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INTRODUCTION

Rainfall data is the primary input required to 
predict weather conditions and hazard assessment 
such as flood, drought, and landslides. Many re-
searches have studied related to these topics, e.g. 
[Ramzi et al., 2024; Ouharba et al., 2024; Tavosi, 
et al., 2024; Chellamuthu et al., 2024; Damayanti 
et al., 2022, Triyanto et al., 2021, Tabari, 2020; St-
odolak et al., 2018]. Despite the high demand, the 
rainfall data lacks of its availability. It is difficult 

to gain adequate ground-based observation rain-
fall data for further analysis. Mostly, for hydro-
logical analysis, rainfall data is often obtained 
from direct observations in the field through rain 
gauges managed by certain agencies. However, 
in some areas, the measuring tools are not avail-
able. In other areas, the problem are the incom-
plete or empty rainfall data [Fauzi et al., 2013; 
Hasyimzoem et al., 2021]. And thus, it becomes a 
challenge. On the other side, rainfall data is also 
considered to be one of the most significant data 
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for agricultural needs. Rainfall is a source of wa-
ter input for analysing regional water availability 
[Putri and Perdinan, 2018]. Dwiratna et al. [2014] 
used rainfall data to determine schedules and 
planting patterns for dryland agriculture, which 
are largely determined by the monthly rainfall 
conditions in the region due to their relation to 
meeting the water needs of plants. Rainfall data 
can also be used for agricultural planning, espe-
cially regarding the selection of appropriate com-
modities and potential cropping indices, which 
are highly dependent on the potential availability 
of existing water [Susanti et al., 2021]. Moreover, 
rainfall has a very close relationship with agricul-
tural yields or production, as each plant has dif-
ferent climatological growth requirements. The 
relationship between rainfall and plant water bal-
ance is significantly influenced by climate anom-
aly events [Laimeheriwa et al., 2019; Simanjun-
tak et al., 2018].

Utilization of satellite rainfall data through 
remote sensing can overcome the challenges of 
rainfall data availability. Many studies explored 
the utilize of satellite rainfall data [Wu et al., 
2024; Fadli, 2022; Partarini et al., 2021; Radhika 
et al., 2017; Fadholi et al., 2014]. Most of the ex-
isting rainfall studies explained the utilize of sat-
ellite rainfall data in a regional or global scale.

In this work, a research approach based on re-
mote sensing for rainfall data requirements was pre-
sented and aimed to monitor and to predict the effect 
of climate change on water availability. The knowl-
edge gap revealed in this research is that the use of 
satellite rainfall data for the specific region that has 
not been extensively studied before. In fact, for agri-
cultural needs, the data in a specific region is mostly 
important regarding with the assessment of produc-
tivity per plot of land. This research introduces the 
alternative approach to gain rainfall data completely 
and detail. The methodological approach was com-
plemented by field surveys and quantitative descrip-
tive visual interpretation of satellite rainfall data. The 
implication of this study may contribute on reaching 
the sustainability of agricultural practices that can 
help to mitigate climate change impact.

METHODS

Study area 

This research was conducted in the up-
per part of the Serang watershed, Central Java, 

covering a study area of 282.81 km2. This area 
serves as the recharge zone for the Serang wa-
tershed within the volcanic landscape of Mount 
Merbabu. Administratively, the majority of the 
study area is located in Boyolali Regency, with 
a small portion extending into Semarang Re-
gency. The Serang watershed has an average 
slope of 11%, with the Serang River serving as 
the primary river, stretching over a main river 
length of 13.046 km [Romadhoniastri et al., 
2022]. River discharge data were collected at the 
Guwo Water Post with an average river discharge 
of 10.33 m3/s. Figure 1 depicts the upper of the 
Serang watershed, highlighting the study area.

Data

This study utilizes rainfall data obtained from 
observation stations and satellites, supplemented 
by other datasets such as measured discharge data 
and CMIP-6 modeling data.

Station rain data (observation data)

Eight rain stations were used in this research: 
Juwangi, Karanggede, Simo, Sambi, Teras, Mo-
josongo, Boyolali, and Ampel stations, provid-
ing a dataset spanning 16 years (2007–2022). 
Monthly rainfall data were acquired from the 
Boyolali District Office.

