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INTRODUCTION

The complexity, multi-variability and non-
linearity that encompass the state transformation 
processes of the hydrological cycle at the water-
shed scale leads to a difficult prediction of the 
hydrometric part to be determined especially for 
ungauged watersheds. 

Many developed models and their combina-
tions is constantly increasing. Several interest-
ing initiatives of application on these models 
were carried out on the Algerian catchment ar-
eas, where the rainfall is the runoff generator. 
Grouped into two climates, the high precipita-
tion areas, such as the northern coastal regions 
and mountainous areas, characterized by a 

strong tendency to runoff, in contrast, the south-
ern and southeastern Algerian arid and semi-arid 
regions have low rainfall and where runoff tends 
to be minimal [Amireche et al., 2018; Marouf 
and Remini, 2019; Zeyneb et al., 2022].

In general, the rainfall-flow relationship in 
Algerian watersheds is complex and varies ac-
cording to location and environmental conditions. 
Among these attempts, many researchers have de-
scribed a study inspired by the Soil Conservation 
Service (SCS) production function to develop a 
model to predict annual flows in Algerian northern 
region. Based on balance analysis that regulates 
rainfall-runoff-transport process, scientific works 
on sediment transport in several watersheds have 
been extended using statistical and mathematical 
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models[Fartas et al., 2017; Tamrabet et al., 2019; 
Batout et al., 2022].They have presented the use 
of different conceptual, Neuro-Fuzzy models with 
Kalman filter integration to model this relation-
ship at different time steps. Thus, research study 
of Aoulmi et al., has give satisfactory results us-
ing consists in modeling the transformation of 
rainfall into flows on Seybouse basin, north of 
Algeria, through different statistical methods and 
hydrological models, as RNA with integration of 
modern heuristic optimization approaches and 
deep learning of a Convolutional Neural Network 
(CNN) [Aoulmi et al., 2021; 2023].

This paper aims to provide the most rel-
evant model for Kebir-Rhumel watershed cov-
ering the spatio-temporal variation of the rain-
fall-flow relationship, based on the used model 
improvement either conceptual or neural net-
work. Indeed, the GR4J, IHAC6, MORDOR, 
and TOPMO8 models could not consider the 
chronological succession of phenomena.

According to Nash and Sutcliffle, operational 
flood forecasting requires the hydrological mod-
el, in addition a method for continuous correction 
of the forecast from the observed error of the first 
forecast [Duc and Youhie, 2023].

Also, there are many rainfall-flow models 
on a daily scale, either conceptual or mathemati-
cal (physical, black-box), giving the impression 
that this relationship is well determined. While 
theirapplication has shown that they are difficult 
to calibrate and the results are unsatisfactory. 
Among the used models, the conceptual and the 
physical models are the two best to understand 
the rainfall runoff process, although they require 
more watershed parameters, which also contain 
very complex relationships to construct these 
models. Furthermore, it is difficult to obtain these 
parameters, and black models have been increas-
ingly highlighted in recent years.

To overcome this issue, the GR4J model, 
ranked better than its predecessors, is combined 
with the implementation of non-linear Kal-
man Filter. Thisimplementation generates the 
GR4J model with Particle Filter (GR4JPF) and 
the GR4J model with Ensemble Kalman Filter 
(GR4JENKF), where, its principle consists per-
turbationscreation of based on statistics in precip-
itation and evapo-transpiration inputs to generate 
different members of the ensemble as a term of 
uncertainty propagation. 

We started using black box models in this 
work via the PMC model, applied over the two 

periods over the study area. However, a PMC 
may not predict the dynamic hydrological pro-
cess. To improve the dynamics of simulated 
flows through the use of RNN based on the 
NARX model, which can be effectively ap-
plied to long-term forecasting of a non-linear 
time series for flow forecasting and prediction 
[Zheng et al., 2022], and an LSTM network 
that has a tendency to do better on a volatile 
time series with more than one stationary com-
ponent [Li et al., 2022; Xu et al., 2022]. The 
two models were built using the same data as 
those used in the first part of daily precipita-
tion, daily evapotranspiration determined, the 
evaluation is therefore established on the basis 
of Statistical indices of Nash - Sutcliffe effi-
ciency (NSE), correlation coefficient (R) and 
root mean square error (RMSE).

