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INTRODUCTION

Pollutants in water caused by human and 
environmental activities represent serious dan-
gers to both the environment and human health 
(Biesbroek et al., 2022; Qiu et al., 2023; Zhou and 
Yang, 2023). As a result, the gradual rise in pol-
lution concentrations in water produces environ-
mental difficulties, ultimately destroying aquatic 
animal habitats. In 2019, water pollution led to 
1.4 million deaths and about 1 billion illnesses 
worldwide, with low – and middle-income na-
tions accounting for about 90% of deaths caused 
by pollution (Fuller et al., 2022). The dynamics 
of rivers, wave transport, hydrological processes, 
and transformation processes all have a signifi-
cant impact on water pollutants that are discarded 

from various sources. Therefore, evaluating the 
features of the water quality in monitoring sta-
tions serves as the foundation for safeguarding 
aquatic systems because it aids in the creation of 
policies aimed at preventing contamination from 
waste discharges (Wang et al., 2019). Because hu-
man existence depends on the availability of wa-
ter, surface and groundwater sources are subject 
to varying levels of pollution caused by various 
contaminants (Al-Janabi et  al., 2012; Asadollah 
et  al., 2012). Because of this, predicting water 
quality (WQ) has become more challenging re-
cently, and because WQ is so important to hu-
man life, many scholars have put a lot of effort 
into evaluating WQ (Elbeltagi et al., 2023; Tung 
and Yaseen, 2020; Ding et al., 2014). Resources 
of water in the Iraqi region have been under a 
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significant amount of stress for the past 20 years 
for a variety of reasons, including the construc-
tion of dams on the Tigris and Euphrates rivers, 
changes in the worldwide climate, and a decline 
in the local yearly rainfall and rates of precipita-
tion (Wang et al., 2023). The recognition of sur-
face water pollution as a problem and the growing 
interest in WQ assessment have led to a recent 
surge in the demand for reliable, accurate, flex-
ible, and effective prediction models (Kılıç and 
Çetin, 2023). These models are thought to be able 
to adequately capture the mechanics of the WQ 
decrease) Montazeri et  al., 2023). Because ML 
models are precise and dependable, researchers 
used them to determine the concept of surface 
and subsurface WQ modelling (Geshnigani et al., 
2023). Researchers and scientists are interested 
in research that involves modelling WQ utilizing 
new, advanced models, and the idea of exploring 
new machine learning (ML) models that can solve 
environmental engineering challenges is always 
continuing (Kang et  al. 2022; Liu et  al. 2022) 
Recently developed ensemble AI algorithms, 
like random tree (RT), random committee (RC), 
and reduced error pruning tree (REPTree), which 
have been introduced to improve the capabilities 
of AI systems (Khosravi et al., 2021; Shahdad and 
Saber, 2022; Saha et al., 2022). Three AI models 
were compared by Khosravi et al. (2018): M5P, 
REPTree, and instance-based learning (IBK), as 
well as their hybridized variants, bagging-M5P, 
random committee-REPT, and random subspace-
REPT (RS-REPT), for predicting SSL. The pre-
diction of hourly suspended sediment was en-
hanced by the hybrid REPTree and RC models, 
according to their findings.  In a different study, 
Chen et al. (2020) discovered that deep cascade 
forest (DCF), random forest, and random tree 
forest performed noticeably better in WQ predic-
tions than the conventional approaches. Accord-
ing to Asadollahfardi et al. (2021), the patented 
Extra Tree Regression (ETR) model provided 
more precise WQI predictions all throughout the 
training and testing stages.

A number of recent review research publica-
tions on the advancement of machine learning 
for river WQ (Jamei et al., 2022; Mahdavi-Mey-
mand et al., 2024). The literature review places 
a lot of emphasis on looking into new machine 
learning models iterations for river WQ mod-
elling in light of the limitations of the current 
ML models. For example, the disadvantages of 
fine-tuning the internal parameters of traditional 

models like support vector machines (SVM), 
fuzzy logic (FL), and artificial neural networks 
(ANN) (Alavi et al., 2022).

Water pollution control requires an accurate 
estimate of biochemical oxygen demand (BOD) be-
cause it is a key indicator of high-quality water) 
Manzar et  al., 2022). On the other hand, high 
BOD loads are bad for river water quality because 
they lead to low dissolved oxygen (DO) concentra-
tions, which are unsuitable for aquatic life. Conse-
quently, several models have been developed for 
forecasting of changes in water quality brought on 
by BOD releases (Boano et al., 2006). Analysing 
this parameter, especially BOD analysis, is diffi-
cult and time-consuming. BOD is a crucial indica-
tion of water pollution and gives an estimate of the 
quantity of organic matter that degrades naturally 
in the water. BOD is also recognized as the prima-
ry indicator for the health of the aquatic system, 
and accurate measurement of it can help establish 
safe and successful strategies for protecting water 
resources. However, BOD is noted for a minimum 
of five days. Since that precise WQ parameter pre-
diction into a study field can save resources like 
time, money, and energy, modelling techniques 
are heavily considered when making these impor-
tant parameter predictions (Benaafi et al., 2022). 
In poor countries, where financing for quality of 
the environment evaluation and monitoring is less 
than in richer countries, modelling techniques are 
more essential. This study is based on predicting 
monthly-scale DO and BOD for the Tigris River 
in the Iraq region. To do this, five separate en-
semble machine learning models were created. 
The models were selected due to their widespread 
use, which attested to their applicability in clima-
tological, hydrological, and environmental studies 
(Ramal et al., 2022, Adedeji et al., 2022).