Satellite rain data

Global rainfall measurement (GPM) and Cli-
mate Hazards Group InfraRed Rainfall with Station 
(CHIRPS) satellite rainfall data were employed in 
this study. The selection of these datasets was based 
on previous research highlighting their accuracy 
(Yang et al., 2017; Liu et al., 2020]. The downloaded 
data length was adjusted to match the observed rain-
fall data, spanning 16 years.GPM data offer spatial 
resolution in a grid format of 0.10° × 0.10° and are 
available in 3-hourly, daily, 5-day, and monthly pe-
riods. These data can be accessed via the website 
https://gpm.nasa.gov/data/imerg; alternatively, they 
can be downloaded from https://giovanni.gsfc.nasa.
gov/giovanni/ to obtain area-specific data.CHIRPS 
data provide a finer spatial resolution with a grid size 
of 0.05° × 0.05° and offer data in daily, semi-month-
ly, and monthly periods. Global CHIRPS data can 
be accessed at https://data.chc.ucsb.edu/products/
CHIRPS-2.0/. Area-specific data can be downloaded 
from Google Earth Engine. The downloaded grids 
for each satellite data are illustrated in Figure 2.
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Projected rain data

CMIP-6 modeling was employed to obtain 
projected rainfall data from 2023 to 2030.

Measured discharge data

Discharge data were collected from Gowa 
Water Prediction Post, covering the period 
2010–2020. These data utilized to calculate wa-
ter availability predictions.

Analysis method

Satellite rain data processing typically involves 
of two primary stages: data calibration, which in-
cludes correcting the satellite rain data, and valida-
tion of the correction results. In this research, the data 

processing is divided into two distinct phases based 
on the data timeframe. The calibration phase spans 
from 2007 to 2017, while validation is conducted 
using data from 2018 to 2022. It is a common prac-
tice in data correction to perform validation using 
data outside the calibration period [Indarto, 2012]. 
Monthly data intervals are utilized in this study for 
validation analysis, as this period is considered opti-
mal for such analyses [Yang et al., 2017].

Correction of satellite rainfall data

Bias correction is intended to correct satellite 
rainfall values to match observed rainfall values. 
Bias correction in this study was carried out in 
two ways, i.e., regression method and distribution 
mapping method.

Figure 1. Study area: recharge area of Serang Watershed

Figure 2. Comparative analysis of rainfall measurements: A comparison between 
observational data and satellite estimates (GPM and CHIRPS)
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Regression method

In this study, the regression equations used 
are linear regression, exponential regression, and 
polynomial regression. These three equations will 
be used as corrections for satellite rainfall data. 
The equations used are Equations 1 to 3.
Linear regression: Ŷ = aX + b (1)

Exponential regression: Ŷ = b eax (2)

Polynomial regression: 

 Ŷ = b0 + b1X + b2X
2 +……..+ bmXm (3)

where: Ŷ – equation of the straight line Y (ob-
served rainfall) to X (satellite rainfall), X 
– the independent variable in this case is 
satellite rainfall, a, b – regression coeffi-
cients, e – the base number of the original 
logarithm (Napir logarithm = 2.7183)

Distribution mapping method

The use of this method is carried out in several 
stages, namely identifying the type of probability 
distribution and rainfall probability. In this study, 
the normal distribution is the probability distribu-
tion method. The stage of determining the prob-
ability of rainfall is performed using the prob-
ability density function (PDF) and cumulative 
distribution function (CDF) with Equations 4 and 
5 [Misnawati et al., 2018]. The probability den-
sity function (PDF) states the probability value of 
each event X and is written as p(X). Because p(X) 
expresses the probability value, its value ranges 
from 0 to 1. The PDF graph expresses the prob-
ability value of each event. The ordinate states the 
possible events, and the abscissa states the pos-
sible value p(X).
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Next, we create a transfer function from the 
cumulative distribution of the two rainfall data 
using three regression functions, as in the previ-
ous method. This equation is then used as the bias 
correction for satellite data.

Validation of satellite rainfall data

Validation is a crucial step in assessing the 
accuracy and reliability of a model in predict-
ing hydrological processes. In this study, vali-
dation was employed to assess the effectiveness 
of the bias correction method. Several validation 

metrics were utilized, including root mean 
squared error (RMSE), Nash–Sutcliffe efficien-
cy (NSE), correlation coefficient (R), and rela-
tive error (KR) [Mamenun et al., 2014; Yang et 
al., 2017]. Equations 6 to 9 outline the calcula-
tion procedures for these metrics.

