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INTRODUCTION

Vegetation makes up the primary element of 
terrestrial ecology, which plays a crucial role in 
energy exchange, water cycle, and biogeochemi-
cal cycles [Y. Song et al., 2018]. The transfer of 
matter and energy between the pedosphere and 
atmosphere is contingent upon vegetation [Long 
et al., 2021]. Vegetation change has been and will 
remain a critical concern in the context of global 
changes that impact terrestrial ecosystems due to 
its susceptibility to climate change [Ben Abbes et 
al., 2018; Richards & Belcher, 2020]. W. Song et 
al., [2017] noted that in numerous ecological sce-
narios, it may be necessary to map a variety of 

vegetation cover types over extensive geographi-
cal regions at regular intervals, given the variabil-
ity of these conditions over seasons and years. The 
conventional evaluation condition of the vegeta-
tion is based on a variety of Systematic sampling 
methods that may be difficult to get across a large 
expanse and to update in a timely manner [Ejegu 
et al., 2022]. The utilization of open source spatial 
data has significantly enhanced research on land 
cover change, as a result of the development of 
geospatial device and the improvement of the ap-
proach of vegetation mapping. This has enabled an 
precision assessment of the health and distribution 
of the world’s agricultural, grassland, and forest 
resources, a matter that has emerged as a critical 
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concern in the realm of environmental sustainabil-
ity [Baloloy et al., 2020]. In recent years, the uti-
lization of remote sensing image (spatial data) has 
been of significant assistance in the monitoring of 
the evolving vegetation pattern. The expanding 
availability of remote-sensed data at different geo-
graphical, spectral, and temporal resolutions of-
fers the opportunity to observe the biophysical at-
tributes of ecological systems across different ter-
rain sizes [Ben Abbes et al., 2018; Huylenbroeck 
et al., 2020; Richards & Belcher, 2020; Sun et al., 
2021]. The researchers have shown that temporal 
remotely sensed data can be used to monitor ef-
ficiently, precisely and analyze the spatiotemporal 
dynamics of vegetation cover.

Various image classification methods have 
been created to facilitate the quantitative and 
qualitative evaluation of forest vegetation using 
remotely sensed data. [Guha & Govil, 2021; Li et 
al., 2014; Mu et al., 2018; Y. Song et al., 2018]. 
Remote sensing data can be used to determine 
forest parameters such density, species character-
istics, volume, biomass, leaf area index, canopy 
density, and canopy cover [Clevers et al., 2017; 
Fang et al., 2021; Ghosh et al., 2021; Sahana et 
al., 2015; W. Song et al., 2017]. There are dif-
ferences in vegetation cover density estimation, 
mainly due to differences in remote sensing data, 
vegetation indices and classification algorithms. 
Previous studies have often used a single vegeta-
tion index or algorithm to map and analyze veg-
etation density, such as NDVI, SAVI, EVI, RVI, 
GNDVI and NDWI [Gao et al., 2020]. NDVI is 
one of the most popular vegetation index for map-
ping vegetation density, but NDVI is sensitive 
to atmospheric and lighting conditions, affected 
by the presence of clouds and shadows and less 
effective for detecting vegetation in areas with 
very low or very high vegetation cover [Huang 
et al., 2021; Carbajal-Morán et al., 2023]. SAVI, 
requires adjustment of parameter L for various 
soil conditions, which can be complicated, is also 
still affected by atmospheric conditions although 
better than NDVI [Gupta et al., 2018]. EVI more 
complex in its calculations than NDVI, calibra-
tion parameters G, C1, C2, and L require adjust-
ment and are also affected by soil moisture and 
canopy structure [Samanta et al., 2021]. Whereas 
RVI is susceptible to saturation at very high or 
low values [Yan et al., 2022]. Overall, a single 
vegetation index typically uses two or three spec-
tral bands (e.g. NDVI uses red and near infrared 
band), which can lead to limitations in identifying 