The main aim of the present work is to evalu-
ate the AdaBoost, Gradient Boosting, Tree, Ran-
dom Forest, and KNN models that were developed 
to predict DO and BOD on the Tigris River in the 
middle of Iraq. The physical and chemical water 
parameters, which include PH, BOD5, DO, PO4, 
Ca, Mg, NO3, TH, Na, CL, K, E.C, Alkalinity, SO4, 
TSS, TDS, and Turbidity were used as predictors. 
Additionally, this study used principle component 
analysis to evaluate various input scenarios and 
determine which inputs had the greatest impact on 
the models’ accuracy of prediction. Consequently, 
the purpose of the current study was to support 
water quality monitoring by offering useful data 
on the performance of these models.
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CASE STUDY

The case study in this research is the reach of the 
Tigris River, situated within Baghdad, Iraq, as seen 
in Figure 1. The Tigris River is the only supply of 
drinkable water in the city of Baghdad (Adnan et al., 
2021). Baghdad, the capital city of Iraq, is located at 
latitude 33° 18′ 0″ from the north and longitude 44° 
24′ 0″ from the east. Tigris flows from Al-Tajee, in 
the north, to Al-Zafaraniah, in the south, before meet-
ing with the Diyala River. The river separates the city 
into two parts: Karkh (right) and Risafa (left), flow-
ing north to south. The climate of the region is arid to 
semi-arid, with hot, dry summers and cool winters; 
the average annual rainfall is approximately 151.8 
mm (Al Obaidy et al., 2016). The Tigris River is 
Western Asia’s second-longest river, it flows through 
densely inhabited areas, particularly Baghdad, which 
has nearly 8 million people. Demand for water is at 
an all-time high, but Tigris discharge has significant-
ly decreased in recent decades. Wastewater treatment 
plants are facing a shortage due to the rising volumes 
of wastewater; in Baghdad, for example, 20 per-
cent of the sewage is thrown into the river untreated 
(Oleiwi and Al-Dabbas, 2022).

METHODS

Collection data and sampling locations

The dataset for this study had been gath-
ered and monitored monthly at two sites along 

the Tigris River by Iraq’s Central Region’s 
Ministry of the Environment, Department of 
Protection, and Improvement Environment 
(Tab. 1). Monthly water quality dataset col-
lected from the 2008–2022 period consists of 
the physical and chemical water parameters, 
which include PH, DO, BOD5, NO3, PO4, Ca, 
Mg, TH, K, Na, SO4, CL, TDS, EC, Alkalinity, 
TSS, and Turbidity. These variables are used 
to develop the AdaBoost, Gradient Boosting, 
Tree, Random Forest, and KNN models to es-
timate the dissolved oxygen and biochemical 
oxygen demand characteristics of water quali-
ty. Since DO and BOD have been the two most 
widely used WQ parameters for many years, 
this research focused on their prediction since 
precise prediction of these parameters is criti-
cal to the effectiveness of preventive measures 
initiatives. Table 2 presents statistical charac-
teristics for the WQ parameters. In this paper, 
the total quality of water dataset for Al-Muth-
anna Bridge (147 samples) and Al-Aammah 
Bridge (139 samples) was randomly split into 
two groups: training and testing. The training 
and testing datasets comprised 70% and 30% 
of the samples, respectively.

Applied ensemble machine learning models

Random forest (RF) model

RF is an ensemble learning method that can 
be applied to regression, classification, and other 
tasks. Tin Kam Ho introduced it initially, and Leo 

Figure 1. The study area map for the station along the Tigris River in Baghdad city
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Table 1. Location and coordinates of the sampling sites
Site number Location Longitude (E) Latitude (N)

1 Al-Muthanna Bridge 44°20’45.5” 33°25’43.7”

2 Al-Aammah Bridge 44°21’21.9” 33°22’29.5”

Table 2. Illustrate the statistical measurements of water quality in Baghdad City on the Tigris River
Bridge No. Parameters Unit Mean Mode Median Dispersion Min. Max.

