied to 13,414 
pest photos, and the results achieved more pre-
cise detection accuracy. The current work took 
into consideration these photographs. The current 
study is limited to only pests data and larvae de-
tection is yet be incorporated. 

BACKGROUND

Artificial intelligence-based agricultural dis-
ease management systems have emerged as a cru-
cial tool for lowering risk and raising crop yields. 
The Table 1 provides a detailed overview of prior 
research in the field of YOLO detector multi-class 
pest and disease detection on a variety of datasets.

STUDY AREA

The present study area lies under Guntur Dis-
trict (16°18’23.95”N and 80°26’11.54”E), which 
covers 562 km2 as shown in location map (Figure 

2). The soil and climatic conditions of Guntur Dis-
trict are favourable for Chilli crop growth. Gun-
tur District is a major hub for chilli production, 
being one of the greatest producers of this crop 
with 300,000 metric tons each year. Additionally, 
Guntur city is home to the largest Chilli market in 
Asia. The Guntur district primarily plants chilli in 
the Nagarjuna Sagar Right Canal’s command area, 
covering about 120,000 hectares. The Guntur Dis-
trict is famous to produce high-quality red chilli. 
Along with the high crop production, the study area 
is highly prone to various pest attacks that result in 
higher losses during 2020–2022 (Figure 1). Figure 
2 displays chilli production in the state of Andhra 
Pradesh district of Guntur, there was a three-year 
period from 2020 to 2022. 2020 was a rather steady 
year for chilli production, with 456,000 metric 
tons produced. But things changed dramatically in 
2021, as the amount of chilli produced fell sharply, 
reaching 439,035 metric tons—a fall of 16,965 
metric tons over the year before. The pattern per-
sisted into 2022, when there was an additional 
10,035 metric tons of output decrease, for a total 
of 429,000 metric tons of chilli produced. There 
was a progressive decline in chilli production over 
the chilli production of these three years, which is 
consistent with the region’s dynamic agricultural 
output. There are several possible reasons for this, 
including variations in growing techniques, market 
dynamics, and weather patterns. Other districts, in-
cluding as Prakasam, Kurnool, Krishna, and Anan-
tapur, are still experiencing it.

CHILLI PEST DATASETS

The dataset comprises 13,414 chilli pest images 
that are segregated into three classes: Black Thrips 
(4472), Red Mites (4471), and White-fly (4471). 
The data is acquired through a high-resolution 
camera (Nikon D-850 with 45.7 megapixels) from 
the study area chilli crop fields, and later the data 
is subjected to image pre-processing techniques to 
prepare a high-quality dataset. The pre-processing 
enables the removal of undesirable distortions and 
enhances specific features that are crucial for the 
intended use. We employ the following pre-pro-
cessing techniques in the preparation of the dataset: 
(i) Data Profiling: The collected raw Chilli dataset 
underwent profiling phases such as brightness dis-
tribution, size distribution, color distribution, and 
shuffling. To profile Chilli pest datasets, the ‘Data 
Gradients’ open-source tool is used that emphasizes 
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Table 1. Previous works on Pest and disease detection and its accuracy

S. No Author name Year Objective Technic Dataset name No. of 
classes

Accuracy 
(mAP@) 

0.5

1 Dong et, al. 2024

This work intends to close the 
gap between current approaches 
and the developing demands of 
the agricultural sector, especially 
regarding crops like rice and maize, 
by tackling the common issues in 
pest identification.

MTSPPF, or the 
Yolo-V5 multi-level 

spatial pyramid 
pooling model

IP102 dataset, 9 90.7%

2 Liu et al. 2019

Problem with multiclass pest 
detection that emphasizes pest 
localization, which is far more 
challenging than classification.

Channel-spatial 
attention (CSA)-

PestNet

Multi-class pest dataset 
2018 16 75.46%

3 Sun et al. 2024

High-density tiny target pest 
identification and detection with the 
goal of resolving the shortcomings 
of earlier detection systems and 
manual sorting.

YOLOv5ss Pest dataset 6 91.0%

4 Dong et al. 2024
It is capable of adaptively choosing 
the appropriate detection receptive 
field based on different object sizes.

Scale-aware efficient 
network (ESA-Net)

LMPD2020.
APHIDc. 2 75.3%

68.8%

5 Wang et al. 2024

A prerequisite for successfully 
managing insect pests is the 
accurate and quick detection and 
segmentation of insect pests in crop 
leaves.