different land cover types or different vegetation 
conditions. It is often very sensitive to disturbanc-
es such as clouds, shadows, and soil moisture, for 
example, NDVI can be affected by the presence 
of clouds or high moisture in the soil, resulting 
in lower classification accuracy in separating dif-
ferent vegetation types or land conditions due to 
limited spectral information. A single vegetation 
index may be less effective in distinguishing be-
tween vegetation types that have similar spectral 
characteristics. And most importantly, it has dif-
ficulty in overcoming the seasonal variability of 
vegetation because it uses little spectral informa-
tion. Thus, although single vegetation indices are 
easy to calculate and use, they have limitations in 
terms of accuracy, sensitivity to disturbance, and 
discrimination ability compared to more sophisti-
cated composite vegetation indices (Aires et al., 
2020; Amiri et al., 2009; Jia et al., 2019; Maz-
zarino & Finn, 2016; Ouyang et al., 2010; Tian 
et al., 2021; Vaghela et al., 2018). with some of 
the shortcomings of the single vegetation index 
mentioned above, this study tries to use a com-
posite index to map vegetation cover in the Ta-
bunio watershed. it is expected that this compo-
site index will improve the accuracy of mapping 
vegetation cover density. As we know, vegetation 
mapping often becomes less accurate due to the 
reflection effect of bare soil (Li et al., 2014). This 
is evidenced by the positive correlation between 
vegetation cover with NDVI and shadow index 
(SI), and a negative correlation with bare soil in-
dex (BI) [Godinho et al., 2016]. The combination 
of the three index is known as the forest canopy 
density (FCD) model. Until now, the FCD model 
has rarely made changes, especially to the vegeta-
tion index indicators. Different from another FCD 
model that often used advanced vegetation index 
(AVI) [Loi et al., 2017; Nugraha & Citra, 2020], 
this study use NDVI to replace the frequently 
used vegetation index, combine with shadow in-
dex (SI) and bare soil index (BI). According to 
several studies, to map vegetation cover compar-
ing the AVI, EVI, SAVI and NDVI vegetation in-
dex mostly provide the results of using the NDVI 
vegetation index with higher accuracy, especially 
for the classification of vegetation density in the 
tropics [Durigon et al., 2014; Gandhi et al., 2015; 
Huang et al., 2021; Hussain & Islam, 2020; Maz-
zarino & Finn, 2016; Zaitunah et al., 2018]. In 
addition, another novelty of this research is that 
tries to apply the FCD model for monitoring veg-
etation change using multitemporal satellite data.
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The condition of the Tabunio Watershed as 
a watershed with priority handling [Decree of 
the Minister of Forestry No. SK. 328/Menhut-
II/2009] because the criterion for extremely high 
recovery includes the state of essential land, which 
has a total area of 19,109.89 hectares. Likewise, 
the condition of vegetation cover and erosion in-
dex qualify as very high recovery with erosion of 
219.08 tonnes ha-1 year-1. Additionally, the deteri-
orated water catchment conditions led to drought 
all along the dry season and flood during the rainy 
season. The environmental destruction in the 
Tabunio watershed is worsened by the existence 
of conventional gold mining, which has become 
a cause for worry for multiple stakeholders. It is 
imperative to assess the biophysical characteris-
tics of the Tabunio watershed in light of the es-
calating frequency of natural disasters, including 
droughts, landslides, and flooding [Ridwan et al., 
2024; Wibawa et al., 2021]. Few of the studies in 
Tabunio Watershed in the past have been focused 
to classify land use and land cover type [Nurlina 
et al., 2021], to asses soil erosion [Kadir et al., 
2016; Nurlina et al., 2022] and critical land [Au-
liana et al., 2018; Nurlina et al., 2023]. Thus far, 
the result has been utilized to accurately measure 
the sustainability of time series data. However, it 
has not yet been utilized for predicting vegetation 

change in the Tabunio Watershed. In the descrip-
tion above, the objective of this research is to 
showcase the application and effectiveness of the 
FCD model in generating a map that illustrates 
alterations in forest canopy density. This will be 
achieved by utilizing multitemporal remote sens-
ing data in the Tabunio Watershed. It’s necessary 
to examine the condition of vegetation cover with 
spatial and temporal distribution in the Tabunio 
watershed during the previous twenty years.