PRESENTATION OF THE STUDY AREA

Centered between 7° longitude East and 36° 
latitude North, the Kebir-Rhumel watershed is 
one of the great basins of Algeria, covering an 
area of 8815 km², located largely on the southern 
slope of the Tellian bulge (Fig. 1). It represents as 
such an intermediate area between the Tellian do-
main with a very strong mediterranean influence 
in the north and the domain of the high plains 
with a strong continental influence in the south.

Composed of seven hydrographic entities, 
the study area focuses on three watershedsareas 
which are Ain-Smara with altitudes up to 1462 m 
and an area equal to 2169 km2, Grarem as inter-
mediate of an area of about 5400 km2 and a relief 
that reaches 1444 m, and El-Ancer of a maximum 
altitude of 1729 m of the coastal area hasa sea-
front of about 7 km2.

DATA AND METHODS

All the basic rainfall and hydrometric data is 
established from the National Water Resources 
Agency in Algiers. The data provide the recorded 
values of rainfall and average daily flow of six 
simultaneous stations (Table 1). In the statistical 
analysis of meteorological series, the most com-
monly used methods are tests concerning the ran-
domness of the series.

They are more particularly adapted to breaks 
detection in a time series.
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HYDROLOGICAL MODELING OF THE 
RAINFALL-FLOW RELATIONSHIP

Conceptual models presentation 

In our study, four hydrological conceptual mod-
els were chosen, in order to obtain satisfactory results 
for the study area. The chosen models are: GR4J, 
IHACRES, MORDOR, and TOPMO8 MODEL.

GR4J model

Inour study, the 4-parameter daily rural engi-
neering model was used as hydrological model. 
GR4J is a simple hydrological conceptual model 
with two tanks: the first is the production tank, 
and the routing tank. 

IHACRES model

The IHACRES model has three concep-
tual storage models; The Nonlinear Module that 
determines effective rainfall and two parallel 

storage models that transfer effective rainfall to 
stream-water. 

MORDOR model

The main hydrological processes of the 
model: evapo-transpiration, runoff, infiltra-
tion, groundwater discharge, accumulation and 
snowmelt. Exchanges between the different 
stocks and with the atmosphere and the river 
are regulated through simple but parameteriz-
able formulations [Coron, 2013].

TOPMO8 model

TOPMO8 Model describes the hydrological 
response related to the watershed topographic 
characteristics, including slope and contributing 
area, as well as the rainfall distribution in space 
and time. It considers the non-linear relationships 
between rainfall, soil moisture and flow genera-
tionand assumes that the watershed water-balance 
is controlled by the water Table position related to 

Figure 1. Kebir-Rhumel watershed and study area sub-basins (SB)

Table 1. Statistic characteristics of stations data
Station Ain Smara Grarem El-Ancer

Code 100701 100601 100109

Parameter P E Q P E Q P E Q

Mean 2.32 2.803 1.04 2.670 2.803 5.029 3.263 2.803 27.66

Median 0.11 2.457 0.30 0.106 2.457 2.240 0.161 2.457 8.40

Std-deviation 5.42 1.658 6.55 6.132 1.658 12.165 7.313 1.658 80.70

Variance 29.42 2.749 42.86 37.602 2.749 147.984 53.479 2.749 6512.87

Min value 0.00 0.386 0.00 0.000 0.386 0.120 0.000 0.386 0.19

Max  value 70.52 7.078 200.00 72.784 7.078 213.373 131.124 7.078 2529.00
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the land surface. The four used models are sum-
marized in the Table 2.