U-Net (DMSAU-Net) 
model IP102 dataset 14 92.16%

6 Wei et al. 2024

It is challenging to strike a 
compromise between real-time 
detection and counting’s quick 
speed, high accuracy, and 
lightweight performance.

YOLO_MRC 
outperforms 

YOLOv8.

Bactrocera,cucurbitae 
pest dataset. 1 99.3%

7 Guo et  al. 2024
This suggests a two-observation-
based open-world pest picture 
classifier.

NT-Xent loss function 
and matching 

network based on 
ResNet8

A little, open-world pest 
picture 3 84.29%

8 Sun et al. 2024
We provide a unique lightweight 
network-based technique for tomato 
pest and disease diagnosis.

SSNet Tomato pests 8 98.80%

9 Liu et al. 2020

To perform multi-scale feature 
detection, this work will construct 
a dataset of tomato diseases 
and pests in their actual natural 
environments and refine the Yolo V3 
models feature layer using picture 
pyramids.

YOLO-V3

1.Early blight
2 Late blights
3 Yellow leaf

curl virus
4 Brown spot

5 Coal
pollution

6 Gray mold
7 Leaf mold
8 Navel rot
9 Leaf curl

disease
10 Mosaic

11 Leaf miner
12 Greenhouse

whitefly

12 92.39%

10 Lippi et al. 2021

In precision agriculture (PA) settings, 
early pest identification is a critical 
first step in developing crop defense 
methods.

YOLO-CNN Pest dataset 2 94.5%

11 Legaspi et al. 2021
This paper’s primary goal is to 
identify and categorize fruit flies and 
whiteflies for monitoring reasons.

YOLO-V3 Whiteflies and fruit flies 2 83.07%

12 Li et al. 2022
This study introduces YOLO-JD, a 
deep learning network for image-
based jute disease detection.

YOLO-JD Jute diseases 10 96.63%.

13 Tian et al. 2023

To overcome the difficulties posed 
by this task, we provide MD-YOLO, 
a model that can precisely identify 
three tiny target lepidopteran pests 
on sticky insect boards.

Multi-scale dense 
YOLO(MD-YOLO) Lepidopteran pests 2 86.2%

14 Wen et al. 2022

A large-scale multi-class dense 
and microscopic pest detection and 
counting model called Pest-YOLO is 
proposed.

Pest-YOLO Pest24 24 69.59%
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15 Yang et al. 2023

The suggested approach finds a 
good balance between detection 
speed, computing effort, and 
accuracy to provide quick and 
accurate pest identification.

Maize-
YOLO(YOLO-V7)

Large-scale pest 
dataset IP102 13 76.3%

16 Chen et  al. 2021

Most of the current research 
concentrates on the laboratory’s 
pest database for analysis, seldom 
discovering pest illnesses on mobile 
devices in difficult outside contexts.

YOLO v4 Mealybugs, Coccidae, 
and Diaspididae 3 97%

17 Guo et al. 2023
Automated surveillance of pest 
vegetable insects has received little 
attention in research.

“YOLO for Small 
Insect Pests” (YOLO-

SIP)

Flying vegetable insect 
pests 2 84.22%

18 Tetila et al. 2024

To assess classification 
performance, we used a 5-fold cross-
validation paired with four measures, 
and detection performance, we used 
three metrics.

YOLOv3 Soybean pest 12 0.72

19 Onler et al. 2021

Using the YOLOv5s object detection, 
our goal was to identify the thistle 
caterpillar in real time from digital 
images and videos.

YOLOv5s Thistle caterpillar 1 59%

20 Chen et al. 2022

Thus, using the YOLOv4 model as 
a guide, this study used the rice 
weevil and the red flour beetle as its 
detecting objects.

YOLOv4 Pest dataset 2 97.55%

21 Huang et al. 2023
We suggest a fresh approach to 
finding Pomacea canaliculata eggs 
in rice fields.

YOLO-EP Eggs of Pomacea 
dataset 1 88.6%

22 Lyu et al. 2023

The black widow optimization 
algorithm (BWOA) is employed to 
optimize the YOLO-SCL model’s 
hyperparameters.

YOLO-SCL Citrus psyllids 1 97.18%

23 Zhu et al. 2024

The accuracy of the CBF-YOLO 
network for soybean pest was 
significantly improved by combining 
the usage of CSE-ELAN, Bi-PAN, 
and FFE modules.  
detection in intricate settings.