METHODS

The research site is situated in the Tabunio 
Watershed, which spans an area of 62,558.56 
hectares in Tanah Laut Regency. It is situat-
ed at 114°36’12.02”–114°57’47.62” East and 
3°37’2.72”–3°51’ 51.43” LS. The Tabunio water-
shed is administratively divided into 44 localities, 
6 sub-districts, and 10 sub-watersheds. The map 
depicting the investigation location of the Tabun-
io watershed and the area of each sub-watershed 
is shown in Figure 1.

The FCD mapping model is an analyze meth-
od used to calculate vegetation cover density 
by using and integrating index related to forest 
vegetation cover index [Loi et al., 2017]. The 

Figure 1. Map of Tabunio watershed research location
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methodology relies on vegetation indices, includ-
ing the normalized difference vegetation index 
(NDVI), shadow index (SI), and bare soil index 
(BI), to create the composite vegetation index 
(CVI). The FCD model indicates that there is a 
positive correlation between vegetation cover and 
both SI and NDVI, but there is a negative correla-
tion between vegetation cover and BI. Hence, the 
integration of NDVI, BI, and SI can be employed 
to form CVI, so mitigating the impact of shadow 
and background soil. [Clevers et al., 2017].
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where: n – the harmonic coefficient, can take val-
ues between -1 and 0.

Through meticulous testing in this scientific 
field, it has been shown that a value of n = -0.05 
yields acceptable outcomes. The pixel dichotomy 
approach was employed to quantify the extent of 
vegetation coverage.
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where: CVIveg and CVIsoil are the CVI values of 
vegetation and bare soil cover. 

	

 𝐶𝐶𝐶𝐶𝐶𝐶 = (𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 + 𝑛𝑛𝑛𝑛𝑛𝑛) × 𝑆𝑆𝑆𝑆  (1) 
 
 𝑉𝑉𝑉𝑉 = (𝐶𝐶𝐶𝐶𝐶𝐶−𝐶𝐶𝐶𝐶𝐶𝐶𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠)

(𝐶𝐶𝐶𝐶𝐶𝐶𝑣𝑣𝑣𝑣𝑣𝑣−𝐶𝐶𝐶𝐶𝐶𝐶𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠)  (2) 

 
 𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 =  𝜌𝜌𝑁𝑁𝑁𝑁𝑁𝑁−𝜌𝜌𝑅𝑅𝑅𝑅𝑅𝑅

𝜌𝜌𝑁𝑁𝑁𝑁𝑁𝑁+𝜌𝜌𝑅𝑅𝑅𝑅𝑅𝑅
𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 =  𝜌𝜌𝑁𝑁𝑁𝑁𝑁𝑁−𝜌𝜌𝑅𝑅𝑅𝑅𝑅𝑅

𝜌𝜌𝑁𝑁𝑁𝑁𝑁𝑁+𝜌𝜌𝑅𝑅𝑅𝑅𝑅𝑅
   (3) 

 
 𝑆𝑆𝑆𝑆 = [(256 − 𝜌𝜌𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵)(256 − 𝜌𝜌𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺)(256 − 𝜌𝜌𝑟𝑟𝑟𝑟𝑟𝑟)]1/3  (4) 
 
 𝐵𝐵𝐵𝐵 =  𝜌𝜌𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠+𝜌𝜌𝑅𝑅𝑅𝑅𝑅𝑅−𝜌𝜌𝑁𝑁𝑁𝑁𝑁𝑁−𝜌𝜌𝐵𝐵𝐵𝐵𝐵𝐵𝐸𝐸