Al-Muthanna 
Bridge

1 EC µs/cm 934.6949 863.00 923.00 0.1700 567.00 1346.00

2 TSS mg/L 92.10569 228.750 60.100 1.27578 1.000 1140.000

3 TDS mg/L 577.74 640 569 0.18 386 875

4 Alkalinity mg/L 149.80842 136.000 145.000 0.40554 90.000 834.000

5 TH mg/L 319.1324 280.00 311.00 0.2162 156.00 567.00

6 SO4 mg/L 205.4383 200.00 200.00 0.3085 78.00 385.00

7 Turbidity NTU 43.294046 48.3197 28.1967 0.878902 1.3000 190.0000

8 Cl mg/L 83.27478 106.000 82.000 0.28493 38.000 184.000

9 Ca mg/L 74.36931 64.000 73.000 0.19931 34.000 135.000

10 Na mg/L 57.738406 42.3150 55.0000 0.312747 3.0000 107.0000

11 Mg mg/L 32.74704 27.000 32.000 0.32352 9.000 80.000

12 NO3 mg/L 4.188352 3.1000 3.9000 0.499451 0.2600 14.2000

13 DO mg/L 8.572790 8.0000 8.6000 0.175743 2.1000 12.9000

14 PH pH
Units 7.7184 8.00 7.70 0.0543 6.70 8.89

15 K mg/L 2.959271 2.8000 2.9000 0.314702 1.0000 8.8000

16 BOD5 mg/L 2.4340935 1.00000 2.00885 0.6008532 0.20000 8.30000

17 PO4 mg/L 0.3058318 0.30000 0.24000 1.0443461 0.00600 3.10000

Al-Aammah 
Bridge

1 EC µs/cm 960.32754 840.000 915.000 0.28478 12.200 3020.000

2 TDS mg/L 591.7803 570.00 568.00 0.2897 58.20 1963.00

3 TH mg/L 342.95312 420.000 346.000 0.26582 1.400 638.000

4 Alkalinity mg/L 139.20497 136.000 136.000 0.31611 67.000 570.000

5 SO4 mg/L 214.143666 200.0000 200.0000 0.363707 55.0000 480.0000

6 Turbidity NTU 51.291923 11.0211 33.2000 1.062985 1.4700 446.0000

7 Mg mg/L 37.19986 28.000 34.000 0.89432 8.000 332.000

8 TSS mg/L 72.619598 283.0000 58.0000 0.837239 5.0000 329.0000

9 Cl mg/L 80.04873 64.000 79.000 0.27540 42.000 196.000

10 Na mg/L 54.01465 50.000 51.000 0.31473 26.000 156.000

11 Ca mg/L 85.81058 77.000 83.000 0.25346 23.000 144.000

12 NO3 mg/L 4.370618 3.5000 3.6700 1.257498 0.4400 65.0000

13 K mg/L 3.319585 2.5000 2.9800 1.060018 1.0000 43.0000

14 DO mg/L 8.7831537 8.00000 8.70000 0.1952830 0.70000 12.80000

15 BOD5 mg/L 2.225708 1.5000 2.0000 0.585744 0.3000 9.5000

16 PH pH
Units 7.766643 7.8000 7.8000 0.049771 6.9000 8.7700

17 PO4 mg/L 0.3281303 0.18000 0.21000 1.6740239 0.00300 5.30000

Breiman later improved it (Breiman, 2001). It 
is a useful tool for solving multi-regression and 
prediction problems because of its simplicity and 
adherence to the “divide and conquer” strategy 
(Chen et al., 2020). The group of decision trees is 
produced by Random Forest. A bootstrap sample 

of the training data is used to generate each tree. 
The word “random” refers to the arbitrary set of 
characteristics generated during the construction 
of individual trees, from which the best attribute 
for the split is chosen (Cutler et  al., 2007). RF 
has been successfully applied in environmental 
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engineering (Abbas, 2013) and other areas of re-
search (Belgiu and Drăguţ, 2016). Random for-
ests are a technique for averaging numerous deep 
decision trees trained on different regions of the 
same training set with the purpose of reducing 
variation (Hastie et al., 2009). More information 
on how RF models are mathematically formulat-
ed can see in Goel et al. (2017).

AdaBoost model

Yoav Freund and Robert Schapire designed 
the “adaptive boosting” widget as a machine-
learning approach. It can be combined with oth-
er learning algorithms to improve effectiveness 
(Hastie et al., 2009). The classifier’s correct sep-
aration of samples reduces their weight, while 
misclassification increases their weight. This al-
lows the learning algorithm to focus on difficult 
training samples and learn them in future stud-
ies. Weighted voting merges weaker options into 
each round, resulting in a stronger final option 
(Bishop, 2006). AdaBoost works for both clas-
sification and regression.

Gradient boosting model

Gradient boosting is a machine learning ap-
proach for regression and classification problems 
that constructs a prediction model from a collec-
tion of weak prediction models, typically deci-
sion trees. It produces a prediction model in the 
form of an ensemble of weak prediction models, 
that is, models with very few data assumptions, 
often simple decision trees (Hastie et al., 2009).

Tree mode

A tree is a basic method of separating data into 
nodes based on class purity. It is a precursor to Ran-
dom Forest. Trees can handle both categorical and 
numerical collections. It can also be applied to clas-
sification and regression tasks (Hastie et al., 2009).

k-nearest neighbours algorithm (k-NN) model

Regression and classification issues are both 
resolved by the k-NN approach. The input is al-
ways the collection of k closest training samples 
found in a dataset. Regression or classification 
with k-NN produces different results. The object’s 
property value is obtained by k-NN regression. 
This is the average of the values of the k closest 
neighbours. If k equals one, the output is simply 
set to the value of the nearest neighbour (Hastie 
et al., 2009). A helpful method for classification 

and regression is to weight neighbor contribu-
tions so that closer neighbors contribute more to 
the average than those who are farther apart. For 
example, a popular weighting strategy applies a 
weight of 1/d to each neighbour, where d repre-
sents the distance between them (Blu et al., 2004).

Parameters selection

In this study, the most influential predic-
tor’s parameters on predictand was identified 
using Principal component analysis (PCA). 
PCA is a technique for reducing the dimen-
sionality of such datasets while enhancing in-
terpretability and avoiding information loss. 
It achieves this by creating new uncorrelated 
variables that gradually optimize variance) Jol-
liffe and Cadima, 2016). The PCA approach’s 
mathematical technique works on the basis of 
allocating the least amount of error between 
observed and predicted values. Because of the 
variation in the principal component (Bhagat 
et al., 2020). Many studies employ the first two 
major components to plot data in two dimen-
sions and visually show clusters of closely re-
lated data points (Jolliffe and Cadima, 2016).

Modelling performance criteria

The performance of AdaBoost, Gradient 
Boosting, Tree, Random Forest, and KNN config-
urations was evaluated using four error measures 
as explained below (Al-Mukhtar et al., 2024):
1.	Coefficient of determination (R2), this shows 

the degree of relationship between predicted 
and measured values Equation 1.

2.	Root mean square error (RMSE), Which is 
preferable in many iterative prediction and 
optimization strategies Equation 2.

3.	Mean absolute error (MAE), This is a metric 
generally understood in engineering appli-
cations Equation 3.

4.	Mean square error (MSE), is the average of 
the squared errors or variances (the differ-
ence between the estimator and the value 
that is estimated) Equation 4.
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when:	 N is the number of data points, O are the 
observed values, P are the predicted values, 
and the bar sign is the variable’s mean. 