CBF-
YOLO(YOLOv5s) Soybean pests 2 81.6%

24 Dai et al. 2023
The suggested approach is more 
efficient and accurate in identifying 
pests.

YOLOv5sm

Brown planthopper,
rice leaf roller, ladybug, 
rice ear bug, caterpillar, 

moth, mirid bug, and 
corn borer.

10 95.7%

25 Amrani et al. 2023

Our goal was to use an improved 
artificial intelligence machine 
learning approach to create a high-
performance agricultural insect 
detector.

YOLO-V3 Pest-24 dataset. 24 72.10

26 Zhang et al. 2022

The enhanced model was applied to 
the creation of a smartphone-based 
program for the identification of pests 
and illnesses in cotton.

YOLOX Cotton diseases and 
pests dataset. 5 94.60%

27 Soeb et al. 2023

We introduce YOLO-T, an enhanced 
YOLOv7 object detection model, 
for the automatic identification, 
detection, and resolution of the 
issue of tea leaf disease detection 
accuracy in natural scene photos.

YOLOv7 (YOLO-T) Tea gardens leaf 
Dataset. 5 96.4%

28 Lippi et al. 2022

Based on pictures of tree branches, 
we suggest an automated monitoring 
method to identify gall-mites’ 
infestations online.

You Only Look Once 
(YOLO)

Hazelnut
Dataset. 1 86.7%

29 Agustian 
et al. 2023

Along with big pests, the model 
could also identify items that were 
tiny in relation to the scale of the 
image.

YOLOv5ss IP-23 dataset 4 81.3%

30 Zhu et al. 2023

Therefore, the purpose of this 
research is to provide a novel 
approach for employing polygons to 
identify areas infested by pests.

Poly-YOLOv8 PolyCorn
dataset. 1 67.26%
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image quality parameters such as convexity, fine 
details, segments, brightness and color distribution, 
aspect ratios, and resolution of pest images (Towfek 
et al., 2023; Blanchy et al., 2020). (ii) Data Clean-
ing: We removed incorrect, corrupted, incorrectly 
formatted, redundant, or incomplete images of chil-
li pests from the dataset. It was 559 photos of Black 
Thrips that were obtained, and 32 photographs were 
eliminated from the collection. Similarly, I took 558 
photographs of red mites and deleted 24 of them; 
the majority of them are duplicates, and only a few 
of them are blurry. Similar to the previous example, 
I collect 558 white-fly photos and eliminate 14 of 

them due to their low resolution and brightness. We 
eliminate 70 outliers from the real dataset of 1675, 
and consider the remaining 1605 photos to restore 
the dataset’s equilibrium. (Dhiman et al., 2023). 
(iii) Balanced Dataset: The accuracy of classifying 
balanced datasets is considerably greater and less 
biased when compared to imbalanced datasets. A 
total of 1675 high-resolution images of pests were 
carefully chosen and downsized to a resolution of 
640×640 pixels for the current research in each 
category. These images are thereafter subjected 
to augmentation (Alsubaei et al., 2024). (iv) Aug-
mentation: An eight-fold augmentation procedure 

Figure 1. Study area location map (NASA Earth Explorer (Landsat-8))

Figure 2. Chilli produced across Andhra Pradesh in Financial years 2020–2022 
by all states (fao.org/faostat/en/)
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is applied to each pest class image and escalated to 
4471 by rotation, blurring, noising, and flipping at 
different angles (Ameen et al., 2023). We divide the 
dataset into three categories, setting aside 20% for 
validation, 10% for testing, and 70% for training. 
The present dataset comprises three pest-affected 
wide variety of chilli leaf datasets, like 26–26, 275 
– varieties for (Black Thrips), 273–273, 274, 341, 
350 – varieties for (Red Mites), Kalyani, and 555 – 
varieties for (White-fly).

Black thrips (Thrips parvispinus)

The Thrips parvispinus insects are special 
type of insects that damages chilli crops at larger 
volume in less span of time. All around the planet, 
but particularly in tropical and temperate regions, 
are these insects. From the time of seeding until 
the final harvest, these caterpillars consume the 
pith and sap. These insects consume a variety of 
horticultural crop, decorative plants, and vegeta-
ble crops. This insect severely lowers the harvest 
and is greatly anticipated in all our state’s chilli 
farming regions according to Figure 3. 