𝜌𝜌𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠+𝜌𝜌𝑅𝑅𝑅𝑅𝑅𝑅+𝜌𝜌𝑁𝑁𝑁𝑁𝑁𝑁+𝜌𝜌𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵
  (5) 

 
 

	(3)

	

  
 

 𝑆𝑆𝑆𝑆 = [ (256 − 𝜌𝜌𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵) ×
× (256 − 𝜌𝜌𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺) × (256 − 𝜌𝜌𝑟𝑟𝑟𝑟𝑟𝑟)

]
1/3

  (4) 

 
  
 
 

	(4)

	

 𝐶𝐶𝐶𝐶𝐶𝐶 = (𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 + 𝑛𝑛𝑛𝑛𝑛𝑛) × 𝑆𝑆𝑆𝑆  (1) 
 
 𝑉𝑉𝑉𝑉 = (𝐶𝐶𝐶𝐶𝐶𝐶−𝐶𝐶𝐶𝐶𝐶𝐶𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠)

(𝐶𝐶𝐶𝐶𝐶𝐶𝑣𝑣𝑣𝑣𝑣𝑣−𝐶𝐶𝐶𝐶𝐶𝐶𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠)  (2) 

 
 𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 =  𝜌𝜌𝑁𝑁𝑁𝑁𝑁𝑁−𝜌𝜌𝑅𝑅𝑅𝑅𝑅𝑅

𝜌𝜌𝑁𝑁𝑁𝑁𝑁𝑁+𝜌𝜌𝑅𝑅𝑅𝑅𝑅𝑅
𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 =  𝜌𝜌𝑁𝑁𝑁𝑁𝑁𝑁−𝜌𝜌𝑅𝑅𝑅𝑅𝑅𝑅

𝜌𝜌𝑁𝑁𝑁𝑁𝑁𝑁+𝜌𝜌𝑅𝑅𝑅𝑅𝑅𝑅
   (3) 

 
 𝑆𝑆𝑆𝑆 = [(256 − 𝜌𝜌𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵)(256 − 𝜌𝜌𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺)(256 − 𝜌𝜌𝑟𝑟𝑟𝑟𝑟𝑟)]1/3  (4) 
 
 𝐵𝐵𝐵𝐵 =  𝜌𝜌𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠+𝜌𝜌𝑅𝑅𝑅𝑅𝑅𝑅−𝜌𝜌𝑁𝑁𝑁𝑁𝑁𝑁−𝜌𝜌𝐵𝐵𝐵𝐵𝐵𝐵𝐸𝐸

𝜌𝜌𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠+𝜌𝜌𝑅𝑅𝑅𝑅𝑅𝑅+𝜌𝜌𝑁𝑁𝑁𝑁𝑁𝑁+𝜌𝜌𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵
  (5) 

 
 

	 (5)

where:	ρBLUE, ρGREEN, ρRED, ρNIR, and ρSWIR represent 
the reflectance of the Landsat image in 
the blue, green, red, near infrared and first 
shortwave infrared bands, respectively.

The combination of bands selected is 543 to 
produce true colors. The use of band four and 
band three as NDVI transformation is because, At 
these specific wavelengths, there is a significant 

disparity in the way objects are reflected on veg-
etation and dirt, making it sound like an estimator 
of the vegetation density model [Guo et al., 2022]. 
The processing results in NDVI values that can 
be classified based on the range of NDVI values 
ranging from -1 non-vegetation to +1 (vegetation). 
Image analysis for vegetation density interpreta-
tion uses digital analysis that groups pixels into 
classes based on reflectance values. Then classi-
fied into several vegetation density classes rang-
ing from sparse to dense vegetation (Table 1).