RESULTE AND DISCUSSION

Feature selection

AI models perform much worse when there are 
redundant and irrelevant predictors included, and 
prediction models have overfitting issues as a re-
sult. Consequently, as it reduces the amount of time 
needed for data collection and calculation, it could 
be useful to extract a smaller group of predictors that 
includes the most relevant predictors (Bhagat et al., 
2021). To increase the accuracy of the surface DO 
and BOD water quality prediction in the Tigris Riv-
er, in this work, five PCs were combined with five 
distinct artificial intelligence models for ensemble 
learning (AdaBoost, Gradient Boosting, Tree, Ran-
dom Forest, and KNN). It is important to note that 
the dataset span employed in this study had sufficient 
information to support the creation of machine learn-
ing models and the learning process. The monthly 
amount of the 15 years of observations in this study 
was sufficient to build the machine learning mod-
els. In this study, the scree plot is used to choose 
the number of components. The first five principal 

components (PCs) were extracted with eigenvalues 
> 1, as seen in Tables 3 and 4, for prediction of BOD 
in Al-Muthanna Bridge and Al-Aammah, explaining 
69.55% and 71.19%, respectively, of the total vari-
ance in the water quality data set. Similarly, for DO 
in Al-Muthanna Bridge and Al-Aammah, the vari-
ance was explained by 68.05% and 70.36%, respec-
tively, as shown in Table 4. Furthermore, Figures 
2 and 3 show the creation of the scree plot, which 
depicts the majority of the variability in the data. 
The x-axis depicts the component, while the y-axis 
shows how important it is. The chart shows that after 
the second component, the incremental influence of 
each subsequent component decreases significantly.

Model performances

This work intends to evaluate the efficiency of 
AdaBoost, Gradient Boosting, Tree, Random Forest, 
and KNN in predicting DO and BOD concentrations 
in the Tigris River at Al-Muthanna Bridge and Al-
Aammah Bridge. The datasets for 15 years were di-
vided into two groups: 70% for training and 30% for 
testing. Table 2 summarizes the concentration of pa-
rameters for Al-Muthanna Bridge and Al-Aammah 
Bridge used in this study. The two evaluated param-
eters exhibited distinct patterns of influence with re-
spect to the input parameters due to different sources 
of pollution and population variation along the river 
stretch. In DO prediction, during training, AdaBoost 
performed extremely well, followed by GB, and 

Table 3. Eigen values of PCA for input parameters for predicting BOD

Principal 
component

Al-Muthanna Bridge Al-Aammah Bridge

Eigenvalue Variability (%) Cumulative % Eigenvalue Variability (%) Cumulative %

PC1 5.550 34.685 34.685 4.321 27.008 27.008

PC2 1.988 12.425 47.110 3.549 22.182 49.190

PC3 1.404 8.776 55.886 1.336 8.351 57.541

PC4 1.134 7.085 62.971 1.191 7.445 64.986

PC5 1.053 6.579 69.550 0.994 6.211 71.198

PC6 0.881 5.508 75.059 0.930 5.811 77.009

PC7 0.776 4.851 79.910 0.818 5.112 82.120

PC8 0.698 4.365 84.275 0.662 4.137 86.257

PC9 0.650 4.060 88.335 0.607 3.797 90.054

PC10 0.599 3.746 92.081 0.448 2.801 92.856

PC11 0.437 2.732 94.814 0.365 2.282 95.138

PC12 0.307 1.916 96.730 0.246 1.536 96.673

PC13 0.206 1.288 98.018 0.186 1.165 97.838

PC14 0.147 0.916 98.934 0.171 1.068 98.906

PC15 0.094 0.587 99.521 0.112 0.702 99.608

PC16 0.077 0.479 100.000 0.063 0.392 100.000
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Table 4. Eigen Values of PCA for input parameters to prediction DO

Principal 
component

Al-Muthanna Bridge Al-Aammah Bridge

Eigenvalue Variability (%) Cumulative % Eigenvalue Variability (%) Cumulative %

PC1 5.489 34.308 34.308 4.357 27.232 27.232

PC2 2.003 12.516 46.824 3.415 21.344 48.576

PC3 1.329 8.308 55.133 1.308 8.176 56.752

PC4 1.135 7.096 62.228 1.157 7.234 63.986

PC5 0.932 5.827 68.055 1.020 6.375 70.361

PC6 0.883 5.520 73.576 0.954 5.964 76.325

PC7 0.860 5.373 78.948 0.862 5.389 81.714

PC8 0.743 4.644 83.592 0.719 4.492 86.206

PC9 0.682 4.262 87.854 0.596 3.724 89.930

PC10 0.623 3.896 91.750 0.445 2.782 92.712

PC11 0.429 2.682 94.431 0.371 2.320 95.031

PC12 0.370 2.315 96.746 0.259 1.619 96.650

PC13 0.204 1.278 98.024 0.190 1.186 97.836

PC14 0.146 0.915 98.939 0.172 1.073 98.909

PC15 0.093 0.581 99.520 0.112 0.702 99.611

PC16 0.077 0.480 100.000 0.062 0.389 100.000

Figure 2. Scree plot of Principal component analysis (PCA) for the input parameter used 
for prediction BOD (a) in Al-Muthanna Bridge(b) in Al-Aammah Bridge

Figure 3. Scree plot of Principal component analysis (PCA) for the input parameter 
used for prediction DO (a) in Al-Muthanna Bridge(b) in Al-Aammah Bridge

Tree surpassed RF and the last one, KNN. However, 
gradient boosting was the most successful in the tests 
(R2 = 0.994, MAE = 0.108, RMSE = 0.13, MSE = 
0.018) in Al-Muthanna Bridge and in Al-Aammah 

