
282

INTRODUCTION

Tropical agriculture is an agricultural system 
in tropical areas, namely areas located around the 
equator. Tropical ecosystems are known for their 
hot and humid climate throughout the year, with 
average temperatures that tend to remain constant. 
These conditions create an ideal environment for 
various agricultural and horticultural crops (Ageg-
nehu et al., 2021). However, the area is subject to 
force by high rainfall intensity during the rainy 
season and less rainfall during the dry season. 
Moreover, the length of the seasons and rainfall 
intensity vary from one year to another. The El 
Nino and La Nina oscillations influence this con-
dition. Therefore, sustainable agricultural prac-
tices in these tropical regions are more complex 

due to the effect of climate change, the decrease 
in soil fertility, and the value of farm products that 
are still not favourable finally, the social and eco-
nomic background of the majority of small farm-
ers add the complexity of this problem. 

Singh et al. (2020) stated that tropical ag-
riculture faces considerable challenges. Some 
are climate change, land degradation, and pest 
and disease problems. Changes in rainfall pat-
terns and temperatures can affect crop yields and 
land productivity. Tropical agriculture has great 
potential to support global food security and lo-
cal economies. Properly managed tropical areas 
can become the world’s food basket while main-
taining ecosystem balance and biodiversity. The 
land quality index (LQI) can also be viewed as 
one of the components of the agroecosystem 
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sustainability hierarchy. When management ob-
jectives focus on sustainability and not on crop 
yields (Taghizadeh et al., 2020; Triantafyllidis 
et al., 2018). In addition, Mandal et al. (2021) 
stated that various factors, such as management 
practices, soil characteristics and climate, influ-
ence land quality. Several studies also state that 
soil quality, climate and management influence 
land quality (De Laurentiis et al., 2019; Lenka et 
al., 2022; Werner et al., 2020resulting in self-re-
inforcing feedback to the global climate system. 
We investigated additional consequences of SOM 
reduction for soil water holding capacity (WHC). 
Consequently, a holistic data set of land health 
indicators must include soil quality, topography, 
terrain conditions, and climate.

Jember Regency, located in East Java Prov-
ince, Indonesia, is known as one of the regions 
with a very productive agricultural sector. With a 
supportive tropical climate, Jember has extensive 
and fertile farming land for crops such as rice, cof-
fee, cocoa, tobacco, and vegetables. Agricultural 
management in Jember is dominated by intensive 
management (Alfarisy et al., 2020). Excessive 
use of chemical fertilisers produces residues, ac-
cumulates over decades, and causes soil acidity, 
reducing crop production.

This research aimed to evaluate the land qual-
ity in Jember Regency by analysing 16 different 
land parameters. The central hypothesis posits 
that assessing land quality through 105 soil sam-
ples using a specific minimal dataset will yield 
sensitive indicators capable of accurately describ-
ing land quality in tropical agroecosystems. This 
study represents the initial effort to quantify land 
quality using an index that integrates soil condi-
tions, climate, topography, and land characteris-
tics within tropical agroecosystems, with a strong 
focus on agro-environmental sustainability.

MATERIALS AND METHODS

Research study

The study area covers the Jember Regency 
(3,293.34 km²) and spans an altitude range from 
0 to 3.330 masl (Fig. 1). 

Geographically, it is span between 
113°15’46’’ – 114°2’34’’ East Longitude and 
7°58’7’’ – 8°33’45’’ South Latitude. Jember is 
forced by a tropical climate with distinct hot and 
rainy seasons, an average temperature of 28.1 °C, 
and an average annual precipitation of 2.766 mm. 

Figure 1. Land use and land cover maps of the study area



284

Ecological Engineering & Environmental Technology 2024, 25(10), 282–296

Jember significantly contributes to the national 
food supply, boasting Indonesia’s largest harvest 
area, productivity, and rice production (BPS-Sta-
tistics Indonesia, 2021).