GR4J model and Kalman Filter ‘’KF’’

The use of updating methods is tolerated to 
allow the applied model to be as much as possi-
ble in conformity with the reality of the observed 
flows at the forecast time. Four main types of up-
dates exist. Theyconsistrespectively in:
 • a correction on the inputs (rainfall, evapo-

transpiration) of the model (update of inputs).
 • a correction on the internal variables (level in the 

tanks) of the model (update of the model states);
 • a correction on the model parameters (update 

of the parameters);
 • a correction of the model errors understood 

as the difference between observed and 
simulated flows.

In this perspective, Kalman filter is intro-
duced in implementation with the GR4J concep-
tual model. Despite its interesting characteristics, 
Kalman filter remains a linear method with the 
inherent drawbacks of this method type. A vari-
ant of Kalman filter, known as Extended Kalman 
Filter (EKF), allows to model non-linear relation-
ships, as the rain-flow relationship. The joint use 
of GR4J and EKF aims to combine the advantag-
es of both. It takes advantage of the continuous 
operation of the GR4J and the real-time adapt-
ability of the KF.

The obtained models are a reformulation 
of the GR4J conceptual model into a system of 
dynamic state equations by implementing the 
(EnKF) and (PF) procedure [Coron et al., 2017]. 
With a direct perturbation of hydrological vari-
ables, the state variables therein are the water 
level in the production and routing tanks and fi-
nally the flow measurements therein are the out-
put variables.

In the EnKF prediction step, the nominal val-
ue of rainfall and evapo-transpiration is disturbed 
by a multiplier as follows:
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The not updated model state variables are 

considered as main difference between the 
PF method and other methods. Among them, 
we based on the probability distributions that 
change over time. The particle filter advantag-
es present the probability densities in a com-
plete way (not limited to the first two static 
moments) unlike the EnKF and to consider 
strong non-linearity.

Table 2. Models summary and design
ID Model Number of optimized parameters Number of storages

1 GR4J 4 2

2 IHAC 6 3

3 MORD 6 4

4 TOPMO8 8 3
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Artificial neurons networks

Artificial neurons networks (ANN) are math-
ematical structures inspired by the biological 
neural networks. A neural network is a type of 
machine learning model. It is composed of layers 
of interconnected nodes, or neurons, that process 
information by applying a set of mathematical 
operations to inputs. Neurons in each layer com-
municate with neurons in adjacent layers via a set 
of weights, which are adjusted during training to 
optimize the network’s ability to learn from the 
inputs [Vanhoucke et al., 2011].

Static neurons networks (Multi layers Perceptron) 

Multi-layers perceptron (MLP) is a neural 
network consisting of one input layer, one or more 
layers of nonlinear processing. An important first 
step in building MLP models is to determine the 
best architecture, as well as the epoch’s number to 
use for MLP training. The MLP hidden neurons 
number was set to vary between one and a maxi-
mum number defined as “one plus three times the 
number of input variables”. This is a variant of 
the formula proposed.

The MLP consists of four layers including 30 
neurons for the input layer, 25 and 20 consecu-
tive neurons for the two hidden units, called hid-
den layers, and one final layer of processing units, 
called the output layer. Each unit in a hidden layer 
is typically connected to all units in the previous 
and subsequent layers. The MLP layers can be 
thought of as a sequence of transformations that 
map input data to a desired output [Géron, 2022].

Determination of network 
architectureand formation times 

Layers for Ain-Smarawatershedand three lay-
ers of 25, and 20 neurons for the two watersheds 
of Grarem and El-Ancer. Rainfall data is also 
critical, as it provides data to the network about 
rapid increases in flow, while evapo-transpiration 
indicates flow attenuation, and since the goal is to 
predict flow at the daily time step for model out-
put, the output layer will consist of only a single 
neuron, with Levenberg-Marquardt as the train-
ing algorithm and an epoch number of 1000.