Bridge (R2 = 0.994, MAE = 0.092, RMSE = 0.14, 
MSE = 0.013). AdaBoost followed closely in per-
formance (R2 = 0.992, MAE = 0.047, RMSE = 
0.147, MSE = 0.022) in Al-Muthanna Bridge and 
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in Al-Aammah Bridge (R2 = 0.991, MAE = 0.048, 
RMSE = 0.145, MSE = 0.021). Tree performance 
performed less accurately in Al-Muthanna Bridge 
(R2 = 0.866, MAE = 0.432, RMSE = 0.606, MSE 
= 0.367) and in Al-Aammah Bridge (R2 = 0.941, 
MAE = 0.280, RMSE = 0.370, MSE = 0.137). 
RF performance was not superior in Al-Muthan-
na Bridge (R2 = 0.866, MAE = 0.432, RMSE = 
0.606, MSE = 0.367) and in Al-Aammah Bridge 
(R2 = 0.941, MAE = 0.280, RMSE = 0.370, MSE 
= 0.137). KNN performance lagged in Al-Muth-
anna Bridge (R2 = 0.646, MAE = 0.808, RMSE = 
0.986, MSE = 0.973) and in Al-Aammah Bridge 
(R2 = 0.528, MAE = 0.861, RMSE = 1.042, MSE 
= 1.086). In summary, GB and AdaBoost outper-
formed other methods for DO predictions in both 
training and testing (Tab. 5), indicating that they 
should be used in the present study. In BOD pre-
diction, during training, AdaBoost performed ex-
tremely well, followed by GB and Tree, while RF 
and KNN lagged. In testing, GB outperformed 
other models in Al-Muthanna Bridge (R2 = 0.992, 
MAE = 0.096, RMSE = 0.119, MSE = 0.014) 
and in Al-Aammah Bridge (R2 = 0.989, MAE = 
0.128, RMSE = 0.152, MSE = 0.023). Surpris-
ingly, AdaBoost became the second-best in test-
ing in Al-Muthanna Bridge (R2 = 0.982, MAE 
= 0.063, RMSE = 0.174, MSE = 0.030) and in 
Al-Aammah Bridge (R2 = 0.990, MAE = 0.066, 
RMSE = 0.150, MSE = 0.022), followed by Tree 
(R2 = 0.969, MAE = 0.177, RMSE = 0.229, MSE 
= 0.052 in Al-Muthanna Bridge) and (R2 = 0.849, 
MAE = 0.312, RMSE = 0.572, MSE = 0.328 in 
Al-Aammah Bridge). While RF performance was 

not good with respect to the remainder models in 
Al-Muthanna Bridge (R2 = 0.788, MAE = 0.474, 
RMSE = 0.601, MSE = 0.361) and in Al-Aam-
mah Bridge (R2 = 0.795, MAE = 0.391, RMSE = 
0.667, MSE = 0.445), The KNN model was the 
least effective (R2 = 0.511, MAE = 0.736, RMSE 
= 0.914, MSE = 0.835) in Al-Muthanna Bridge 
and in Al-Aammah Bridge (R2 = 0.665, MAE 
= 0.531, RMSE = 0.852, MSE = 0.727). Table 
6 shows the model’s performance comparison 
without overlapping findings, allowing model se-
lection to pick GB and AdaBoost as the best mod-
els, superior for the purpose of BOD prediction 
testing and training.

Scatter plot analysis for model outputs

The current section aims to create scatter plots 
according to the result that the Gradient Boost-
ing and AdaBoost models performed effectively 
in the testing phase for the prediction of DO and 
BOD, as depicted in Figures 4 and 5. BOD pre-
diction models performed well in testing, with 
GB and AdaBoost outperforming Tree, RF, and 
KNN in terms of peak capture. As depicted in 
figures, GB confirmed superiority (R2 = 0.992) in 
Al-Muthanna Bridge and (R2 = 0.989) in Al-Aam-
mah Bridge. AdaBoost became the second-best in 
testing at Al-Muthanna Bridge (R2 = 0.982) and at 
Al-Aammah Bridge (R2 = 0.990). Tree closely fol-
lowed with R2 = 0.969 and 0.849 in Al-Muthanna 
Bridge and Al-Aammah Bridge, respectively. The 
RF model outperformed with R2 = 0.788 and 0.795 
at Al-Muthanna Bridge and Al-Aammah Bridge, 

Table 5. Performance of the model for DO during training and testing
Training data Testing data

Al-Muthanna 
Bridge

Model MSE RMSE MAE R2 Model MSE RMSE MAE R2

AdaBoost 0.084 0.290 0.161 0.959 Gradient 
boosting 0.018 0.133 0.108 0.994

Gradient 
boosting 0.084 0.290 0.231 0.958 AdaBoost 0.022 0.147 0.047 0.992

Tree 0.213 0.462 0.294 0.895 Tree 0.367 0.606 0.432 0.866
Random 

forest 0.286 0.535 0.387 0.859 Random 
forest 0.567 0.753 0.562 0.794

kNN 0.579 0.761 0.554 0.714 kNN 0.973 0.986 0.808 0.646

Al-Aammah 
Bridge

AdaBoost 0.070 0.264 0.123 0.968 Gradient 
boosting 0.013 0.114 0.092 0.994

Gradient 
boosting 0.152 0.390 0.294 0.930 AdaBoost 0.021 0.145 0.048 0.991

Tree 0.233 0.483 0.304 0.892 Tree 0.137 0.370 0.280 0.941
Random 

forest 0.269 0.519 0.380 0.876 Random 
forest 0.341 0.584 0.473 0.852

kNN 0.650 0.806 0.564 0.700 kNN 1.086 1.042 0.861 0.528
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Table 6. Performance of the model for BOD during training and testing
Training data Testing data