Input data

The data utilised in this study encompassed a 
digital map detailing the tropical agroecosystem, 
along with maps of soil types, slopes, flood oc-
currences, temperature, rainfall, surface rocks, ir-
rigation infrastructure, erosion hazards, and soil 
quality. Table 1 provides details on the acquisi-
tion and sources of this data. The tools employed 
in the research included GIS software, Excel, 
SPSS, and laboratory analysis equipment.

Procedures

The processing procedure of mapping the land 
quality index involves the following steps: (1) cre-
ating land use and land cover maps, (2) conducting 
field surveys and laboratory analyses, (3) scoring 
land quality parameters, (4) assessing land quality 
using principal component analysis (PCA), and (5) 
mapping the land quality index.

Land use land cover maps

The land use land cover (LULC) map is in-
terpreted from Sentinel images (Figure 1). Senti-
nel-2 images covering the areas of interest from 
2020 to 2021 were sourced from www.usgs.gov. 
The data included Sentinel-2 MSI (01-01-2020) 
and level-2A S.R. (31-09-2021), utilising all 
bands. The images were processed using Google 

Earth Engine (GEE) (Mandala et al., 2024) and 
QGIS (Indarto et al., 2020).

In GEE, pre-processing tasks involved filtering 
for minimal cloud cover, mosaicking, composit-
ing, image enhancement, and clipping. The image 
composites included bands 2, 3, 4, 5, 6, 7, 8, 8A, 
11, and 12 (green, blue, red, red edge 1-4, SWIR-2, 
NIR). The final composite image was then down-
loaded and exported to QGIS. In QGIS, supervised 
classification was performed using the classifica-
tion tools, employing a support vector machine 
(SVM) algorithm (Zhang et al., 2018; Mandanici 
and Bitelli, 2016; Huang et al., 2016)the recently 
launched Sentinel-2A satellite provides a new op-
portunity for moderate spatial resolution burned 
area mapping. This study examines the perfor-
mance of the Sentinel-2A multi spectral instrument 
(MSI. Approximately 140 training areas were used 
to facilitate the supervised classification process. 
The result was a land cover map of the area of in-
terest clipped to the administrative boundaries.

Field surveys and laboratory analysis

Land attributes include topography, terrain, 
climate, and soil quality. Land data was collected 
on 35 locations on 100×100 m plots and divided 
into five sections (Figure 2). One hundred five 
composite soil samples were taken to a 0-30 cm 
depth. The soil sample was air-dried, ground, and 
sieved through a 2.00 mm sieve and used to anal-
yse soil properties such as soil pH, K, P, CEC, Tx, 
B.D., and SOC. Land attributes measured in the 
field include E.D., D, S.F., and I (SNI 1964:2008 
2008; Eviati and Sulaeman 2009). Other land at-
tributes such as E.H., F.H., CT, and T were anal-
ysed from secondary data. Table 2 shows the land 

Table 1. Research data
No Input data Data source

1 Land use map Sentinel-2A. satellite image processing and classification 
https://earthexplorer.usgs.gov/

2 Soil type map Agricultural Research and Development Agency of Indonesia
https://www.litbang.pertanian.go.id/produk/68/

3 Slope map Digital elevation model (DEM) Processing and classification from the National 
Geospatial Agency website. https://tanahair.indonesia.go.id/demnas

4 Flood hazard from 2016–2020 Disaster Management Agency

5 Rainfall from 1999–2020 77 climate stations in Jember Regency

6 Temperature Water resources management technical implementation unit 

7 Irigation infrastructure condition Field survey

8 Surface rock Field survey

9 Erosion hazard Data processing using the USLE method

10 Soil properties Field measurements and laboratory analysis



285

Ecological Engineering & Environmental Technology 2024, 25(10), 282–296

Table 2. Land and soil attribute analysis methods
Parameter Abbreviation Unit Method

pH p The soil-water suspension (1:5)