Red mites (Tetrahychus) 

The Red mites or Spider mites or Tetrahychus 
are one of the popular pests for Chili crop in the 
study area. The Red mite causes severe damage to 
the Chili crop leaves become infected and exhibit 
crinkling and downward curling. In addition, buds 
undergo desiccation and subsequently detach. In 
the initial phase, the presence of pests causes a de-
crease in plant growth and the ability to produce 
flowers, resulting in a halt in fruit development. 
The dataset comprises of 4,471 Red Mites images 
as shown sample images in Figure 4.

White-fly (Bemesia Tabaci)

Another significant insect that harms chilli 
crops is the Bemesia Tabaci. When their baby 
worms come out of the grids, they walk a little 
distance on the leaves in search of a good lo-
cation to suck the juice, settle there, and do 
just that. Aside from that, the honey-like sub-
stance excreted by these insects harbors black 
mold, which impedes photosynthesis. The re-
sult is that the plants get weakened and stunt-
ed. In addition, whiteflies serve as messengers 
for the Gemini virus, which causes leaf blight. 
The dataset consists of 4,471 photos of White-
fly, as depicted in the sample photographs pre-
sented in Figure 5.

DEEP LEARNING ARCHITECTURE

You only look once – 5 (YOLOv5) detector

Model for computer vision YOLO family in-
cludes YOLOv5s. YOLOv5s is employed in ob-
ject recognition. There are four main versions of 
YOLOv5s, each with a different accuracy level: 
small (s), medium (m), large (l), and extra-large 
(x). Object detection, which extracts characteris-
tics from pictures, is the primary application of 
YOLOv5s. These traits are predicted to define 
object boundaries and classes. Three components 
make up the YOLOv5s model: 
 • Backbone (CSP-Darknet-53): A multiscale 

convolutional neural network. 
 • Neck (PANet): A series of layers that fuse and 

refine visual features before prediction. 
 • Head (YOLO-Layer): Uses neck characteris-

tics to forecast box and class (Figure 6).

Figure 3. Sample dataset of black thrips images
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Backbone: CSP-DarkNet-53 
training architecture

DarkNet-53 is enhanced by CSP-Darknet-53 
using a novel technique known as Cross Stage 
Partial Network. (CSPNet). The divide and con-
quer strategy used by CSP-DarkNet-53 allows 
the system to divide the input data into smaller 
sections that are easier to process. It then uses 

cross-stage connections to combine these sec-
tions back into a larger representation of the in-
put data. Typically, the CSP-DarkNet-53 training 
architecture splits the given input image data into 
two convolution layers (1×1). The part – 1 has 
only one convolution layer and whereas part – 2 
contains four convolution layers, out of which 3 
convolutions is of 1×1 filter sizes and other one is 
of 3×3 filter size. Lastly the two parts are merged 

Figure 4. Sample dataset of red mites’ images

Figure 5. Sample dataset of white-fly images

Figure 6. Yolov5 architecture with CSP-DarkNet(Backbone), PANet(Neck) and yolo layer (head)
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to one additional convolution layer of size 1×1 
and output features are classified (Figure 7).

Neck: PANet training architecture

The PANet (Path Aggregation Network) com-
prises three different training phases for improv-
ing performance. A bottom-up path is augmented 
to make low-layer information easier to propagate. 
We design adaptive feature pooling to allow each 
proposal to access information from all levels for 
prediction. Bottom-up Path Augmentation: This 
technique produces less than 10 layers across these 
levels. The CNN trunk in FPN has a long route 
through 100 + layers from low to high. Augment-
ed Bottom-up Structure: The progression from P2 
to P5 spatial size is down-sampled by factor 2. 
We utilize {N2, N3, N4, N5} to represent newly 
created feature maps for {P2, P3, P4, P5}. Adap-
tive Feature Pooling: It assigns minor suggestions 
to lower feature levels and large ones to higher 
ones. Although easy and effective, it may yield 
suboptimal outcomes. Fully-connected Fusion: 
Fully-connected layers (fc layers) have distinct 

qualities compared to FCN, which predicts each 
pixel using a local receptive field and shares pa-
rameters across different geographical locations. 
In contrast, fc layers are location-sensitive as they 
use different parameters to forecast different spa-
tial locations. This allows them to adapt to varied 
spatial settings as shown in Figure 8.