The RMSE and relative error values indicate a 
high level of satellite reliability when they are close 
to 0. Meanwhile, the NSE and correlation coefficient 
values close to 1 indicate a high level of satellite re-
liability. These two indicators have clear parameter 
quantification, as depicted in Tables 1 and 2.

Root mean square error

RMSE is a standard method to measure the 
error of a model in predicting quantitative data. 
RMSE is used to evaluate the performance of a 
linear regression model by measuring the accu-
racy of the model’s estimation results. In other 
words, this method is used to measure how well a 
regression model predicts the data.

 

Linear Regression: Ŷ = aX + b, (1) 

 

Exponential Regression: Ŷ = b ⅇax, (2) 

 

Polynomial Regression: Ŷ = b0 + b1X + b2X2 +……..+ bmXm, (3) 

 

𝑃𝑃𝑃𝑃𝑃𝑃 = 1
𝛽𝛽 − 𝛼𝛼, 𝛼𝛼 ≤ 𝑥𝑥 ≤ 𝛽𝛽 (4) 

 

𝐶𝐶𝑃𝑃𝑃𝑃 = 𝑥𝑥 − 𝛼𝛼
𝛽𝛽 − 𝛼𝛼, 𝛼𝛼 ≤ 𝑥𝑥 ≤ 𝛽𝛽 (5) 

 

𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 = √∑ (𝑃𝑃𝑖𝑖 − 𝑄𝑄𝑖𝑖𝑁𝑁
𝑖𝑖 = 1 )2

𝑁𝑁 , (6) 

 

𝑁𝑁𝑅𝑅𝑅𝑅 = 1 − ∑ (𝑃𝑃𝑖𝑖 − 𝑄𝑄𝑖𝑖
𝑁𝑁
𝑖𝑖 = 1 )2

∑ (𝑃𝑃𝑖𝑖 − 𝑃𝑃�̅�𝑖𝑁𝑁
𝑖𝑖 = 1 )2 (7) 

 

𝑅𝑅 = 𝑁𝑁 ∑ 𝑃𝑃𝑖𝑖 − 𝑄𝑄𝑖𝑖
𝑁𝑁
𝑖𝑖 = 1  −∑ 𝑃𝑃𝑖𝑖 𝑁𝑁

𝑖𝑖 = 1 × ∑ 𝑄𝑄𝑖𝑖
𝑁𝑁
𝑖𝑖 = 1

𝑁𝑁 ∑ 𝑃𝑃𝑖𝑖2𝑁𝑁
𝑖𝑖 = 1 −(∑ 𝑃𝑃𝑖𝑖)2√𝑁𝑁 ∑ 𝑄𝑄𝑖𝑖2−(∑ 𝑄𝑄𝑖𝑖𝑁𝑁

𝑖𝑖 = 1 )2𝑁𝑁
𝑖𝑖 = 1

𝑁𝑁
𝑖𝑖 = 1

 (8) 

 

𝐾𝐾𝑅𝑅 = ∑ 𝑃𝑃𝑖𝑖 − 𝑄𝑄𝑖𝑖
𝑁𝑁
𝑖𝑖 = 1
∑ 𝑃𝑃𝑖𝑖𝑁𝑁

𝑖𝑖 = 1
 ×  100% (9) 

 

 (6)

Nash–Sutcliffe efficiency

This method shows the degree of accuracy 
that results from the correlation of relationships 
formed between observational data and estimat-
ed data [Jarwanti et al., 2021]. This method also 
shows the value of whether the plot results are 
better than the observed values (observed data) 
compared to the values resulting from the pre-
diction-simulation, whether they fit the 1:1 line 

Table 1. Criteria for nash-sutcliffe efficiency
NSE Interpretation

NSE > 0.75 Good

0.36 < NSE < 0.75 Meet the requirements

NSE < 0.36 Does not meet the requirements

Note: Motovilov et al., [1999].