The accuracy of image classifications is typi-
cally evaluated using kappa coefficient and con-
fussion matrix [Nurlina et al., 2021]. To assess the 
accuracy of FCD model, a confusion matrix was 
created. From this matrix, four accuracy assess-
ment metrics were calculated: overall classifica-
tion accuracy (OA), producer’s accuracy (PA), 
user’s accuracy (UA), and Kappa coefficient (K). 
The effectiveness of the FCD model in predicting 
forest canopy density was subsequently validated 
by a study of the derived accuracy measures.

RESULTS AND DISCUSSION

The map in Figure 2 was analyzed for the pe-
riod 2005–2020 using Equation 3. The analysis 
shows that the NDVI decreased throughout the 
duration of the study, although the NDVI of 2005-
2010 was generally higher than that of the fol-
lowing 2 periods. Temperature and precipitation 
exert varying influences on NDVI across differ-
ent spatial and temporal domains. The variance in 
NDVI in most sections of the Tabunio watershed 
is mostly influenced by temperature and rainfall.

The annual SI values for 2005–2020 are shown 
in Figure 3, respectively. As seen in the figure, SI 
values and distribution vary. In vegetated areas, SI 
varies with plant cover type. In the Tabunio water-
shed, there are coniferous forests, broadleaf for-
ests, oil palm plantations, rubber, shrubs, and ag-
ricultural land in SI values arranged in decreasing 
order. SI also varies with canopy structure, such as 
broadleaf, closed, or open canopy. Therefore, SI 
proves valuable for conducting in-depth vegeta-
tion study, including the categorization of differ-
ent vegetation kinds and gaining insights into the 
current state of plant growth.

In the Figure 4 according to this map, the pro-
portion of land covered by each level of canopy 
density varies between 2005 and 2020. The FCD 
model analysis showed that the high-density 

Table 1. Vegetation density class and NDVI index 
values [Aires et al., 2020]

Vegetation density level Vegetation index value

Non-vegetation < 0.1

Rare 0.10–0.2

Medium 0.21–0.40

Meetings 0.41–0.60

Very tight >0.6
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class is the most dominant, covering 41.9% of 
the entire Tabunio watershed area, followed by 
the medium-density class and the sparse veg-
etation class, which occupied 22.24 and 15.71%, 

respectively. The Results table derived from us-
ing the FCD model demonstrates a decline in the 
ratio of the area across low to high-density cat-
egories. Hence, the outcomes achieved suggest 

Figure 2. Normalized difference vegetation index [NDVI] of Tabunio Watershed 2005–2020

Figure 3. Shadow index of Tabunio watershed 2005–2020
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that the dependability of the FCD model remains 
unaffected by the area, as it consistently demon-
strates the same pattern (with low-density classes 
occupying a greater proportion of the space com-
pared to medium and high-density classes).

The state of vegetation coverage in the Tabun-
io watershed between 2005 and 2020 is domi-
nated by sparse to very dense vegetation cover 
classes (Fig. 5). Changes in vegetation cover 
over 20 years are very significant. The expansion 

Figure 4. Spatial distribution of bare soil index in Tabunio Watershed 2005–2020

Figure 5. Distribution of vegetation cover in Tabunio watershed 2005–2020
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of plantation land in 2005 caused a lot of non-
vegetated land, which gradually changed in the 
following year period along with plant growth. 
At the end of 2020, the percentage of very dense 
vegetation became increasingly dominant, which 
was around 42 percent, as observed in Table 2.