Dynamic neuron networks

One of the main advantages of dynamic 
neuron networks (RNN) in hydrology is their 
ability to learn from data and adapt to changing 

environmental conditions. This leads them to 
be particularly useful to predict hydrological 
processes under changing climatic conditions, 
where traditional models may not be able to 
capture the complex interactions between dif-
ferent variables [Shao et al., 2022]. RNNs are 
designed to recognize the sequential charac-
teristics of a datum and the using patterns to 
predict the next likely scenario.

RNN NARX

The NARX network is a dynamic recurrent 
network with feedback connections enclosing 
several layers of the network. The NARX model 
is based on the linear ARX model, which is com-
monly used in time series modeling. The defining 
Equation of NARX model is: 
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where: u(n) m – model input at discrete time step 
n; y(n) – model output at discrete time 
step n; du ≥ 1 – Input memory order; dy ≥ 
1 – output memory order.

In this work, precipitation and evaporation 
are selected as input parameters because runoff is 
directly related to net precipitation and discharge. 
Note also that full consideration of the surface 
runoff routing time and model input components, 
precipitation P(t), P(t–1),..., P(t), P(t−1),…, 
P(t−30), evapo-transpiration E(t), E(t–1),..., 
E(t–30) and discharge Q(t–1), Q(t–2), Q(t–3) are 
selected as input parameters while the output is 
represented by the predicted discharge Q(t). The 
observed rainfall, evaporation and flow data were 
divided into three parts: 70%, 15%, and 15% for 
training, checking and testing, respectively. 

In this part, and from what was studied and 
formed above, the NARX model optimal archi-
tecture was obtained via 2 input variables, 1hid-
den layer, 30 neurons, 1 thirty-day time period 
and 1 output target. The NARX model is opti-
mized based on Levenberg-Marquardt algorithm. 

LSTM model

The LSTM evolved from RNN [Sherstinsky, 
2020], which solves the problems of gradient 
disappearance and gradient explosion that eas-
ily occur in RNN and can store both short-term 
and long-term memory in the network[Karim et 
al., 2017]. Compared to RNN, the LSTM neural 
network adds a logic gate control mechanism and 
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a state transfer unit, so that it not only preserves 
the correlation with time, but also increases the 
dependency between the remote data.

Shows the cell unit of the LSTM neural net-
work. LSTM can effectively learn the formulas 
and rules data in the historical sequence data. In 
the research areas, the LSTM model has achieved 
high accuracy and it is a very effective neural net-
work model [Sun et al., 2018].

In particular, the LSTM has two interconnected 
hyper-parameters that must be set together: the input 
sequence length (the lookback) and the hidden unit 
size. For this, for each LSTM in this paper, we test-
ed combinations of the hyper-parameter variations 
whose values taken are – 4 (batch size (60, 72, 128 
and 256)) × 4 (hidden unit size variations (50, 64, 
128 and 256)) × 3 (dropout rate variations (0.25, 0.4 
and 0.6)) = 48 set cases. In all these cases, the used 
optimizer is Adam and the learning rate is constant 
and equal to 10-3. The 0.25 and 0.4 dropout rates did 
not provide any performance improvements relating 
the 0-dropout rate, but the 0.6 dropout rate contrib-
uted to a remarkable improvement. All results pre-
sented here correspond to the 0.6 dropout rate. 

RESULTS AND DISCUSSIONS

Cross-referencing the used conceptual models 
and corresponding Nash criteria values, as well 
as the correlation coefficient values as expressed 
in Table 3, using as data the daily precipitations, 

evapo-transpiration. Comparison of these ob-
tained results at the three studied watershed has 
led to the fact that the GR4J model presents the 
best performances to reproduce basic flows, but 
with weak quality regarding floods.

This model is considered as the most robust 
for semi-arid regions and fluctuating hydrologi-
cal regime for Ain-Smara and Graremwater-
sheds, over a limited period of 3 years, while 
for the coastal El-Ancerwatershed, the simula-
tion results confirm that the semi-distributed 
MORDOR model outperforms the other mod-
els. Show that small basins benefit less from the 
semi-distribution, this could justify the GR4J 
conceptual model superiority. 