Al-
Muthanna 

Bridge

Model MSE RMSE MAE R2 Model MSE RMSE MAE R2

AdaBoost 0.100 0.317 0.145 0.957 Gradient 
Boosting 0.014 0.119 0.096 0.992

Tree 0.117 0.342 0.262 0.950 AdaBoost 0.030 0.174 0.063 0.982
Gradient 
Boosting 0.194 0.441 0.358 0.916 Tree 0.052 0.229 0.177 0.969

Random 
Forest 0.319 0.565 0.418 0.863 Random 

Forest 0.361 0.601 0.474 0.788

kNN 0.888 0.943 0.704 0.618 kNN 0.835 0.914 0.736 0.511

Al-Aammah 
Bridge

AdaBoost 0.007 0.086 0.027 0.995 AdaBoost 0.022 0.150 0.066 0.990
Gradient 
Boosting 0.073 0.271 0.221 0.950 Gradient 

Boosting 0.023 0.152 0.128 0.989

Tree 0.172 0.415 0.263 0.883 Tree 0.328 0.572 0.312 0.849
Random 
Forest 0.308 0.555 0.375 0.792 Random 

Forest 0.445 0.667 0.391 0.795

Figure 4. Scatter plot for the model predicted and observed BOD levels in Al-Muthanna 
Bridge(a) AdaBoost, (b) Gradient Boosting, (c)Tree, (d)Random Forest, (e) KNN

respectively. Lastly, KNN performed less accu-
rately in Al-Muthanna Bridge and in Al-Aammah 
Bridge, with R2 = 0.511 and 0.665, respectively. 
On the other hand, DO predictions proved the 

models’ robustness. GB and AdaBoost excelled, 
followed by tree, while RF and KNN lagged. The 
results of R2 values from scatter plots (Fig. 6 and 
Fig. 7) affirmed GB dominance in Al-Muthanna 
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Figure 5. Scatter plot for the model predicted and observed BOD levels in Al-Aammah 
Bridge (a) AdaBoost, (b) Gradient Boosting, (c)Tree, (d) Random Forest, (e) KNN

Figure 6. Scatter plot for the model predicted and observed DO levels in Al-Muthanna 
Bridge (a) AdaBoost, (b) Gradient boosting, (c)Tree, (d) Random forest, (e) KNN
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Bridge (R2 = 0.994) and in Al-Aammah Bridge 
(R2 = 0.994). AdaBoost followed closely in per-
formance in Al-Muthanna Bridge (R2 = 0.992) 
and in Al-Aammah Bridge (R2 = 0.991), followed 
by Tree (R2 = 0.866 in Al-Muthanna Bridge and R2 
= 0.941 in Al-Aammah Bridge). While RF per-
formance lagged with R2 = 0.866 in Al-Muthan-
na Bridge and 0.941 in AI-Aammah Bridge, fol-
lowed by KNN with R2 = 0.646 in Al-Muthanna 
Bridge and 0.528 in Al-Aammah Bridge. Overall, 
visual and statistical assessments agreed, indicating 
that the models performed well in predicting BOD 
and DO values.

CONCLUSIONS

Five different forms of artificial intelligence 
were evaluated in this study i.e. AdaBoost, Gra-
dient Boosting, Tree, Random Forest, and KNN 
to calculate and predict DO and BOD concentra-
tions in the Tigris River at Al-Muthanna and Al-
Aammah Bridges. These models were evaluated 
in this paper as a more reliable technique to pre-
dicting WQ parameters than laboratory analysis. 

The input qualities for the suggested models have 
been selected from a several types of water fac-
tors, including chemical, physical, and biologi-
cal. The model was constructed using laboratory 
data over a 15-year period, from 2008 to 2022. 
The evaluation employed four assessment crite-
ria, including: MSE, RMSE, MAE, and R2. It was 
found that AdaBoost and Gradient Boosting per-
formed better than the other assessed approaches. 
In another words, Gradien  

Acknowledgements

The Iraqi Ministry of Environment and the 
University of Technology in Baghdad, Iraq, are to 
be thanked by the authors for their cooperation in 
completing this work.

REFERENCES

1.	 Qiu, D., Zhu, G., Lin, X., Jiao, Y., Lu, S., Liu, J., 
Zhang, W., Ye, L., Li, R., Wang, Q., Chen, L. 2023. 
Dissipation and movement of soil water in artificial 
forest in arid oasis areas: Cognition based on stable 
isotopes. CATENA, 228, 107178.‏

Figure 7. Scatter plot for the model predicted and observed DO levels in Al-Aammah 
Bridge (a) AdaBoost, (b) Gradient Boosting, (c)Tree, (d)Random Forest, (e) KNN



24

Ecological Engineering & Environmental Technology 2024, 25(9), 13–25

2.	 Zhou, G., Yang, Z. 2023. Analysis for 3-D morphol-
ogy structural changes for underwater topographical 
in Culebrita Island. International Journal of Remote 
Sensing, 44(7), 2458–2479.‏

3.	 Biesbroek, R., Wright, S.J., Eguren, S.K., Bonotto, 
A., Athanasiadis, I.N. 2022. Policy attention to cli-
mate change impacts, adaptation and vulnerability: 
a global assessment of National Communications 
(1994–2019). Climate Policy, 22(1), 97–111.‏

4.	 Fuller, R., Landrigan, P.J., Balakrishnan, K., Bathan, 
G., Bose-O’Reilly, S., Brauer, M., et al. 2022. Pol-
lution and health: a progress update. The Lancet 
Planetary Health, 6(6), e535–e547.‏

5.	 Wang, P., Yao, J., Wang, G., Hao, F., Shrestha, S., 
Xue, B., Xie, G., Peng, Y. 2019. Exploring the ap-
plication of artificial intelligence technology for 
identification of water pollution characteristics and 
tracing the source of water quality pollutants. Sci-
ence of the Total Environment, 693, 133440.