You only look once -7 (YOLOv7) detector

The most recent model in the YOLO model 
series is the v7 model. Object detectors in the 
YOLO paradigm only function in one step. A 
backbone is used in YOLO model image frame 
processing to extract features. Before the charac-
teristics are sent to the head of the network, they are 
combined and integrated in the neck. Bounding box 
outline placements and categories for objects are 
predicted by YOLO. To calculate its final forecast, 
YOLO uses non-maximum suppression (NMS) 
during post-processing. The authors of YOLOv7 
build on earlier research about the distance a gradi-
ent must travel to back-propagate between layers 
and the usage of memory for layer storage. Their 

Figure 7. Backbone training architecture of CSP-DarkNet-53
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network will be better able to learn if the gradient 
is shorter. As the last layer aggregation, they used 
Extended Efficient Layer Aggregation (E-ELAN), 
which is an expanded variant of the ELAN compu-
tational block (Figure 9) and YOLOv7 architecture 
for pest class is defined in Figure 10.

MATHEMATICAL NOTATIONS

This section discus the mathematical notations 
related to the classification performance metrics 
such as Training and validation. In general, the 
training and validation parameters are further 
classified into coordinate (Box), Objectness and 
Classification accuracy. The Coordinate loss oc-
curs due to a box prediction not exactly covering 

an object. The Objectness loss due to a wrong 
box-object IoU prediction. Lastly the Classifica-
tion loss express the deviations from predicting 
‘1’ for the correct classes and ‘0’ for all the other 
classes for the object in that box. The loss function 
is computed in Equation 1.
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Figure 8. Neck training architecture of PANet of pest classes

Figure 9. YOLOv7 (E-ELAN) backbone architecture
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Figure 10. Layered architecture of Yolo v7 architecture for pest class

The coordinate function for optimal box detec-
tion is represented by ‘cd’, while the ‘objectness loss 
function is referred to as ‘obj’ in the YOLO-V1 loss 
function. YOLO V2 and V3 implemented a residual 
scale prediction instead of direct width and height 
forecasts to ensure that the loss function is based on 
relative scale error rather than absolute scale error. 
The mean Accuracy Precision (mAP) is articulated 
as average accuracy precision classification as in 
Equation 2, where ‘AP’ refers the average precision.
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RESULTS AND DISCUSSION

Pest detection using Yolo-5

Classification performance metrics

In general, the performance analysis of ob-
ject detection from a multi-class image dataset 
is computed based on five metrics namely, coor-
dinate Loss, objectness, classification, precision, 
and recall.

Training loss 

a) Box validation – the box loss indicates how 
successfully the model locates an pest object’s 
centre and the pest class object is covered 
by the predicted bounding box and achieved 
0.033569 classification training accuracy. 

b) Objectness – the likelihood that an object will be 

present in a Region-of-Interest (RoI) of interest 
is measured by objectness loss. The objectness 
training loss on pest dataset is 0.016341, which 
is very minimal and treated as good fit that there 
is an object in the image window.

c) Classification – classification loss is a measure of 
how well the algorithm can predict a pest object 
on leaf class. The loss function for training clas-
sification value is 0.007425, which is very low 
value and obtained good classification accuracy. 
The Precision value is 0.860379 that shows the 
predict model is correct in predicting the target 
Pests class. The Recall value is 0.804229 that 
represents that the Yolo5 model resulted well in 
finding all objects of the targeted pests’ class. The 
mean Average Precision (mAP) is 0.849624 that 
represents very good classification.

Validation loss

A statistic called validation loss is used to 
evaluate how well a deep learning model performs 
on the validation set. A section of the dataset des-
ignated specifically for validating the model’s 
performance is called the validation set. Calculated 
using the total of the mistakes for every example 
in the validation set, the validation loss is like the 
training loss. Figure 12 and 13 describes the pest 
class confusion matrix and YOLOv5s Chilli Pest 
Classification peak performance metrics at 350 ep-
ochs. The results screenshot of YOLOv5 detected 
pest is shown in Figure 14 and pest classification 
peak performance for YOLOv5 is represented us-
ing PR curve and F1-score in Figure 15.
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a) Box validation – the box loss measures how 
well the model finds the center of a pest item, if 
the pest class object is covered by the projected 
bounding box, and whether the classification 
training accuracy was 0.033569 (Figure 13). 

b) Objectness – the likelihood that an object 
will be present in a Region-of-Interest (RoI) 
of interest is measured by objectness loss. 
The objectness training loss on pest dataset is 
0.016341, which is very minimal and treated 
as good fit that there is an object in the image 
window (Figure 13).

c) Classification – classification loss is a measure 
of how well the algorithm can predict a pest ob-
ject on leaf class. The loss function for training 
classification value is 0.007425, which is very 
low value and obtained good classification accu-
racy. The Precision value is 0.860379 that shows 
the predict model is correct in predicting the tar-
get Pests class. The Recall value is 0.804229 that 
represents that the Yolo5 model resulted well in 
finding all objects of the targeted pests’ class. The 
mean Average Precision (mAP) is 98.6% that rep-
resents very good classification (Figure 15).