Table 2. Criteria for correlation coefficient
R Interpretation

0–0.19 Very low

0.20–0.39 Low

0.40–0.59 Moderate

0.60–0.79 High

0.80–1.00 Very high

Note: Sugiyono [2003].
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or not, with a value range of ∞ to 1 [Rahma et 
al., 2019]. A model can be said to be good if it 
produces a Nash coefficient value close to one. 
The NSE score criteria are presented in Table 1.
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Correlation coefficient

Correlation analysis is a statistical method 
commonly used to determine the strength of the 
relationship between two variables (Table 2).
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Relative error

This analysis aims to compare the magnitude 
of the value of one variable and another variable, 
which is considered as a benchmark for the actual 
variable [Lufi et al., 2020].
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where: Pi – observation data, Qi – forecast data 
(satellite data), I – average observational 
data, N – number of data

Rainfall projections

Rainfall projections were performed us-
ing the coupled climate models MIROC6 and 
MRI-ESM2-0 in the Coupled Model Intercom-
parison Project Phase 6 (CMIP-6) framework 
with the SSP2-4.5 scenario. The data used is 
2023–2030. The data is in the form of average 
daily monthly rainfall. This data can be ac-
cessed globally via https://esgf-node.llnl.gov/
search/cmip6/ CMIP-6 output is netCDF data. 
RStudio was used to extract data into Microsoft 
Excel (.csv) format, as well as to input shape-
able data for the desired study area.

Water availability projections

Water availability in this study was analyz-
ed using the Weibull probability equation by 
taking a discharge of 80% exceeded based on 
the half-monthly average discharge. Discharge 
data were obtained using the F.J. model simula-
tion method. Mock. This model transforms rain-
fall flow following the principle of water bal-
ance [Setiyawan et al., 2017]. Existing rain data 
from 2010 to 2022, and projected rain data from 
2023 to 30 was incorporated. CHIRPS satellite 

rain data, which has previously undergone bias 
correction and validation, are used as input in 
the calculations. In addition to rain data, the 
model simulations of F.J. Mock also used meas-
ured discharge data from the Gowa Water Pre-
diction Post from 2010 to 2020 to determine 
the groundwater recession constant) and initial 
groundwater storage values.

RESULT AND DISCUSSION

Observed rainfall

There are 8 rainfall stations that influence the 
upper rain catchment area of the Serang water-
shed: Juwangi, Karanggede, Simo, Sambi, Teras, 
Mojosongo, Boyolali, and Ampel stations. Each 
rain station has varying data. From all influential 
rainfall stations, regional rainfall analysis was 
performed using arithmetic methods. Based on 
the results of the analysis of observational rain-
fall data for 16 years (2007–2022), the study area 
has an annual average rainfall of approximately 
2.000–3.000 mm/year. Table 3 shows analysis of 
annual rainfall data.

Satellite rainfall

The comparison of annual rainfall data be-
tween observational and satellite sources (GPM 
and CHIRPS), as shown in Figure 2, indicates 
that both datasets exhibit similar trends or pat-
terns. However, the rainfall amount estimated 
from the two satellite datasets tend to overesti-
mate compared to the observational data. 

Based on the analysis of GPM satellite 
rainfall data from 2007 to 2022, the study area 
has an average annual rainfall ranging from 
1.400 to 2.100 mm/year. In contrast, CHIRPS 
satellite rainfall data indicates an average an-
nual rainfall ranging from 2.100 to 4.000 mm/
year. The comparison of rainfall values based 
on observations and those derived from GPM 
and CHIRPS satellite data reveals discrepan-
cies, as illustrated in Figure 2. Generally, sat-
ellite-estimated rainfall amounts do not align 
with the observed rainfall data, necessitating 
corrections [Partarini et al., 2021]. These dif-
ferences may stem from various errors, includ-
ing those related to sensors (Tang et al., 2015] 
and retrieval algorithms [Sadeghi et al., 2019].
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Correction of the rainfall data

Corrections have been applied to ensure that 
satellite-derived rainfall data from GPM and 
CHIRPS exhibits a pattern identical to that of 
station-based observation rainfall, increasing the 
likelihood that it accurately represents future rain-
fall patterns. Corrections was needed since rain-
drops from the atmosphere take a certain amount 
of time to fall to the Earth’s surface, with speeds 
ranging from 0.5 to 9 m/s [Marzuki et al., 2013]. 
Bias correction for the GPM and CHIRPS satel-
lite rainfall data was conductetd using regression 
and distribution mapping method, specifically 
through the probability density function and cu-
mulative density function.

Bias correction through the polynomial re-
gression method demonstrated the highest corre-
lation compared to linear and exponential regres-
sion for both GPM and CHIRPS satellite data, 
as depicted in Figure 3. Polynomial regression 
analysis yielded R2 values of 0.7451 for GPM 
and 0.7769 for CHIRPS satellite data, indicating 
that the polynomial method most accuratly cap-
tures the relationship between observed rainfall 
and satellite-derived rainfall. After determining 
the most suitable correction equation, corrected 
satellite rainfall data were derived using the poly-
nomial regression equation.