The three biophysical indices (NDVI, SI, and 
BI) used in the FCD approach were appropriate 
for precisely discriminating between all canopy 
density classes, as seen by the overall producer’s 
accuracy of 81.3%. An improved categorization 
results from the selective separation of the soil 
reflectivity component a crucial spatial feature of 
the Tabunio Watershed landscape from the current 
canopy cover using the FCD model. Conversely, 
locations with high SI values and seemingly dark 
soil (indicating low irradiant data) could be mis-
takenly identified as lush vegetation rather than 
bare land. Combining the SI and the BI solves this 
problem when utilizing the FCD model. This ap-
proach enables the identification of black soil con-
ditions, hence avoiding misclassifications when 
both the soil index (SI) and biological index (BI) 
are elevated at the same site. The FCD technique 
effectively addresses the intricate reflectance of 
plants by integrating biophysical information into 
its computational framework. Nevertheless, we 
acquired a little reduced producer’s accuracy for 
the sparse vegetation category. This outcome may 
indicate some of the constraints associated with 
employing this methodology in tropical vegeta-
tion that is exceedingly sparse. The existence of 
bare soil surfaces with a high level of reflectans 
in these regions is a result of the scarcity of water 
resources, which may dominate the smaller ele-
ment that is indicated by very sparse vegetation. 
Sparse vegetation represents a sparser type than 
dense vegetation and very dense vegetation, as 
evidenced by the forest canopy density range of. 
Consequently, the bare soil component exhibits a 
much higher reflectivity in the very sparse vegeta-
tion class than in the dense and very dense classes. 

As a result, the spectral separation of very sparse 
vegetation and non vegetation in tropical regions 
is characterized by a comparatively low level of 
accuracy, as it is observed in regions with low 
forest canopy density. Furthermore, it has been 
previously acknowledged that the FCD model 
may have certain constraints, as it necessitates an 
understanding of ground conditions to establish 
threshold values [Fahmi et al., 2023; Nugraha & 
Citra, 2020]. In general, the FCD model exhibited 
outstanding accuracy and strong agreement (OA = 
78.0%; K = 0.71), resulting in well rounded esti-
mates of the forest canopy density in the Tabunio 
Watershed. The FCD method is also helpful for 
the application of MRV [Monitoring, Reporting, 
and Verification]. The advantage of the FCD mod-
el is that it calculates the forest canopy density, 
not only considering the vegetation factor but also 
temperature and bare soil, which are negatively 
correlated to vegetation [Godinho et al., 2016]. 
The FCD model employs vegetation cover density 
as a crucial methods for describing forest condi-
tions over a period of time [Fahmi et al., 2023].

CONCLUSIONS

According to the conducted research, it can 
be inferred that the vegetation coverage in the 
Tabunio Watershed exhibited a general pattern of 
being high in the northeastern and eastern regions, 
while low in practically all areas of the western 
region. The state of the vegetation cover in the 
Tabunio watershed from 2005 to 2010 is domi-
nated by class non vegetation and dense vegeta-
tion. At the end of 2015 until 2020 the percentage 
of very dense vegetation becomes increasingly 
dominant, which is around 42 percent. Changes 
in vegetation cover over two decades are very sig-
nificant. The expansion of plantation land in 2005 
caused a lot of non-vegetated land, which gradu-
ally changed in the following year period along 

Table 2. Vegetation density class of Tabunio Watershed in 2005–2020

No. Vegetation density
2005 2010 2015 2020

Area [ha] [%] Area [ha] [%] Area [ha] [%] Area [ha] [%]

1 Non-vegetation 22,042.56 31.22 25,383.23 36.56 13,818.00 28.07 6,604.85 10.56

2 Very sparse vegetation 8,956.65 14.32 13,025.18 20.82 8,207.37 13.12 5,974.46 9.55

3 Sparse vegetation 7,432.07 11.88 8,279.01 13.23 7,214.35 11.53 9,831.04 15.71

4 Dense vegetation 15,566.11 8.90 14,360.51 6.97 17,309.85 26.68 13,914.06 22.24

5 Very dense vegetation 8,561.17 13.69 1,510.63 2.41 16,008.99 25.59 26,234.16 41.94
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with plant growth. The study’s findings suggest 
that the FCD model used in this research is highly 
effective in identifying the visible area’s surface 
characteristics. FCD model can provide more ac-
curate estimates of forest density compared to 
conventional methods. In addition, it can detect 
small changes in forest cover that may be missed 
by other models. This helps in the early identifi-
cation of deforestation or forest degradation ac-
tivities, and effective for forest management and 
conservation planning.
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