Figure 11. Labelling of various chilli pest class during Training phase (PANET)

Figure 12. Confusion matrix of chilli pest classification using Yolo5
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Figure 14. Results of multi-class chilli pest detection represented with bounding boxes 
using YOLOv5s on custom chilli pest dataset (red mites, white fly and black thrips)

Figure 15. (a) YOLOv5s chilli pest classification peak performance 
metrics P-R curve. (b). F1-confidence score at 350 epochs

Figure 13. YOLOv5s Chilli Pest Classification peak performance metrics at 350 epochs
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Pest detection using Yolo-7

Classification performance metrics

In general, the performance analysis of ob-
ject detection from a multi-class image dataset is 
computed based on five metrics namely; coordi-
nate Loss, object-ness, classification, precision, 
and recall. Figure 16 shows the Labelling of vari-
ous Chilli pest class during Training phase. The 
results screenshot of YOLOv7 detected pest is 
shown in Figure 19 and pest classification peak 
performance for YOLOv7 is represented using 
PR curve and F1-score in Figure 20. Figure 17 
and 18 describes the pest class confusion matrix 
and YOLOv7s Chilli Pest Classification peak per-
formance metrics at 110 epochs.

Training loss 

a) Box validation – the box loss shows how well 
the model locates the center of a pest item, the 
extent to which the pest class object is covered 
by the predicted bounding box, and the classi-
fication training accuracy of 0.033569. 

b) Object-ness – the likelihood that an object will 
be present in a Region-of-Interest (RoI) of inter-
est is measured by object-ness loss. The object-
ness training loss on pest dataset is 0.016341, 
which is very minimal and treated as good fit 
that there is an object in the image window.

c) Classification – classification loss is a measure 
of how well the algorithm can predict a pest ob-
ject on leaf class. The loss function for training 

Figure 16. Labelling of various chilli pest class during training phase (PANET)

Figure 17. Confusion matrix of Chilli Pest Classification using YOLOv7
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classification value is 0.007425, which is very 
low value and obtained good classification accu-
racy. The Precision value is 0.860379 that shows 
the predict model is correct in predicting the tar-
get Pests class. The Recall value is 0.804229 that 
represents that the Yolo5 model resulted well in 
finding all objects of the targeted pests’ class. The 
mean Average Precision (mAP) is 0.849624 that 
represents very good classification.

Validation loss

A deep learning model’s performance on the 
validation set is evaluated using a statistic called 
validation loss. A subset of the dataset designated 
specifically to verify the model’s performance is 

known as the validation set. Constructed from the 
total of the errors for every example in the valida-
tion set, the validation loss is computed similarly 
to the training loss.
a) Box validation – the box loss measures how 

well the model finds the center of a pest item, if 
the pest class object is covered by the projected 
bounding box, and whether the classification 
training accuracy was 0.033569 (Fig. 18). 

b) Object-ness – the likelihood that an object 
will be present in a Region-of-Interest (RoI) 
of interest is measured by object-ness loss. 
The object-ness training loss on pest dataset is 
0.016341, which is very minimal and treated 
as good fit that there is an object in the image 

Figure 18. YOLOv7 chilli pest classification peak performance metrics at 110 epochs

Figure 19. Results of Multi-class Chilli pest detection represented with bounding boxes 
using YOLOv7 on custom chilli pest dataset (red mites, white fly and black thrips)
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Figure 20. YOLOv7 chilli pest classification performance metrics (a) P-R curve and (b) F1-confidence score

Table 2. Training and validation results of YOLOv5s and YOLOv7
S. No. Features YOLO V5 YOLO V7

1 @mPA_0.5 98.6 86.1

2 Epoch 350 110

3

Training

Box loss 0.033569 0.047857727

4 Objectness loss 0.016341 0.009315773

5 Classification loss 0.007425 0.013113764

6

Validation

Box loss 0.860379 0.630452273

7 Objectness loss 0.804229 0.587972706

8 Classification loss 0.849624 0.285897575

window (Figure 18).
c) Classification – classification loss is a measure 

of how well the algorithm can predict a pest 
object on leaf class. The loss function for train-
ing classification value is 0.007425, which is 
very low value and obtained good classifica-
tion accuracy. The Precision value is 0.860379 
that shows the predict model is correct in pre-
dicting the target Pests class. The Recall val-
ue is 0.804229 that represents that the Yolo5 
model resulted well in finding all objects of the 
targeted pests’ class. The mean Average Preci-
sion (mAP) is 86.1% that represents very good 
classification (Figure 20).