The resolution of satellite data significant-
ly affects the efficacy of the correction factor, 

evident in the varying responses between ob-
served rainfall data corrected satellite rainfall 
data from GPM and CHIRPS. For GPM, the re-
lationship between observed and corrected satel-
lite rainfall data shows a modest improvement in 
the R2 value, increasing from 0.7451 (Figure 3) 
to 0.7678 (Figure 4a). In contrast, the correction 
for CHIRPS satellite data reveals a more substan-
tial enhancement, with the R2 value rising from 
0.7769 (Figure 3) to 0.8453 (Figure 4b). The fin-
er spatial resolution of CHIRPS, at a grid size of 
0.05° × 0.05° compared to GPM’s 0.10° × 0.10°, 
contributes to this difference. The higher detail 
offered by CHIRPS’s narrower grid results in cor-
rections that more significantly improve the ac-
curacy of its rainfall data [Partarini et al., 2021] 

GPM and CHIRPS satellite rainfall values 
have a high correlation value (> 0.70) with ob-
served rainfall. However, the accuracy of satellite 
rain data can still be enhanced by correcting exist-
ing biases [Partarini et al., 2021]. This correction 
is performed using monthly data according to the 
equation for each month.

In comparison to the regression method, 
the distribution mapping method is also used to 
perform bias correction for GPM and CHIRPS 
satellite data. Linear and polynomial equations 
can be used in the distribution mapping method. 
However, you need to be careful when using line-
ar and polynomial equations because these equa-
tions contain constant values that can cause the 

Table 3. Annual regional rainfall observations (2007–2022)

Year Jan Feb Mar Apr May Jun Jul Aug Sep Okt Nov Des Annual 
prec.

2007 154 403 320 312 134 28 14 0 0 51 221 367 2004

2008 287 366 492 204 74 14 10 1 2 248 274 333 2304

2009 524 520 205 130 206 155 0 3 0 43 248 157 2193

2010 467 332 308 326 344 133 48 132 199 184 217 301 2990

2011 424 382 344 280 224 82 32 0 59 120 245 258 2450

2012 401 418 254 256 141 79 0 0 0 121 274 378 2322

2013 423 345 348 239 211 178 73 80 1 176 200 277 2551

2014 423 345 348 239 211 178 73 80 1 176 200 277 2551

2015 373 409 240 243 159 86 0 0 0 13 126 246 1895

2016 400 374 281 291 226 149 129 146 199 234 287 329 3045

2017 428 375 251 262 141 70 15 0 53 208 449 267 2520

2018 348 477 260 102 30 49 0 0 5 5 0 196 1474

2019 411 405 279 279 125 0 0 0 0 6 405 268 2178

2020 435 414 294 260 160 13 5 19 6 201 219 300 2326

2021 448 378 286 265 162 154 14 19 126 140 264 246 2502

2022 473 326 356 177 281 268 59 101 123 221 272 305 2962
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Figure 3. Bias correction of satellite rainfall data (a) GPM and (b) CHIRPS using the Regression Method

Figure 4. Relationship between observed rainfall data and corrected 
satellite rainfall data: (a) GPM and (b) CHIRPS

rain correction results to be illogical and negative. 
Therefore, this study also applies linear equations 
to calculate the distribution mapping method.

Bias correction of GPM and CHIRPS satel-
lite data using the distribution mapping method 
shows similar R2 values (Figures 5 and 6). Based 
on distribution mapping analysis, the relationship 
between observed rainfall data and GPM and 
CHIRPS satellite rainfall data is 0.7711 and 0.7979, 
respectively. In this method, the relationship be-
tween observation and satellite data is adjusted to 
the size of the transfer function distribution. where 
the transfer function value in the form of rainfall 
is based on the CDF value, which then causes the 
scatterplot graph to approach the 45° line [Partarini 
et al., 2021]. The relationship between these two 
data sets is a transfer function that is described by a 
linear equation for satellite data correction.

The bias correction value using the distribution 
mapping method on GPM and CHIRPS data is bet-
ter than the correction value using the Regression 
method. This is indicated by the higher R2 value 
in the distribution mapping method compared with 
the regression method. This shows that the most 
appropriate corrected rainfall value is produced us-
ing the distribution mapping method.

