
236

INTRODUCTION

Natural disasters caused by climate change,
such as earthquakes, tsunamis, floods, wildfires,
and other communicable diseases [Seidel et al.,
2024; Rao et al., 2024; Prathyusha et al., 2024],
have become very common in recent times.
Whether natural or human-caused disasters, re-
sult in a high fatality rate and significant financial
losses. Flooding stands out as a prominent natural
disaster, often triggered by rapid environmental
and climatic changes. In recent days, floods that
have occurred in many places all across the world
have resulted in high scores of deaths and have
also broken various records for rainfall that have

been in a few places for a very long time. Floods
are unpredictable due to several meteorological
and environmental conditions, making them chal-
lenging to forecast. Although floods are inevita-
ble natural occurrences, it is essential to imple-
ment preventive measures in order to limit loss
of life and mitigate economic harm [Wenchao et
al., 2021; Bentivoglio et al., 2022; Faruq et al.,
2020]. India is one of the world’s countries ex-
periencing severe urban and rural floods. India
has identified approximately 12% of its land as
a flooding zone, covering 40 million hectares.
Andhra Pradesh, Uttar Pradesh, Haryana, Pun-
jab, Bihar, and Gujarat are especially vulnerable
states. In particular, the state of Andhra Pradesh is

Training Issues in Classifying Urban Flood Object Detection – 		
A Deep Learning Study

Padmavathi Lambu1, Rajesh Duvvuru1*

1	 School of Computer Science and Engineering, VIT-AP University, Guntur, India
*	 Corresponding author’s email: dr.rajeshduvvuru@gmail.com

ABSTRACT
Climate change has had a significant impact on natural disasters, particularly floods, in recent times. Early warning
systems play an important role in river flood prediction. However, cloudbursts trigger urban flash floods, causing
significant disruption to humanity, property damage, and loss of life. In particular, the number of deaths from urban
floods has increased in recent times, primarily due to a lack of information. Urban floods, in particular, inflict dam-
age on assets such as vehicles, electric poles, and plants. In addition, flash floods in urban areas submerge roads,
drainage, etc., leading to drowning and fatalities. Currently, there is a need to develop smart urban flood prediction
and monitoring systems that disseminate instant flood information to rescue teams for a quick response. Currently,
deep learning technologies play a significant role in object prediction, but their accuracy in predicting urban flood
objects is relatively low. In deep learning algorithms, the training of networks, in conjunction with optimizers and
epochs, plays a crucial role in achieving higher accuracies in object detection. The current article investigates the
best deep learning training networks, optimizers, and epochs to train urban flood data objects that can achieve
higher accuracy. This study considers two pre-trained models, XceptionNet and AlexNet, and three optimizers,
including SGDM, ADAM, and RMSProp, to train the urban flood dataset, ensuring balance. We evaluate each
training network’s performance with the optimizer by tuning epochs and hyper-parameters as constants. Specifi-
cally, applying XceptionNet to the SGDM optimizer resulted in an accuracy of 97.47%. The results show that
XceptionNet outperforms AlexNet in terms of performance and is recommended for flood object classification.
Currently, the study solely focuses on two pre-trained networks and achived 97.47% accuracy; however, it has the
potential to evaluate other deep convolutional neural networks, potentially achieving 100% data object training.

Keywords: deep learning, CNN algorithms, flood detection, xceptionnet, alexnet.

Received: 2024.07.27
Accepted: 2024.08.15
Published: 2024.09.01

Ecological Engineering & Environmental Technology 2024, 25(10), 236–257
https://doi.org/10.12912/27197050/191861
ISSN 2299–8993, License CC-BY 4.0

ECOLOGICAL ENGINEERING
& ENVIRONMENTAL TECHNOLOGY

237

Ecological Engineering & Environmental Technology 2024, 25(10), 236–257

experiencing severe urban flooding due to heavy
rainfall, as shown in Figure 1. Figure 1 shows a
gradual increase in rainfall from 2014 to 2020.
The severity of rainfall is increasing day by day
in all 13 districts of Andhra Pradesh, as shown
in Figure 2. Out of the 13 districts, West Goda-
vari, East Godavari, Guntur, and Chittoor districts
experienced high rainfall in Srikakulam district,
while the remaining 8 districts (Nellore and Vi-
jayawada) experienced normal rainfall. As per the
Central Water Commission (CWC) Reports 2020,
the Godavari River, which flows through Andhra
Pradesh, has witnessed floods 34 times between
1953 and 2019. Flooding remains a significant
concern for the state, impacting both people and