Available of phosphorus P ppm Olsen and Bray

Available of pottasium K cmol kg-1 NH4OAc extract

Cation exchange capacity CEC cmol kg-1 NH4OAc extract

Texture Tx Pippet

Bulk density B.D. g cm-3 Gravimetry

Soil organic carbon SOC % Walkey and Black

Soil depth S.D. cm Field measurement

Drainage D Field measurement

Surface rock S.R. % Field measurement

Irrigation infrastructure I Field measurement

Erosion hazard E.H. t ha-1 yr-1 Usle

Flood hazard F.H. event Modified topographic index

Climate type CT Inverse distance weighting (IDW)

Annual temperature T °C Inverse distance weighting (IDW)

Figure 2. Sampling location
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and soil and the analytical methods used (Eviati 
and Sulaeman, 2009; Bieganowski and Ryżak, 
2011); USDA, 2011; Ritung et al., 2011; Wis-
chmeier and Smith, 1987; BNPB, 2016there are 
four of science principles in Qur’an. Among of 
them are: istikhlaf, equilibrium, and taskhir prin-
ciples. The concept of science and technology in 
Qur’an is also applicable and relevant to be appli-
cated in learning process at Islamic education in-
stitution. But, there is still a problem in it, i.e. the 
problem of educational dichotomy. The problem 
can be solved by integration project in education. 
It can be elaborated in three issues: 1).

Scoring of land quality parameter

Land attributes that have been analysed were 
then scored. Scoring is a decision-making tech-
nique that involves various factors by giving a 

score or value to each factor. The weighting of the 
land quality parameter is based on the criteria of 
Ritung et al. (2011), which can be seen in Table 3. 

Land quality assessment using 
principal component analysis 

The PCA method has been employed for qual-
ity assessment in various regions, i.e., Erbil Prov-
ince (Maulood et al., 2020), India (Vasu et al., 2016; 
Edrisi et al., 2019), Punjab (Chandel et al., 2018)a 
study was conducted to address the selection of most 
appropriate soil quality indicators and to know the 
status of soil quality in the area under different land 
uses. Principal component analysis (PCA, Citarum 
(Mulyono et al., 2019). PCA is used to identify mini-
mum data sets (MDS) that accurately represent land 
quality information. The PCA analysis procedure 
typically involves selecting the MDS, normalising 

Table 3. Scoring of land quality index parameters for tropical agroecosystem
No Land parameters Unit Interpretation Level Score

A. Soil quality

1 Ph Severely acid/alkaline-almost no plants can grow in this 
environment 4.0–4.5; 8.0–8.5 1

Strongly acid/alkaline - only the most acid/alkaline 
tolerant plants can grow in this ph range and then only 
if organic matter levels are high enough to mitigate high 
levels of extractable possible B and other oxyanion Al 
and other metals toxicities

4.5–5.1; 7.5–8.0 2

Moderately acid/alkaline – growth of acid/alkaline 
intolerant plants is affected depending on levels of 
extractable Al and other metals. Possible P and metal 
deficiencies

5.1–5.6; 7.0–7.6 3

Slightly acid/alkaline – optimum for many plant species, 
possible deficiencies of available P and some metals 
(for example, Zn)

5.6–6.0; 6.5–7.0 4

Near neutral – optimum for many plant species expect 
those that prefer acid soils 6.0–6.5 5

2 Available P ppm Very low 5–10 1

Low 42278 2

Moderate 15–25 3

High 25–35 4

Very high > 35 5

3 Available K cmol kg-1 Very low 0.05–1 1

Low 0.1–0.3 2

Moderate 0.3–0.6 3

High 0.6–1 4

Very high > 1 5

4 CEC cmol kg-1 Very low 2–8 1

Low 8–16 2

Moderate 16–25 3

High 25–40 4

Very high > 40 5
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5 SOC % Very low 0.5–1 1

Low 1–2 2

Moderate 2–4 3

High 4–5 4

Very high > 5 5

6 Texture Very rough, does not form balls and rolls, and does not 
attached.

Sandy soils (coarse 
soil) 0

A bit rough, forms a rather strong ball but crumbles 
easily, too a biy sticky

Loamy soils 
(moderately coarse 

texture)SL
1

Heavy taste, forms a perfect ball, very hard when dry, 
wet is very sticky.