CHIRPS data obtained using the distribution 
mapping method show better results than GPM 
data. This can be seen from the graphic display 
of both the PDF and CDF from CHIRPS, which 
almost coincide with the observation data, where-
as in GPM, both the PDF and CDF graphs show 
deviations between the observation and satellite 
data (Figures 5 and 6). This shows that CHIRPS 
data are more in agreement with observational 
data than with GPM data.
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Figure 6. Comparison of (a) PDF and (b) CDF curves and (c) Bias correction between observed 
rainfall data and CHIRPS satellite rainfall data using the distribution mapping method

Figure 5. Comparison of (a) PDF and (b) CDF curves and (c) Bias correction between 
observed rain data and GPM satellite rain data using the distribution mapping method

Corrected satellite rainfall data produced 
from the GPM and CHIRPS data show different 
results. Based on the bias correction results, the 
corrected satellite data in CHIRPS show signifi-
cant changes compared with the uncorrected sat-
ellite data. The corrected satellite data in CHIRPS 

almost coincide with the observed rainfall data 
(Figure 8). This means that the corrections made 
to the initial satellite data were successful be-
cause the resulting corrected values were close 
to the observed values. This indicates that the 
correction factor makes the predicted value have 
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the same rainfall distribution pattern as the ob-
served rainfall. Different things are shown by the 
corrected satellite data on GPM. The corrected 
GPM satellite rainfall data are not much differ-
ent from the satellite data before correction. Cor-
rected satellite rain data on GPM still has a long 
range compared with observed rain data (Figure 
7). This means that the corrections made to the 
initial satellite data were unsuccessful because 
the resulting corrected values were still far from 
the observed values. Supposedly, the correction 
factor causes the predicted value to have the same 
rainfall distribution pattern as the observed rain-
fall [Partarini et al., 2021]. It can be concluded 
that the corrected CHIRPS satellite data shows 
better results than the GPM corrected satellite 

data because it produces patterns that are in ac-
cordance with observed rainfall in describing the 
influence of climate change. Therefore, corrected 
CHIRPS satellite data will be used for the water 
availability prediction stage. Based on the accu-
racy between the two bias correction methods, the 
distribution mapping method produces satellite 
rainfall data that is more similar than the data cor-
rected by the regression method. This shows that 
the most suitable rainfall value is generated from 
the distribution mapping corrected satellite data.

Validation of the rainfall data 

Validation is used to evaluate the bias correc-
tion method. In this study, validation was performed 

Figure 7. Comparison of the bias correction of GPM satellite data

Figure 8. Comparison of the bias correction of CHIRPS satellite data
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using four statistical methods in the form of objec-
tive functions, including root mean squared error, 
Nash–Sutcliffe efficiency, correlation coefficient I, 
and relative error. For data with corrections, val-
idation is generally performed using data outside 
the data period used in the calibration stage [Indar-
to, 2012]. Therefore, validation of satellite rainfall 
data (GPM and CHIRPS) was carried out over a 
period of 5 years, namely 2018–2022. The suita-
bility of the validatiIn is based on the RMSE, NSE, 
KR, and R values obtained (Tables 4 and 5).

By paying attention to the results of the four 
validation methods, it can be determined that 
the most appropriate correction method for both 
GPM and CHIRPS satellite rainfall data is the 
same, namely the distribution mapping method. 
This is based on both satellite data. The RMSE 
value for the distribution mapping method is the 
lowest and the relative error is also the lowest in-
dicating that the results are accurate. This is sup-
ported by the highest NSE value, and the corre-
lation coefficient is strong. The resulting values 
for RMSE, NSE, R, and KR for the GPM satellite 
are 120.76, 0.348, 0.856, and 29.985, respective-
ly, while for the CHIRPS satellites it is 105.21, 
0.504, 0.80, and 26,058, respectively (see Tables 
4 and 5). Differences in validation results can be 
influenced by the length of the calibration and 
validation data used [Partarini et al., 2021].