infrastructure [Bentivoglio et al., 2022; Sanka-
ranarayanan et al., 2020]. Currently, cloud bursts
cause urban flash floods, resulting in severe dam-
age to the public and infrastructure. Global warm-
ing has led to a drastic increase in urban and flash
floods, as evidenced by the floods in Chennai in
2015, Hyderabad in 2020, and Bengaluru in 2022,
among others. Recent global warming trends
predict a significant increase in urban flooding,
which could potentially trigger severe disasters
and impact 60 percent of the country’s popula-
tion. Despite the increasing frequency of disasters
causing numerous fatalities, the effectiveness of
early warning systems remains limited in our cur-
rent smart digital era [Xinxiang et al., 2021].

Figure 1. Year wise minimum and maximum rainfall in Andhra Pradesh state during
2014–2020 (Source: Central Water Commission, Govt. of AP, India)

Figure 2. Year wise district minimum and maximum rainfall of Andhra Pradesh state
during 2014–2020. (Source: Central Water Commission, Govt. of AP, India)

238

Ecological Engineering & Environmental Technology 2024, 25(10), 236–257

A six-year-old girl named Athidi drowned in
an urban flood incident in Visakhapatnam Smart
City due to heavy rain, and authorities reported
her death five days later [The News Minute,
2015]. Another flood event trapped three AP State
Road Transport Corporation buses carrying pas-
sengers in flood waters near Ramapuram in Ra-
jampet mandal. Despite the fire services rescuing
most of the passengers and APSRTC staff, they
found 12 washed-away persons dead at various
places in Rajampet mandal of Kadapa district
[The News Minute, 2021].

The flooding of Kurnool town in Andhra
Pradesh, India, in October 2009 illustrates how
several factors combined to cause one of the
worst floods in 100 years. More than 30 feet of
water submerged several areas, and it took over
three days for the water to fully recede from the
town, affecting 4,70.000 people [Ramachand-
raiah, 2011]. These types of incidents are not
unique to Andhra Pradesh; the rest of the states
are also experiencing similar urban flood effects.
An incident in Bangalore city highlights the de-
ficiency in the early warning system for urban
floods [Deccan Herland, 2023]. On Sunday eve-
ning, the car carrying a software engineer from
Andhra Pradesh drowned in the storm water at an
underpass near KR Circle in Bengaluru. We iden-
tified the deceased as Bhanurekha, a native of Vi-
jayawada. Many such incidents are happening all
over the globe due to heavy rains and flash floods.
At present, there is a technical challenge in de-
veloping an Urban Flood (UF) early warning sys-
tem. While rescue teams like the National Disas-
ter Response Force (NDRF) are well-trained and
equipped to respond swiftly, the dissemination of
location information and early warnings remain
two critical tasks for effective UF rescue opera-
tions (Eric et al., 2020). At present, there is a need
for early identification of urban flood regions.
The researchers have addressed the conditions of
pre-flood and post-flood areas using SAR (Syn-
thetic Aperture Radar) images to support rescue
operations across coastal regions [Shreekumar
et al., 2021]. Researchers have recommended di-
verse solutions through deep learning algorithms
using a variety of SAR datasets to detect floods
[Eric et al., 2020].

Urban floods will have a significant impact,
leading to the drowning of humans and other
objects such as vehicles, road networks, electric
poles, fallen trees, and manholes. In nations like
India, the lack of urban flood water-level alert

systems contributes to the drowning of numerous
people, leading to fatalities; in some cases, the
bodies remain unidentified and untraceable for
months. In particular, poor solid and liquid waste
management during post-urban floods contributes
to the spread of communicable diseases. Current-
ly, rescue teams are encountering a technological
challenge in obtaining immediate information
about urban floods, a crucial step in expediting
rescue operations to save lives and valuable as-
sets. Currently, there is a need to develop smart
urban flood prediction and monitoring systems
that disseminate instant flood information to res-
cue teams for a quick response. Currently, river-
based flood prediction tasks have advanced sig-
nificantly, incorporating factors such as flood ve-
locity, water levels, and rainfall, and utilizing the
Internet of-Things (IoT) and artificial intelligence
(AI) to inform the public about flood events. Cur-
rently, AI-based deep learning technologies play
a significant role in object prediction, but their
accuracy in predicting urban flood objects is rela-
tively low. In deep learning algorithms, the train-
ing of networks, in conjunction with optimizers
and epochs, plays a crucial role in achieving high-
er accuracies in object detection.