Loamy soils (medium 
teture) 2

Very rough, forms balls that are easily crushed, and 
somewhat attached.

Loamy soils (medium 
texture) 3

The slippery feel is a bit rough, forming a ball when dry 
is difficult twisted, easy to roll, and sticks.

Clayey soils (fine 
texture) CS, Si, lsi, csi 4

Clear slippery feel, forms a firm ball, rolls shiny, sticks
Clayey soils (fine 

texture) C, lcsi, sic, 
LCS

5

7 Soil depth cm Very shallow < 30 1

Shallow 30–40 2

Moderately 40–80 3

Deep 60–80 4

Very deep > 80 5

8 Bulk density g cm-3 Gravel > 1.6 (gravel) 1

Sand 1.4–1.6 (sand) 2

Organic silt 1.2–1.4 (organic silt) 3

Anorganic clay 1.1–1.2 (anorganic 
clay) 4

Organic clay 0.8–1.1 (organic clay) 5

9 Drainage
Soil with very low hydraulic conductivity and very 
low water holding capacity, permanently wet soil and 
flooded for quite a long time up to the surface.

Very poorly drained; 
Excessively drained 0

The soil has low hydraulic conductivity and low to very 
low water holding capacity, soil wet for a long time long 
enough to reach the surface.

Poorly drained 1

The soil has conductivity rather low hydraulics and 
low to very low water holding capacity, soil wet to the 
surface.

Somewhat drained 2

Soil has moderate to slightly low hydraulic conductivity 
and low water holding capacity, wet soil close to the 
surface. Such soil is suitable for various crops.

Moderately well 
drained 3

The soil has moderate hydraulic conductivity and 
strength hold moderate water, moist, but not wet 
enough near the surface. Land Thus it is suitable for 
various plants

Somewhat 
excessively drained 4

Soil has high hydraulic conductivity up to very high and 
low air holding capacity. Such land is not suitable for 
plants without irrigation

Well–drained 5

B. Topography

10 Slope % Very step >40 0

Step 25–40 1

Hilly 15–25 2

Rolling 8–15 3

Undulating 2–8 4

Flat <2 5

Cont. Table 3. 
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C. Terrain

11 Surface rock % Huge > 60 0

Much 30–60 1

Somewhat much 15–30 2

Moderate 8–15 3

A little 2–8 4

None – a little < 2 5

12
Irrigation 

infrastructure 
condition

Water 
loss (%) There are no irrigation structures No irrigation 

infrastructure 0

There are irrigation buildings with a level of damage 
weight, supply water < 25% > 75 1

There are irrigation buildings with damage moderate-
somewhat weight, supply water 25–50% 50–75 2

There are irrigation buildings with minor damage, water 
supply 50–75% 25–50 3

There are irrigation buildings with water supply 
interruptions of 75–95% 5–25 4

There is, round the clock water supply < 5 5

13 Flood hazard in 
5 years Event Very vulnerable 5 0

Prone 4 1

Somewhat vulnerable 3 2

Light 2 3

Very light 1 4

Without flooding 0 5

14 Erosion hazard t·ha-1·yr-1 Very light <15 1

Light 15–60 2

Moderate 60–180 3

Heavy 180–300 4

Very heavy > 300 5

D. Climate

15 Annual 
temperature °C Bad for plant growth < 19 1

Less for plant growth 19–22 2

Sufficient for plant growth 22–25 3

Good for plant growth 25–28 4

Very good for plant growth > 28 5

16
Climate type 

based on 
oldeman

Wet months that last less than 3 months E 1

3 to 4 consecutive wet months D3, D4 2

Consecutive wet months between 5 and 6 months C3, C4, D1, D2 3

Consecutive wet months for more than 9 months C1, C2, A1, A2 4

Consecutive wet months between 7 and 9 months B1, B2 5

the data, and integrating the indicator scores into the 
land quality index. PCA helps reduce data redun-
dancy by selecting land indicators with eigenvalues 
greater than 1 for the MDS. Data normalisation is 
performed using a linear scoring function. In this 
study, the normalisation follows the “more is better” 

approach, where each observation is divided by the 
highest observation score, resulting in the highest 
value receiving a score of 1 and all others receiv-
ing scores less than 1. Each MDS is then assigned a 
weighting factor (Wi) by dividing the variance per-
centage by the total variance percentage.