Influence of classification parameters

Impact of epochs

The change in epochs has shown a greater 
impact on Precision, Recall, F1-Score and P-R 

curve as shown in the Figure 21 and 22. The YO-
LOv5s and v7 algorithm is executed by varying 
25 epochs to 350 epochs and computed accuracy 
for every 25 epochs. The peak classification ac-
curacy of the pest dataset achieved at 310 epochs 
in YOLOv5s and 110 epochs in YOLOv7 as rep-
resented in Table 2 and 3. From the Figure 21 it 
is also observed that lower epochs resulted lower 
accuracy for Yolo5, whereas the moderate epochs 
in between 100 to 250 results higher accuracy for 
Yolov7. And from Figure 22 it is observed that 
always Recall values are higher than Precision 
value and followed by PR and F1 Score.

Precision

For precision, Table 2 shows that YOLOv5s 
outperforms YOLOv7 in all circumstances. YO-
LOv5s had 61%, 86% and 87.1% for Black Thrips, 
Red mites, and Whitefly, while YOLOv7 had 51%, 
41% and 52%. In overall class detection, YOLOv5s 
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has 12.5% more true positives than YOLOv7. Both 
models detect more Black Thrips than other classes, 
4% more than YOLOv7. This model will efficiently 
identify Black Thrips more than other classes.

Recall

Table 2 shows that YOLOv5s outperforms 
YOLOv7 in Black Thrips, Red mites, and White-
fly, pest detection. YOLOv7 surpasses YOLOv5s 
in class recall, red mites, and Whitefly, with 
98.5%, 99%, 98.5% vs. 98%, 98%, and 94%. The 
difference between three pest classes difference 
between YOLOv5s and YOLOv7 is 1.1%, 0.1% 
and 0.45% respectively during detection. YO-
LOv7 outperformed YOLOv5s in identifying the 
red mites and Whitefly classes, improving class 

recall by 3%. Compared to YOLOv7, YOLOv5s 
has better Black Thrips class detection recall.

F1-confidence score

The best F1 score, 0.86, with a confidence 
threshold of 0.523, is displayed by the F1 confi-
dence curve. YOLOv5s pest detection outcomes 
using a 0.523 confidence threshold. At a confi-
dence threshold of 0.523, the F1 confidence curve 
shows the highest F1 score of 0.86. YoloV7 has 
a 0.523 confidence threshold for pest detection.

Precision about mAP@0.5 and mAP@0.5:0.95

When comparing the findings in Table 2, 
it can be observed that YOLOv5s consistently 

Figure 21. Performance analysis YOLOv5s of F1-Score, precision, recall, precision-recall with respect to epochs

Figure 22. Performance analysis YOLOv7 of F1-Score, precision, recall, precision-recall with respect to epochs



251

Ecological Engineering & Environmental Technology 2024, 25(6), 234–254

outperformed YOLOv7 in terms of accuracy, 
with overall class results in mAP@0.5 and 
mAP@0.5:0.95 of 98.6% and 66% as opposed 
to 86.1% and 39% for YOLOv7. When compar-
ing the detected box to the ground truth bounding 
box at an IOU of 0.5, the mAP values demonstrate 
how well the model detects an object within a 
frame. When comparing the mAP@0.5 of YO-
LOv5s to YOLOv7, there is a 12.5% difference, 
which indicates how well the model detects items 
correctly and precisely when compared to ground 
truth objects. The mAP@0.5:0.95 also shows su-
perior performance for YOLOv5s in comparison 
with YOLOv7, with a marginal 2.7% difference 
in average mAP at different thresholds. All perfor-
mance indicators show that the YOLOv5s model 
outperforms the YOLOv7 model, except for recall 
score during testing. The investigations suggest 
that YOLOv5s performs better than YOLOv7 in 
terms of detection accuracy, precision, and recall, 
particularly when utilized in production, as indi-
cated by the testing results (Table 3). 