For Ain-Smarawatershed, the resulting mod-
eled flow time series appears to underestimate the 
frequency of fast flow events (Fig. 2). Despite the 
relatively good values of the performance indica-
tors for Graremand El-Ancer watershed, it is ob-
servedthat the peak flows are not correctly repre-
sented. In particular, in some cases, the modeled 
spikes occur when there are no observed peak 
flows (Fig. 3 and Fig. 4). 

Thus, for the simulation results with both 
Kalman filters (EnKF, PF) versions, in both 
Ain-Smara, Graremwatershed and El-Ancer 
watershed, it is noticed that the flows dynam-
ics is improved (Fig. 5, Fig. 6 and Fig. 7), 
andnophase shift neithercreation of new peaks 
have appeared. On the other hand, the flood 
flow values were not reproduced, which can be 

Figure 2. Correlation and variability of observed and simulated flows via
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Table 3. Obtained values of the efficiency criteria
ID Model Basins

1

Conceptual
model

AIN SMARA Station GRAREM Station EL- ANCER Station

Critères of performances

Period 03 
years

NSE 
(%)

R NSE 
(%)

R NSE 
(%)

R

Calibration Test Calibration Test Calibration Test

1.1 GR4J 19.08 0.457 0.710 82.00 0.905 0.682 31.87 0.574 0.624

1.2 IHACRES 12.15 0.340 0.764 34.57 0.587 0.630 60.84 0.763 0.710

1.3 MORDOR 15.71 0.391 0.783 53.37 0.730 0.680 69.71 0.827 0.740

1.4 TOPMO8 -408 0.048 0.401 -23.42 -.0209 0.475 58.56 0.797 0.655

2 Conceptual
hybrid models NSE (%) NSE (%) NSE (%)

2.1 GR4J PF 68.38 51.57 42.78

2.2 GR4J ENKF 52.50 -12.53 -321.36

3 Neural 
models

Period 03 
years NSE (%)

R
NSE (%)

R
NSE (%)

R

Training Validation All Training Validation All Training Validation All

3.1.1 MLP 83.76 0.9323 0.7105 0.9157 87.45 0.9468 0.5786 0.9355 97.33 0.9905 0.9964 0.9910

3.1.2 NARX 93.62 1.00 0.768 0.9962 96.65 1.00 0.7131 0.9839 95.80 1.00 0.8509 0.9886

3.1.3 SLTM
RMSE

0.88
RMSE

0.962
RMSE

0.93
0.0943 0.50 3.29

Period 10 
years NSE (%)

R
NSE (%)

R
NSE (%)

R

Training Validation All Training Validation All Training Validation All

3.2.1 MLP 63.37 0.8475 0.8516 0.8259 25.5 0.5093 0.4070 0.5036 48.20 0.6608 0.8327 0.6977

3.2.2 NARX 97.70 0.997 0.9112 0.9627 86.75 0.9978 0.7035 0.9419 84.00 0.9992 0.6472 0.9300

3.2.3 SLTM RMSE 0.85 RMSE 0.90 RMSE 0.90

justified by the underestimation of the unit hy-
drograph X4. However, [Pauwels et al., 2013] 
mentioned that the EnKF was not well suited 
when a unit hydrograph was used due to the 
error of the time propagating hydrograph.

Thus, referring to Nash index values, the 
best results are those obtained by GR4J and PF 
(Crit.NSE = StAin-Smara = 0.6838, StGrarem = 0.5157 
and StEl-Ancer = 0.4278. compared to hybrid mod-
el GR4JEnKF (Crit.NSE = StAin-Smara = 0.5250, 
StGrarem = -0.1253 and StEl-Ancer = -3.2136).

Even for the PF model, there is no constraint 
related to states distribution, contrary to EnKF-
model requires a Gaussian distribution.