Cont. Table 3. 
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Land quality index mapping

LQI mapping was conducted using GIS soft-
ware through the following steps:
1.	The values and weights of the land indicators 

from the MDS were added to the SHP file of 
the sampling locations.

2.	The values and weights of the land indicators 
from the MDS were added to the SHP file of the 
sampling locations. Interpolation was performed 
on each MDS indicator using the Inverse Distance 
Weighted (IDW) method. This technique calcu-
lates cell values at unsampled locations through 
a linearly weighted combination of sample points 
(Hadi and Tombul, 2018; Zhang et al., 2022)

3.	The interpolation results were then processed 
using a raster calculator, summing the scores 
of each indicator multiplied by their respective 
weights. The formula for determining the land 
quality index (LQI) is given by:

	 LQI = ∑ 𝑊𝑊𝑊𝑊 ×  𝑆𝑆𝑆𝑆𝑛𝑛
𝑖𝑖 = 1   (1) 

 
LQI = 0.30 PC1 + 0.20 PC2 + 0.17 PC3 + 

+ 0.13 PC4 + 0.11 PC5 + 0.09 PC6 
(2) 

 

	 (1)
where:	Wi – weighting factor; Si – the indicator 

scores for variable i. 
4.	The raster calculator results were then classi-

fied using the reclassify tool in QGIS to deter-
mine the land quality classes (Table 4) based 
on Sari et al. (2022).

RESULT AND DISCUSSION

Accuracy assessment

The accuracy assessment findings (Table 5) 
demonstrate encouraging outcomes for the pro-
duced map. The OA achieved was 93.62%, while 
the K.A. accuracy was 90.70%. P.A. and U.A. 
values ranged between 84 to 100. The lowest 
accuracy assessment value is observed in S.H. 
In contrast, the highest is in O.W. S.H., which 

exhibits lower accuracy due to its real-world mix-
ing with other classes in the field, making differ-
entiation challenging. 

Land use and land cover classification results 

The land cover map (Fig. 3) generated from 
the classification processes illustrates eight dis-
tinct classes: built-up (B.U.), plantation (P), 
paddy field (P.F.), agricultural land (A.L.), for-
est (F), bare soil (B.S.), open water (O.P.), and 
wetland. Tropical agroecosystems (P.F. and 
A.L.) constitute over 40% of the total area in the 
Jember Regency, while vegetation (V.G.) covers 
more than 40% of the entire region. A detailed 
breakdown of the land cover classification re-
sults can be found in Table 6.

Results of land parameter analysis

In Figure 4 shown the result of land parame-
ter analysis. Based on the study’s results, the land 
quality condition in Jember Regency is known. 
Each land parameter has a different value at each 
location except for the Al parameters, which can 
be exchanged. Al ex is the aluminium level in the 
soil; Al in exchangeable form is generally found 
in acidic soils with a pH < 5.0. This aluminium 
is very active because it is in the form of Al3+, 
which is detrimental by poisoning plants or bind-
ing phosphorus. The average pH of the study site 
was 7.1, which is included in the neutral category.

Principal component analysis result

Table 7 presents the PCA results for evaluat-
ing LQI. Six principal components (P.C.s) with 
eigenvalues greater than 1, derived from vari-
ous land attributes, collectively explain 77.5% of 
the variance. These P.C.s represent six key land 

Table 4. Land quality classes
No Score Class of LQI Interpretation

1 0.86–1.00 Highly suitable (s1) The land has no significant or fundamental limitations for ongoing use or 
minor limiting factors that do not substantially reduce its productivity.

2 0.76–0.85 Moderately high (s2) The land has limiting factors that affect productivity and require additional 
inputs. However, these obstacles are generally manageable by farmers.