At present, there is a need to develop smart
artificial intelligence technologies that function
intelligently, capable of alerting citizens and lo-
cal administrations to initiate immediate rescue
operations. Detecting objects in flood water poses
a significant challenge, particularly during urban
floods. The urban flood object detection accuracy
poses a significant challenge for researchers and
practitioners, as achieving higher detection accu-
racies primarily depends on the object’s training
accuracy. However, researchers have conducted
limited pre-training studies to assess the perfor-
mance of urban flood object detections. In gen-
eral, if the training accuracy is high, it may result
in excellent test accuracy. Despite the network
training model’s reputation for object detection,
the epoch rate at which the data undergoes opti-
mal training remains unknown. The current work
focuses on incorporating deep learning technolo-
gies to identify and monitor flood objects in urban
areas, where the detection accuracy of multi-class
flood objects is poor [Anil et al., 2022; Yazeed
et al., 2022]. Generally, object detection accuracy
depends on training accuracy, but researchers are
often unsure how to set hyperparameters such as
learning rate, epochs, optimizers, etc. to achieve
100% accuracy.

239

Ecological Engineering & Environmental Technology 2024, 25(10), 236–257

Object detection accuracy is dependent on
training quality. Researchers often struggle to
optimize hyperparameters like learning rate, ep-
ochs, optimizers, etc., for perfect accuracy. The
choice of training network also depends on data
characteristics and the number of classes, aim-
ing for higher accuracy. The current investigation
adopted two popular pre-trained models, namely
AlexNet and XceptionNet, to attain higher train-
ing accuracy on a novel custom flood object data-
set. We collected 110 flood images from various
regions of Andhra Pradesh state without segmen-
tation for this analysis. Incorporating a segmenta-
tion block into the main procedure can enhance
classification accuracy while simultaneously re-
ducing processing time. We run each of the train-
ing networks separately, keeping all other hyper-
parameters (like learning rate, etc.) the same. We
change optimisers like SGDM, ADAM, and RM-
SProp from 20 to 100 epochs. We look at how
well AlexNet and XceptionNet worked and find
that XceptionNet did better with SDGM, ADAM,
and RMSPROP, getting a 96.47% accuracy rate
in training classification. However, in each ep-
och, the success rate of SGDM is higher than that
of ADAM and RMSProp. In the present work,
the Xception Net pre-trained model shows good
training accuracy of 97.67% when classes are
limited and less complex. However, when trained
on flood datasets with three types of flood im-
ages, both AlexNet and Xception Net pre-trained
models get between 23% and 50% accuracy, with
extra help [Gaffinet et al., 2023; Vanama et al.,
2020]. The current study solved important train-
ing problems in balanced flood object datasets by
finding the best deep learning network, optimiz-
ers, and epoch rate to improve training accuracy.
The present study is limited to verifying the best
training accuracy on popular deep learning mod-
els such as XceptionNet and AlexNet, whereas
very little research has been performed on Urban
Flood Object data. This work aims to find the op-
timal hyperparameters to attain higher accuracies
on XceptionNet and AlexNet using flood datas-
ets [Mohammadtaghi et al., 2021]. The analysis
of the dataset training results suggests that Xcep-
tionNet is the optimal network for applying de-
tector algorithms.

The current research solely focuses on train-
ing problems with flood object datasets, and ad-
ditionally, it must undergo accuracy tests using
detector algorithms such as YOLO, MobileNet,
etc. The current study discovered that the present

XceptionNet is preferable to training the flood
object dataset if they are associated with water
images. This technical analysis is beneficial to
the National Disaster Response Force (NDRF),
which currently has limited facilities for dealing
with Urban Floods (UF). Implementing a system
to share Location Information and Early Warn-
ings periodically would allow for early detection
of urban floods, potentially reducing economic
losses and fatalities [Anil et al., 2022].The rest
of the article is organized as follows: Section II
begins by reviewing relevant literature and tech-
nique to set the stage for our investigation. Sec-
tion III details our novel approach and strategy.
Section IV explains the steps taken to achieve our
goals, providing a clear research plan. Section V
analyses the recommended technique, its efficacy,
and its consequences, and presents our findings in
depth. Section VI Concludes by providing a con-
cise overview of our primary discoveries and pro-
posing potential avenues for future investigation.