Regarding the 2nd concept when using RNA 
at Ain-Smarawatershedover three years period, 
the obtained results are satisfactory with a cor-
relation coefficient and Nash number of about 
0.91 and 0.837, respectively. The simulated 
flows are criticized for reproducing all values 
except three spikes (Fig. 8).While over the 10-
year period, a clear degradation is observed on 
the flow dynamics but with a correlation co-
efficient and a Nash index of 0.825 and 0.63, 

respectively. The same observation is obtained 
for the other watersheds with efficiency indi-
ces of Grarem (R = 0.93, NSE = 0.874) and 
El-Ancer (R = 0.99, NSE = 0.97) watershed-
sover three years period, and a poor-quality 
simulation concerning the second duration 
(Fig. 9 and Fig. 10). Alternatively, machine 
learning (MLP) based on black-box models 
that have a higher computational capacity, is 
more suitable than conceptual models for the 
Kebir-Rhumel watershed. NARX models per-
formance is summarized and evaluated using 
the same efficiency indices NSE, CCand the 
graphical chronology of the simulated and re-
corded flows. The results showed that the accu-
racy of the rainfall-runoff simulation based on 
NARX model is better than that of MLP model 
in the training, validation and test periods for 
all three stations.A significant improvement is 
obtained for all the studied watersheds, over 
the three-year period.
 • For Ain-Smara: R = 0.936 and NSE = 0.996.
 • ForGrarem: R = 0.966 and NSE = 0.98,
 • ForEl-Ancer: R = 0.95 and NSE = 0. 98.



75

Ecological Engineering & Environmental Technology 2024, 25(9), 68–80

Figure 4. Correlation and variability of observed and simulated flows via (GR4J, 
IHAC6, MORDOR, and TOPMO8) models on El-Ancer SB

Figure 3. Correlation and variability of observed and simulated flows via (GR4J, 
IHAC6, MORDOR, and TOPMO8) models on Grarem SB

Also, the NARX modelpower was proven 
over the ten-year period with efficiency indices
 • Ain-Smara: R = 0.977, and NSE = 0.96.
 • Grarem: R = 0.867, and NSE = 0.94 
 • El-Ancer: R = 0.84, and NSE = 0.93. 

Then the NARX model is able to simulate the 
dynamic rainfall-flow process very well, although 

there is a small underestimation of the peak flow 
(Fig. 11, Fig. 12, and Fig. 13). The underestima-
tion of the peak flow may be caused by the sig-
moid activation function. 

For sigmoid functions, the absolute value of 
the independent variable increases and the slope 
gradually decreases to zero, indicating that there 
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Figure 5. Variability of observed and simulated flows via GR4J and 
Kalman Filter hybrid models on Ain-Smara SB

Figure 6. Variability of observed and simulated flows via GR4J and Kalman Filter hybrid models on Grarem SB

Figure 7. Variability of observed and simulated flows via GR4J and Kalman Filter hybrid models on El-Ancer SB

Figure 8. Presentation of MLP model efficiency indices of Ain-Smara SB
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Figure 9. Presentation of MLP model efficiency indices of Grarem SB

Figure 10. Presentation of MLP model efficiency indices of El-Ancer SB 

is an obvious discrepancy when a higher or lower 
flow is transformed through activation functions.

Compared to MLP network structures, NARX 
network shows a faster convergence. Regarding 
the last phase of this paper, LSTM model appli-
cation also resulted in the best predictions which 
are defined by a number of hidden layer nodes, 

batch size and epoch number of 50, 60 and 60, 
respectively. The prediction results are shown in 
Figure 14, 15, 16. From a visual standpoint, the 
prediction results via LSTM neural network have 
improved the accuracy. Again, the modeled time 
series appears to perfectly capture the timing of 
the observed peak flows.