3 0.66–0.75 Marginal suitable (s3)

The land faces significant limiting factors that impact its productivity, 
particularly in S3. Addressing these limitations necessitates substantial 
capital investment, making it difficult for farmers to overcome them 
independently. Therefore, government or private sector intervention and 
assistance are necessary to mitigate these challenges.

4 0.41–0.65 Unsuitable (N) Land classified as unsuitable (N) exhibits extremely severe limiting factors 
or presents challenges that are difficult to overcome.
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Figure 3. Land use land cover in the study area

Figure 4. Distribution map of (a) S, (b) S.R., (c) TBE, (d) F.H., (e) II, (f) T, (g) C.T., 
(h) E.D., (i) Tx, (j) B.D., (k) D, (l) pH, (m) CEC, (n) P, (o) K, (p) Al-ex, (q) SOC.
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Table 6. Land use land cover class of the AOI
No Classes km2 %

1 Built-up 205.4 6.2

2 Plantation 231.7 7.0

3 Bare soil 37.4 1.1

4 Paddy field 1071.4 32.5

5 Open water 13.6 0.4

6 Forest 1,462.5 44.4

7 Agricultural land 257.1 7.8

8 Wet land 8.0 0.2

Total 3,293.0 100.0

Table 7. The principal component analysis result

Land parameter
Component

PC1 PC2 PC3 PC4 PC5 PC6

pH 0.47 -0.29 0.23 -0.12 0.16 0.57*

SOC 0.76* 0.09 0.04 0.37 0.07 0.03

P 0.49 -0.08 0.54* -0.01 0.34 0.19

K 0.65 -0.14 0.08 0.46* -0.20 -0.03

CEC 0.65 0.55 -0.18 -0.07 -0.10 0.20

Tx 0.49 0.40 -0.01 -0.41 -0.44 -0.04

ED 0.09 0.80* 0.10 -0.06 -0.04 -0.05

BD 0.70 0.01 0.06 0.41 -0.02 -0.31

D -0.28 0.41 0.45 0.41 0.21 -0.19

S 0.10 0.38 -0.74 0.13 -0.11 0.09

RS -0.20 -0.25 -0.70 0.14 0.37 0.21

FH -0.46 0.21 0.37 0.12 -0.41 0.57

I 0.35 -0.15 0.11 -0.82 0.01 -0.19

EH -0.08 0.49 0.19 -0.21 0.53* -0.07

CT 0.67 0.28 -0.27 -0.15 0.35 0.17

T -0.67 0.59 -0.02 0.08 0.15 0.11

Eigen values 0.30 0.19 0.17 0.13 0.10 0.08

% of Variance 25.32 14.81 12.08 11.18 7.59 6.45

Cumulative % 25.32 40.13 52.22 63.41 71.00 77.46

Note: extraction method – principal component analysis.

Table 5. Land use land cover accuracy assessment

Assessment
Classes

BU AL BS PF OW VG SH WL OA KA

UA (%) 96 96 97 96 90 91 86 87
92.27 90.70

PA (%) 100 99 82 91 94 93 84 82

Note: U.A. – user’s accuracy, P.A. – producer’s accuracy, O.A. – overall accuracy, K.A. – kappa accuracy.

parameters: SOC, SD, P, K, E.H., and pH. The 
weighting factor for each P.C. is determined by di-
viding the percentage of variance it explains by the 
total variance. The trend of weighting factors for 
the MDS follows PC1 (0.30) > PC2 (0.20) > PC3 

(0.17) > PC4 (0.13) > PC5 (0.11) > PC6 (0.09). 
The LQI is calculated by multiplying each P.C. 
score by its respective weighting factor derived 
from the PCA, as shown in Equation 2:
	 LQI = 0.30 PC1 + 0.20 PC2 + 0.17 PC3 
	 + 0.13 PC4 + 0.11 PC5 + 0.09 PC6	 (2)