Low RMSE and KR values provide better 
results because they indicate a low error rate 
[Amelia et al, 2021]. The smaller the RMSE val-
ue, the smaller the difference between the two, 
so the results of the satellite estimated values 

will be more accurate [Jarwanti et al., 2021]. 
Meanwhile, NSE and R values that are close to 
1 are better because they show a high level of 
reliability between the observed and modeled 
data. NSE and R have clear parameter quanti-
fication to show the level of accuracy, which is 
better the closer it is to 1 [Jarwanti et al., 2021]. 
Therefore, it can be concluded that the distribu-
tion mapping method produces better validation 
values than other methods. However, when com-
paring GPM and CHIRPS, the analysis results 
show that CHIRPS satellite data are better than 
GPM satellite data. This can be seen from the 
RMSE, NSE, and R values. The relative error 
value in CHIRPS rain data is relatively lower 
than that in GPMdata.

Projection of the rainfall

The projected rainfall is used to predict water 
availability in the coming year. In this study, pro-
jected rainfall was conducted to obtain monthly 
rainfall data from 2023 to 2030. Using coupled 
climate modeling MIROC6 and MRI-ESM2-0 in 
the CMIP-6 framework, projected rainfall data 
can be obtained as shown in Table 6.

MIROC6 and MRI-ESM2.0 are used in the 
CMIP-6 framework because they have good accu-
racy in projecting rain data. MIROC6 was initial-
ized by assimilating observed ocean temperature 
and salinity anomalies as well as sea ice concen-
tration so that it can predict surface temperatures 
better than MIROC5 and the annual average sea 
surface temperature in the North Atlantic, North 

Table 4. Results of bias correction validation of GPM satellite rain data for year 2018–2022

Bias correction methods
Validation methods

RMSE R NSE KR

Observation data Non corrected 120.35 0.856 0.352 29.691

Regression methods
Linear 145.43 0.856 0.054 32.175

Polynomial 149.67 0.856 0.312 36.390

Distribution mapping method PDF 120.76 0.856 0.348 29.985

Table 5. Results of bias correction validation of CHIRPS satellite rain data for year 2018–2022

Bias correction methods
Validation methods

RMSE R NSE KR

Observeation data Non corrected 129.41 0.80 0.251 −38.36

Regression methods
Linear 138.09 0.80 0.147 −50.82

Polynomial 109.35 0.85 0.466 −39.01

Distribution mapping method PDF 105.21 0.80 0.504 26.058
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Pacific, and Eastern tropical Pacific [Kataoka et 
al., 2020]. Similar to MRI-ESM2.0, [Yukimoto 
et al., 2019] stated that the new Meteorological 
Research Institute Earth System Model version 
2.0 (MRI-ESM2.0) has many improvements for 
very accurate climate reproducibility. The model 
is capable of providing a realistic reproduction of 
climate means and interannual variability. Fur-
thermore, [Kawai et al., 2019] stated that MRI-
ESM2.0 can provide significant improvements in 
cloud representation. Therefore, the resulting pro-
jections are more accurate. Rainfall projections 
(Table 6) were used to predict water availability 
in the coming year.

Water availability predictions 
for conservation strategy

The results of the observational and satel-
lite rain projections exhibit an identical trend. 
This certainly influences the predictions of water 
availability in the coming period. Calculation of 
water availability predictions is performed using 
the Weibull probability equation by taking a dis-
charge of 80% or an andaman discharge exceeded 

based on the half-monthly average discharge 
modeled using the F.J. method. Mock (see meth-
ods). Radhika et al. [2017] stated that the low 
level of discharge measurement data has resulted 
in doubts about the quality of river flow discharge 
data. Therefore, studies of river flow discharge at 
water estimation posts must consider rainfall and 
climate data to produce figures that are not too 
high [Radhika et al., 2017]. Based on prediction 
results through the mainstay debit (Q80), in the 
wet months, namely January–May and Novem-
ber–December, monthly water availability rang-
es from 16.01 to 45.28 m3/s, whereas in the dry 
months, namely June–October, monthly water 
availability ranges from 5.70 to 25.87 m3/s (Table 
7). Monthly water availability predictions were 
then used to predict annual water availability 
(Figure 9). Based on annual data processing, the 
graph shows that water availability for the com-
ing period (2023–2030) will generally show an 
increase. The decrease in the graph shows a de-
crease in water availability that is not too signifi-
cant, around 1–2 m3/s. The most drastic increase 
will occur in 2028–2029, when water availability 
will increase by approximately 10 m3/s.