DISCUSSION

The experimentation it is found that the clas-
sification accuracy is differed from epoch to ep-
och. From the analysis the YOLOv5s and YO-
LOv7 showed the almost similar behaviour ac-
cording to epochs. But the YOLOv5s achieved 
the 98.6% classification accuracy at 350 epochs, 
whereas YOLOv7 obtained 86.1% at 110. Even 
the YOLOv7 achieved the higher accuracy at 
lower epochs the mAP is very lower compared 
with YOLOv5s. Further the YOLOv5s model 
achieves 140 frames per second (fps) and YO-
LOv7 fps is 290. The greater frame rate in YO-
LOv7 results in a decreased accuracy of 86.1%.
This study is compared to the work of Haitong 

Pang, et al. who achieved 92.86% accuracy 
with YOLOv4, while the current study achieved 
5.74% higher accuracy using YOLOv5s. Ac-
cording to Tetila et al., (2021), the pest iden-
tification accuracy of using YOLOv3 is 93%, 
while the suggested study achieved a 5.6% bet-
ter accuracy. The research results of Jayasuriya 
et al., (2021) demonstrate that when VGG-19 
is enhanced with deblurring, it achieves an im-
pressive accuracy of 97.74% in accurately di-
agnosing flaws. When the VGG-16 model was 
enhanced with the Canny filter, it obtained a re-
markable accuracy of 99.35% in accurately de-
tecting pest infestations. Moreover, when com-
bined with EfficientDet, VGG-19 demonstrated 
an impressive accuracy rate of 99% in disease 
identification. However, when compared to deep 
learning systems that use the You Only Look 
Once (YOLO) algorithm, its detection capabili-
ties are below average (Jiang et al., 2022; Gil-
lani et al., 2022). In addition, the current study 
presents a novel link between epochs and accu-
racy, which demonstrated a more significant in-
fluence on the parameter mAP that was obtained 
as a result of the research. When compared to the 
findings of earlier studies, the findings of YO-
LOv5 on the detection of chilli pests are, in gen-
eral, quite impressive in terms of the accuracy 
of detection. YOLOv5 is recommended as the 
best detector for accurately recognizing pests in 
well-balanced multi-class datasets, outperform-
ing YOLOv7, VGG-16 (~92.7%), and VGG-19 
(~84.24%) deep learning architectures. In addi-
tion, the findings of this research shed light on a 
previously unknown connection between epochs 
and precision. A combination of detecting pests 
and explaining the impact of epochs on the mAP 
that is produced as a result is described in the 
current work, which is a unique piece of work 
because it describes the combination. 

Table 3. Detection performance analysis of Chilli pest detection between YOLO-v5s and YOLOv7
No. Features Detection accuracy

Difference YOLO (V5sؘ–V7)
1 Model YOLO V5s YOLO V7

2 Class name Black 
thrips

Red 
mites White fly Black 

thrips
Red 
mites White fly Black 

thrips
Red 
mites White fly

3

Metrics

Precision 0.610 0.860 0.871 0.51 0.41 0.52 0.1 0.45 0.351

4 Recall 0.985 0.99 0.985 0.98 0.98 0.94 0.111 0.01 0.045

5 Accuracy 
precision 0.995 0.988 0.975 0.884 0.864 0.835 0.111 0.124 0.14

6 mAP_0.5 0.986 0.861 0.125

7 mAP_0.5:0.95 0.66 0.39 0.27
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CONCLUSIONS

Chilli is a highly sought-after horticultural crop 
in South Asia. Farmers are suffering losses due to a 
significant bug infestation on their chilli crop. Early 
pest detection is a solution that can improve crop 
productivity. The current study primarily centers on 
pest identification in chilli crops utilizing the Convo-
lutional Neural Network architecture of YOLOv5s 
and YOLOv7. The study examined three chilli 
pests: Black Thrips, Red Mites, and White Flies, 
known for causing significant damage to chilli crop 
leaves. The study generated a new pest dataset and 
used CNN-based YOLO v5 and v7 versions for pest 
detection. The v5 algorithm performs better than v7 
for all three types of chilli pests. However, the re-
sults indicate that detection performance is better in 
version 7 and worse in version 5 at lower epochs. 
The computation time is longer in v5 compared to 
v7 since the frames per second (fps) are higher in 
v7 and lower in v5. The study shows that the mAP 
performance of YOLOv5s is better than that of YO-
LOv7. The present study reveals that YOLOv5 is 
recommended for Chilli pest detection with higher 
accuracy than existing VCC-16 and VCC-19. The 
current study is limited to only pests data and larvae 
detection is yet be incorporated.
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