Land quality plays a pivotal role in agricultural 
production, as demonstrated in this study through 
six indicators: SO, E.D., P, K, E.H., and pH. Each 
of these parameters serves a vital function in sup-
porting crop growth. SOC, in particular, exerts a 
significant influence on the physical, chemical, and 
biological properties of soil. Previous research by 
Trifan (2018) highlighted that potassium availabil-
ity is the primary factor explaining most observed 
variability in soil health. Moreover, studies by 
Vasu et al. (2016) and Raiesi (2017) with the lat-
ter being inherently linked to pedogenic processes. 
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Two different SQIs were estimated for soil surface 
(0–15 cm) have underscored the accurate descrip-
tion of soil quality through properties such as elec-
trical conductivity (EC), pH, and SOC. SOC’s role 
extends to facilitating water movement, enhancing 
water availability and retention, improving soil 
aggregate stability, reducing erosion, and supply-
ing plant nutrients (Werner et al., 2020; Murphy, 
2015). Carbon stored in the soil also contributes to 
various functions critical for biomass production, 
water storage, filtration, biodiversity maintenance, 
and other ecosystem services (Yang et al., 2015) 
Hebei Province, China. The dominant cropping 
systems are winter wheat–summer corn rotation. 
There were totally sixteen treatments applied to 
both wheat and corn seasons: inorganic fertilizers 
as main plots and corn stalks as subplots and the 
main plots and subplots all have four levels. The 
results revealed: after 22 years, mixed application 
of inorganic fertilizers and crop residuals, the SOC 
and crop yields substantially increased. Higher 
fertilizer application rates resulted in greater crop 
yields improvement. In 2002–2003, wheat and 
corn for the highest fertilizer inputs had the highest 
yield level, 6400 kg·ha−1 and 8600 kg·ha−1, respec-
tively. However, the SOC decreased as the exces-
sive inorganic fertilizer input and increased with 
the rising application of corn stalks. The treatment 
of the second-highest inorganic fertilizer and the 
highest corn stalks had the highest SOC concentra-
tion (8.64 g·C·kg−1).

E.D. is how plant roots can still enter the soil. 
The more profound the adequate soil depth, the 
wider the root area and plant root uptake (Han et 
al., 2021)and determine the relationship between 
FRP and net primary production (NPP. Soil depth 
also affects root dispersion, water-holding capac-
ity, and the ability to provide plant nutrients (Cle-
mente et al., 2019; Sulieman et al., 2018). Palawija 
plants will grow well if the effective soil depth is 
over 50 cm (Ritung et al., 2011).

Phosphorus in the study site was in the 
very high category. The high available P is in-
fluenced by continuous and excessive P input, 
so there is still a lot of P left in the field. Na-
gumo et al. (2013) stated that in rice fields in 
Japan, there was an accumulation of available P 
for two decades, which could damage the envi-
ronment. The accumulated P content is included 
in the high category. The results of the nutrient 
balance analysis showed that Japanese farmers 
only needed to add 20 kg/ha/year of phosphorus. 

Based on the interviews, farmers use excessive P 
fertiliser in the 200–250 kg/ha range. 

Potassium is absorbed by plants in the form 
of K+ ions. K element has a valence of one, so 
the K element is easily leached, which causes 
the availability of K nutrients in the soil to be 
low (Banerjee et al., 2018). In addition, the type 
of fertiliser used also affects the leaching of K. 
Using single fertilisers resulted in more nutri-
ents being leached than using compound fertil-
isers (Senyigit et al., 2011). One effort that can 
be made to improve the efficiency of K fertilisa-
tion is the addition of organic matter. Applying 
organic matter increased K availability and re-
duced the amount of K leaching.