 Table 6. Rainfall projection for the study area for 2023–2030
Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

2023 21.50 27.81 10.33 17.87 12.26 2.42 0.54 0.53 0.32 9.16 21.47 3.94

2024 20.92 22.08 19.87 14.65 7.14 0.33 3.25 3.15 7.81 19.90 16.82 5.93

2025 13.27 23.50 10.98 8.78 6.00 3.51 6.57 11.18 13.45 22.27 12.57 12.11

2026 12.84 19.60 9.73 13.89 6.86 3.81 7.29 9.59 6.05 10.42 21.70 13.59

2027 14.97 19.03 9.19 4.15 6.96 5.36 5.59 7.64 11.95 12.69 8.96 18.92

2028 20.41 17.79 9.62 19.31 4.71 2.03 1.02 0.84 2.33 6.98 15.30 11.78

2029 15.32 5.90 17.06 11.83 17.86 2.37 8.67 13.27 21.09 27.35 17.25 26.20

2030 9.26 19.80 12.46 12.64 7.74 12.18 5.04 16.67 21.96 20.95 16.80 23.34

Table 7. Prediction of monthly water availability based on yearly rainfall predictions 2023–2030

Year
2010–
2030 
(%)

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

I II I II I II I II I II I II I II I II I II I II I II I II

2023 63.6 25.0 30.4 33.7 31.4 29.1 25.4 24.3 22.4 17.9 10.1 7.7 5.6 4.6 4.3 2.3 1.7 4.0 4.4 6.3 14.8 21.0 23.8 24.9 21.3

2024 68.2 22.9 29.0 32.8 30.8 28.2 22.8 19.8 21.8 17.7 8.4 6.3 5.6 3.9 3.8 2.2 1.6 3.9 3.4 5.9 12.0 20.5 23.3 24.1 21.2

2025 72.7 20.4 28.2 31.5 29.3 26.0 19.8 17.8 21.1 17.4 8.3 5.6 5.3 3.5 2.7 1.7 1.6 3.0 3.3 4.8 11.9 20.4 22.8 23.9 20.6

2026 77.3 18.3 26.8 29.7 27.9 25.3 19.6 16.6 19.8 16.6 7.9 5.5 4.6 2.4 2.3 1.6 1.5 1.4 3.1 3.1 11.1 20.1 17.9 22.6 16.1

2027 81.8 16.3 26.1 27.1 27.8 23.9 17.2 16.3 18.8 16.1 5.9 5.1 2.8 2.2 2.1 1.4 1.2 1.0 2.4 1.9 7.4 18.1 15.5 21.1 13.2

2028 86.4 13.8 26.1 26.3 25.4 20.2 14.2 15.3 15.8 13.7 5.9 4.7 2.6 1.9 1.0 0.5 0.6 0.7 2.0 1.7 5.2 17.1 15.3 18.4 13.1

2029 90.9 13.2 25.2 23.9 23.2 13.7 13.8 12.6 15.1 6.9 5.6 4.6 2.5 1.8 1.0 0.5 0.2 0.1 1.0 1.7 3.7 16.3 11.0 13.4 12.2

2030 95.5 11.9 21.5 10.8 16.2 12.6 12.7 7.0 8.9 6.8 4.8 3.6 2.2 1.0 1.0 0.4 0.2 0.1 0.1 1.5 2.2 10.9 7.8 10.6 11.8

Q 
(m3/s) 80 19.3 20.5 28.7 25.8 45.2 45.3 34.8 16.0 29.9 11.2 7.7 5.7 10.8 6.2 25.9 6.5 8.2 35.2 8.3 15.3 18.1 23.7 16.6 27.6
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The increase in water availability in 2028–
2029 for about 10 m3/s describes that conservation 
strategies are needed to anticipate excess water in 
cultivated land. Methods that can be conducted 
to control water as needed for plants include re-
ducing water loss through retention ponds in cul-
tivated land; and improving water management 
techniques such as regulating the drainage system.

CONCLUSIONS

The analysis demonstrated that CHIRPS 
was outperform GPM rainfall data. Distribu-
tion Mapping method showed better results for 
bias correction compared to Regression method, 
and it further enhances the accuracy of satellite 
rainfall data. The differences observed in valida-
tion results may be attributed to the duration of 
calibration and validation datasets. Predictions of 
rainfall using satellite data offer valuable inputs 
for water availability forecasting for agricultural 
needs and serve as a preliminary framework for 
conservation strategy in response to water deficits 
or surpluses in agriculture. A significant advan-
tage of this satellite-based analysis is its ability 
to determine surface water potential across any 
location in Indonesia by calculating the product 
of the catchment area’s size and runoff height.
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