6.	 Al-Janabi, Z.Z., Al-Kubaisi, A.R., Al-Obaidy, 
A.H.M.J. 2012. Assessment of water quality of Tigris 
River by using water quality index (CCME WQI). 
Al-Nahrain Journal of Science, 15(1), 119–126.‏

7.	 Asadollah, S.B.H.S., Sharafati, A., Motta, D., Yas-
een, Z.M. 2021. River water quality index predic-
tion and uncertainty analysis: A comparative study 
of machine learning models. Journal of environmen-
tal chemical engineering, 9(1), 104599.‏

8.	 Elbeltagi, A., Al-Mukhtar, M., Kushwaha, N.L., 
Al-Ansari, N., Vishwakarma, D.K. 2023. Forecast-
ing monthly pan evaporation using hybrid additive 
regression and data-driven models in a semi-arid 
environment. Applied Water Science, 13(2), 42.‏

9.	 Tung, T.M., Yaseen, Z.M. 2020. A survey on river water 
quality modelling using artificial intelligence models: 
2000–2020. Journal of Hydrology, 585, 124670.‏

10.	Ding, Y.R., Cai, Y.J., Sun, P.D., Chen, B. 2014. The 
use of combined neural networks and genetic algo-
rithms for prediction of river water quality. Journal 
of applied research and technology, 12(3), 493–499.‏

11.	Wang, J., Shi, Y., Zhang, R., Wu, Z., Ye, H., Li, 
S. 2023. CVT on-line error measurement hybrid-
driven by domain knowledge and Stacking Model. 
Engineering Applications of Artificial Intelligence, 
‏.106710 ,125

12.	Kılıç, H., Çetin, A. 2023. A novel graph-based 
ensemble token classification model for keyword 
extraction. Arabian Journal for Science and Engi-
neering, 48(8), 10673–10680.‏‏

13.	Montazeri, A.H., Emami, S.K., Zaghiyan, M.R., Es-
lamian, S. 2023. Stochastic learning algorithms. In 
Handbook of Hydroinformatics. Elsevier,410–385 ‏. 

14.	Geshnigani, F.S., Golabi, M.R., Mirabbasi, R., Tah-
roudi, M.N. 2023. Daily solar radiation estimation in 
Belleville station, Illinois, using ensemble artificial 

intelligence approaches. Engineering Applications 
of Artificial Intelligence, 120, 105839.

15.	Kang, Y., Song, J., Li, K., Zhai, X.A., Li, Y. 2022. Re-
search on water quality prediction model based on echo 
state network. Journal of Computational Methods in 
Sciences and Engineering, 22(3), 901–910.‏

16.	Liu, C., Xu, M., Liu, Y., Li, X., Pang, Z., Miao, S. 2022. 
Predicting groundwater indicator concentration based 
on long short-term memory neural network: A case 
study. International Journal of Environmental Research 
and Public Health, 19(23), 15612.‏

17.	Khosravi, K., Miraki, S., Saco, P.M., Farmani, R. 
2021. Short-term River streamflow modeling using 
Ensemble-based additive learner approach. Journal 
of Hydro-environment Research, 39, 81–91.‏

18.	Shahdad, M., Saber, B. 2022. Drought forecasting us-
ing new advanced ensemble-based models of reduced 
error pruning tree. Acta Geophysica, 70(2), 697–712.‏

19.	Saha, T.K., Pal, S., Sarda, R. 2022. Impact of river 
flow modification on wetland hydrological and mor-
phological characters. Environmental Science and 
Pollution Research, 29(50), 75769–75789.‏

20.	Khosravi, K., Mao, L., Kisi, O., Yaseen, Z.M., Sha-
hid, S. 2018. Quantifying hourly suspended sedi-
ment load using data mining models: case study of 
a glacierized Andean catchment in Chile. Journal of 
Hydrology, 567, 165–179.‏

21.	Chen, K., Chen, H., Zhou, C., Huang, Y., Qi, X., 
Shen, R., Liu, F., Zuo, M., Zou, X., Wang, J.,  Zhang, 
Y., Chen, D., Chen, X., Yong feng, D., Ren, H., Ren, 
H. 2020. Comparative analysis of surface water 
quality prediction performance and identification 
of key water parameters using different machine 
learning models based on big data. Water research, 
‏.115454 ,171

22.	Asadollahfardi, G., Taklify, A., Ghanbari, A. 2012. 
Application of artificial neural network to predict 
TDS in Talkheh Rud River. Journal of Irrigation and 
Drainage Engineering, 138(4), 363–370.‏

23.	Mahdavi-Meymand, A., Sulisz, W., Zounemat-Ker-
mani, M. 2024. Hybrid and integrative evolution-
ary machine learning in hydrology: A systematic 
review and meta-analysis. Archives of Computa-
tional Methods in Engineering, 31(3), 1297–1340.‏

24.	Jamei, M., Karbasi, M., Alawi, O.A., Kamar, H.M., 
Khedher, K.M., Abba, S.I., Yaseen, Z.M. 2022. 
Earth skin temperature long-term prediction us-
ing novel extended Kalman filter integrated with 
Artificial Intelligence models and information gain 
feature selection. Sustainable Computing: Informat-
ics and Systems, 35, 100721.‏‏

25.	Alavi, J., Ewees, A.A., Ansari, S., Shahid, S., Yas-
een, Z.M. 2022. A new insight for real-time waste-
water quality prediction using hybridized kernel-
based extreme learning machines with advanced 
optimization algorithms. Environmental Science 



25

Ecological Engineering & Environmental Technology 2024, 25(9), 13–25

and Pollution Research, 29(14), 20496–20516.‏‏
26.	Manzar, M.S., Benaafi, M., Costache, R., Alagha, 