Figure 11. Presentation of NARX model efficiency indices of Ain-Smara SB
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Figure 12. Presentation of NARX model efficiency indices of Grarem SB

Figure 13. Presentation of NARX model efficiency indices of El-Ancer SB

Figure 14. Presentation of SLTM model efficiency indices of Ain-Smara SB

Figure 15. Presentation of SLTM model efficiency indices of Grarem SB
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However, the results show an underestima-
tion in the reconstruction of the maximum daily 
flows but the prediction overall accuracy is very 
satisfactory, as confirmed by the obtained per-
formance indicators values. Thus, the model ef-
ficiency can still be considered as perfect also 
with respect to the simulation of the slow flow 
component.Moreover, RMSE values especially 
for Ain-Smara and Graremwatersheds related to 
fraction order (0.0943 and 0.5 for three years) and 
(0.2 and 0.48 for ten years), reveal that the error 
in the base flow volume evaluation decreases in 
absolute terms compared to calibration. For this 
purpose, it should be emphasized that the simula-
tion is always carried out at daily time scale.

CONCLUSIONS

This study provides significant insights into 
the modeling of the rainfall-runoff relationship 
in the Kebir-Rhumel River watershed using both 
conceptual and machine learning models. Several 
novel contributions and findings have emerged 
from this research:
 • Neural model efficacy: The study demon-

strates that neural network models, specifically 
NARX-RNN and RNN-LSTM, offer superior 
predictive accuracy compared to traditional 
conceptual models and standalone neural net-
works. These models excel in capturing com-
plex, non-stationary hydrological processes, 
which is crucial for accurate rainfall-runoff 
modeling in semi-arid regions.

 • Conceptual model performance: Among the 
conceptual models tested, GR4J provided the 
best fit for the Kebir-Rhumel watershed over 
both three- and ten-year periods. The combi-
nation of GR4J with Kalman Filter techniques 
(ENKF and PF) further improved the model’s 

performance, indicating that these enhance-
ments are beneficial for more accurate hydro-
logical predictions.

 • Model Comparison: The study compares 
the performance of four conceptual models 
(GR4J, IHAC6, MORDOR, TOPMO8) and 
multiple neural network architectures over 
different periods. This comprehensive com-
parison establishes the relative strengths and 
weaknesses of each approach, providing a 
benchmark for future studies in similar hydro-
logical contexts.

 • Long-term Performance: The research high-
lights the challenges associated with long-
term prediction using neural network mod-
els, particularly noting that static models like 
MLP struggle with watershed dynamics over 
extended periods. However, dynamic models 
such as NARX and LSTM successfully cap-
ture peak flood discharge and peak occurrence 
time, reflecting complex nonlinear hydrologic 
dynamics with high fidelity.

 • Regional Application: This research fills a 
critical knowledge gap by applying advanced 
neural network models to the Kebir-Rhumel 
River watershed, a region where such models 
have not been extensively utilized. The find-
ings provide valuable insights into the appli-
cability and effectiveness of these models in 
semi-arid climates, where the runoff genera-
tion mechanism is more complicated than in 
humid regions.

 • Evaluation Criteria: The models were evaluated 
using NSE, R, and RMSE criteria, which con-
firmed their ability to reproduce recorded obser-
vations and combined chronographs accurately. 
The NARX and LSTM models, in particular, 
demonstrated excellent performance in simulat-
ing the rainfall-runoff process, despite a slight 
underestimation of peak flow.

Figure 16. Presentation of SLTM model efficiency indices of El-Ancer SB
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Overall, this study contributes to the advance-
ment of hydrological modeling by validating the 
use of neural network models in non-stationary 
environments. The integration of conceptual mod-
els with Kalman Filter techniques and the applica-
tion of advanced neural networks provide a robust 
framework for future research and practical appli-
cations in water resource management. The find-
ings offer a comprehensive understanding of the 
rainfall-runoff relationship in the Kebir-Rhumel 
watershed, paving the way for more accurate and 
reliable hydrological predictions in similar regions.
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