The E.H. level of land is also a measure of 
land quality. The E.H. level is influenced by 
plant and their management, erosion or rainfall, 
and soil and slope factors (Taslim et al., 2019). 
Erosion is one of the most significant causes of 
land degradation. Erosion causes a reduction in 
the soil layer and decreases soil fertility (Mandal 
et al., 2021; Zhou et al., 2018). The total loss 
of N, P, and K elements due to erosion on oil 
palm land in Sorolangun Regency was 0.04, 0.11 
and 0.10 tons/ha/year (Mustikasari et al., 2018). 
Generally, the study site’s E.H. ranges from 15–
60 tons/ha/year.

pH measures the number of hydrogen ions in 
a solution in the soil. pH dramatically affects soil 
fertility and plant survival. pH will affect translo-
cation, trace elements, mobility of organic mat-
ter, and soil biological processes (Neina, 2019). 
Plants generally absorb nutrients well at neutral 
pH. At this pH, all macronutrients are maximally 
available, while micronutrients are not maxi-
mised except for molybdenum (Mo), so it is nec-
essary to add micronutrients (Karapouloutidou 
and Gasparatos, 2019).

Assessment of land quality index

Land quality shows the diversity of interac-
tions between human and environmental factors. 
Improved land quality shows the land's ability to 
support agricultural production, thereby improving 
the economy and social status of the community. 
Figure 5 shows the distribution of agricultural land 
quality in Jember Regency. There are 14,189.6 ha 
belonging to the marginally suitable class (1A), 
44.052 ha to the moderately suitable class (1B), 
and 43,310.5 ha to the highly suitable class (1C).
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The land quality index can be used as a basis 
for the planning process of a region (Senes et al., 
2020). Characteristics of the land used include 
slope, S.R., TBE, F.H., I, T, CT, E.D., Tx, B.D., 
Drainage, pH, CEC, P, K, Al-dd, and SOC. The 
analysis results show that there is 14,189.69 ha 
(14.88%) belonging to the marginally suitable 
class (1A), 44,052.04 ha (44.20%) to the mod-
erately suitable class (1B), and 43,310.58 ha 
(42.92%) to the highly suitable class (1C).

Marginally suitable land is distributed across 
the districts of Tempurejo, Ledokombo, Jelbuk, 
Mayang, Sumberjambe, Sukorambi, and Tem-
purejo. Moderately suitable land is found in Um-
bulsari, Ambulu, Rambipuji, Wuluhan, Bangsal-
sari, Jombang, and Puger districts. Highly suit-
able land quality is observed in the Jenggawah, 
Tanggul, Mumbulsari, Kencong and Semboro 
districts. This distribution highlights the neces-
sity for site-specific soil management practices to 
enhance soil quality and support plant growth.

Areas classified as highly and moderately 
suitable can serve as reserves for food agricul-
tural land, as they still possess sufficient land ca-
pability to sustain crop production (Nabiollahi et 

al., 2017; Sari et al., 2022; Zhang et al., 2022). 
Conversely, regions with marginal suitable land 
quality could be designated as reserves for resi-
dential development with appropriate conserva-
tion efforts. Although these areas have limited 
potential for plant growth, they can still accom-
modate human settlement. The growth of plants 
relies heavily on land quality, as Budiyanto et 
al. (2019) emphasise. Hence, there is a pressing 
need for targeted soil management strategies to 
enhance soil quality and promote plant survival.

Organic matter amendments can be employed 
to address these limitations. Organic fertilisers 
can enhance nutrient availability and improve soil 
texture, particularly in the future (Murphy, 2015; 
Yang et al., 2015; Karapouloutidou, 2019). Fur-
thermore, organic matter additions facilitate hu-
mus formation, which acts similarly to clay and 
significantly contributes to the increased avail-
ability of P and K (Singh et al., 2020). The carbon 
stored in soil plays a crucial role in supporting 
various soil functions essential for biomass pro-
duction, water retention, filtration, biodiversity 
preservation, and other ecosystem services (Mur-
phy, 2015; Yang et al., 2015).

Figure 5. Distribution of land quality
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CONCLUSIONS

The study successfully identified key indica-
tors of land quality in a tropical agroecosystem 
using a minimum data set approach. The principal 
component analysis revealed that the most criti-
cal factors are SOC, effective soil depth, avail-
able P, available K, erosion hazard, and pH. This 
research fills a quantitative land quality assess-
ment gap and opens prospects for similar studies 
in other tropical regions. The long-term use of or-
ganic fertilisers is recommended to maintain and 
improve land quality. 
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