O., Mu’azu, N.D., Zubair, M., Abdullahi J., Abba, 
S.I. 2022. New generation neurocomputing learn-
ing coupled with a hybrid neuro-fuzzy model for 
quantifying water quality index variable: A case 
study from Saudi Arabia. Ecological Informatics, 
‏.101696 ,70

27.	Boano, F., Revelli, R., Ridolfi, L. 2006. Stochastic 
modelling of DO and BOD components in a stream 
with random inputs. Advances in Water Resources, 
‏.1350–1341 ,(9)29

28.	Benaafi, M., Yassin, M.A., Usman, A.G., Abba, S.I. 
2022. Neurocomputing Modelling of Hydrochemi-
cal and Physical Properties of Groundwater Coupled 
with Spatial Clustering, GIS, and Statistical Tech-
niques. Sustainability, 14(4), 2250.‏

29.	Ramal, M.M., Jalal, A.D., Sahab, M.F., Yaseen, 
Z.M. 2022. River water turbidity removal using 
new natural coagulant aids: case study of Euphrates 
River, Iraq. Water Supply, 22(3), 2721–2737.‏

30.	Adedeji, I.C., Ahmadisharaf, E., Sun, Y. 2022. Pre-
dicting in-stream water quality constituents at the 
watershed scale using machine learning. Journal of 
Contaminant Hydrology, 251, 104078.‏‏

31.	Adnan, T.A., Mohammed, E.A., Al-Madhhachi, 
A.S.T. 2021. Water quality index of tigris river with-
in baghdad city: a review. Journal of Engineering 
and Sustainable Development, 25(3), 34–43.‏

32.	Al Obaidy, H.M., S Awad, E., Zahraw, Z. 2016. Im-
pact of Medical City and Al-Rasheed power plant 
effluents on the water quality index value of Tigris 
River at Baghdad city. Engineering and Technology 
Journal, 34(4A), 715–724.‏

33.	Oleiwi, A.S., Al-Dabbas, M. 2022. Assessment of con-
tamination along the Tigris River from Tharthar-Tigris 
canal to Azizziyah, middle of Iraq. Water, 14(8), 1194.‏

34.	Breiman, L. 2001. Random forests. Machine Learn-
ing, 45(1), 5–32.

35.	Chen, W., Li, Y., Xue, W., Shahabi, H., Li, S., Hong, 
H., Wang, X., Bian, H., Zhang, S., Pradhan, B., Ah-
mad, B.B. 2020. Modeling flood susceptibility using 
data-driven approaches of naïve bayes tree, alter-
nating decision tree, and random forest methods. 
Science of The Total Environment, 701, 134979.‏

36.	Cutler, D.R., Edwards Jr, T.C., Beard, K.H., Cut-
ler, A., Hess, K.T., Gibson, J., Lawler, J.J. 2007. 

Random forests for classification in ecology. Ecol-
ogy, 88(11), 2783–2792.‏

37.	Abbas, J. 2013. Assessment of water quality in 
Tigris River-Iraq by using GIS mapping. Natural 
Resources, 2013.‏

38.	Belgiu, M., Drăguţ, L. 2016. Random forest in re-
mote sensing: A review of applications and future 
directions. ISPRS journal of photogrammetry and 
remote sensing, 114, 24–31.‏

39.	Hastie, T., Tibshirani, R., Friedman, J.H., Friedman, 
J.H. 2009. The elements of statistical learning: data 
mining, inference, and prediction. Springer,758–1 ,2 ‏. 

40.	Goel, E., Abhilasha, E., Goel, E., Abhilasha, E. 
2017. Random forest: A review. International Jour-
nal of Advanced Research in Computer Science and 
Software Engineering, 7(1), 251–257.‏

41.	Hastie, T., Rosset, S., Zhu, J., Zou, H. 2009. Multi-class 
adaboost. Statistics and its Interface, 2(3), 349–360.‏

42.	Bishop, C.M. 2006. Pattern recognition and machine 
learning. Springer google schola, 2, 1122–1128.‏‏

43.	Hastie, T., Tibshirani, R., Friedman, J., Hastie, T., 
Tibshirani, R., Friedman, J. 2009. Boosting and ad-
ditive trees. The elements of statistical learning: data 
mining, inference, and prediction, 337–387.‏

44.	Blu, T., Thévenaz, P., Unser, M. 2004. Linear inter-
polation revitalized. IEEE Transactions on Image 
Processing, 13(5), 710–719.‏ 

45.	Jolliffe, I.T., Cadima, J. 2016. Principal compo-
nent analysis: a review and recent developments. 
Philosophical transactions of the royal society A: 
Mathematical, Physical and Engineering Sciences, 
‏.20150202 ,(2065)374

46.	Al-Mukhtar, M., Srivastava, A., Khadke, L., Al-Mu-
sawi, T., Elbeltagi, A. 2024. Prediction of irrigation 
water quality indices using random committee, discreti-
zation regression, REPTree, and additive regression. 
Water Resources Management, 38(1), 343–368.‏

47.	Bhagat, S.K., Tiyasha, T., Tung, T.M., Mostafa, 
R.R., Yaseen, Z.M. 2020. Manganese (Mn) removal 
prediction using extreme gradient model. Ecotoxi-
cology and Environmental Safety, 204, 111059.

48.	Bhagat, S.K., Paramasivan, M., Al-Mukhtar, M., 
Tiyasha, T., Pyrgaki, K., Tung, T.M., Yaseen, Z.M. 
2021. Prediction of lead (Pb) adsorption on at-
tapulgite clay using the feasibility of data intelli-
gence models. Environmental Science and Pollution 
Research, 28, 31670–31688.‏