RELATED WORKS

This study examines various ways utilizing deep
learning algorithms to predict urban floods [Hashi et
al., 2021]. The Esfandiari et al (2020) presented an
advanced approach to flood detection and classifica-
tion, addressing limitations in previous studies that
relied on single image types like SAR (Synthetic Ap-
erture Radar) [Esfandiari et al., 2020]. CNN observe
multi-class scenarios along with water flow levels to
differentiate emergency of flood events on the vis-
ible impacts of flooded regions. At the event, a Flood
picture was put on a CNN design and tested on a part
of the Custom Dataset from Google. The proposed
Convolutional Neural Network (CNN) architecture
outperforms pre-trained VGG models in terms of
precision and retraining time on standard PCs [Mau-
rya et al., 2021].

To enhance the dataset without additional data
collection, rotational changes were applied as an
augmentation technique. Despite these advance-
ments, the resulting 96.67% accuracy is considered
insufficient for flood detection applications, under-
scoring the critical need for extremely high preci-
sion in emergency response scenarios [Ghasemi et
al., 2020]. Ahmed et al. developed and deployed a
flood segmentation system named DeepLab, which
use a deep learning algorithm to precisely and ef-
ficiently identify and differentiate the presence and
magnitude of floods using visual data. The neural

240

Ecological Engineering & Environmental Technology 2024, 25(10), 236–257

network underwent training using a vast assort-
ment of satellite photos, which were augmented
with ground truth labels denoting the existence
of flooded regions. During the inference process,
the DeepLabv3 model, which has been trained, is
utilized to predict the probability of each pixel in
new satellite photos being part of a flooded area
[Ahmed et al., 2023]. Braveen et al. proposed a
unique Internet of Things-based IDI Sense app has
been presented to monitor and transmit real-time
parameters concerning dams and weather condi-
tions. Initially, a combination of rainfall sensors,
waterfall sensors, flow sensors, and ultrasonic sen-
sors are utilized to accurately measure the quantity
of water, the extent of vacant space in the dam, and
the velocity of water flow within the dam. The data
gathered by sensors positioned at several locations
on the dam is transmitted to an Arduino device that
is connected to the Internet. The spiking neural net-
work (SNN) is utilized to forecast rainfall by ana-
lysing historical data from the meteorology dataset

[Braveen et al., 2023]. However, the pursuit of
even higher accuracy remains a priority for reli-
able real-world deployment, highlighting poten-
tial areas for future research such as incorporating
additional data sources, exploring more advanced
model architectures, and further refining data aug-
mentation techniques.

METHODOLOGY

The study utilizes the analysis process de-
picted in Figure 3. The recommended approach
consists of six main steps: Data Collection, Pre-
processing, Learning Flood Data, DCNN, Classi-
fier, and Test Flood Data. It also recommends the
highest training accuracy for the flood object da-
taset. The methodology outlines the consecutive
process of two convolutional network topologies
– AlexNet and XceptionNet. Using input sizes
of 227 × 227 pixels for AlexNet and 299 × 299

Figure 3. Methodology for data training on custom flood object dataset

241

Ecological Engineering & Environmental Technology 2024, 25(10), 236–257

pixels for Xception Net, the study put into prac-
tice a custom three-class flood dataset collected
from Google. This dataset is applied to both mod-
els, experimenting with various training options
including different solvers or optimizers, epoch
numbers, and training parameters such as learning
rate, constant etc. The use of a custom Google-
sourced dataset and the exploration of different
training parameters highlight the efforts to find
the most accurate flood image classification.

MATHEMATICAL NOTATIONS
AND ASSUMPTIONS

As specified earlier section, the XceptionNet
and AlexNet is used for the study. The mathemat-
ical representation of XecptionNet and AlexNet
is represented in equation 1. The flood detection
classification is performed on the feature map’s
function. The feature map F(z) is the product of
Input (M) and Kernels (W). The feature classifica-
tion function is designated in Equation 1. Where,
‘S’ represents the list of flood data samples that
range from -∞ to ∞ and Q, M, N represents Fea-
ture maps, Input and Kernels respectively.

	 𝐹𝐹(𝑧𝑧) = [𝑞𝑞] (𝑀𝑀 × 𝑁𝑁) = ∑ 𝑁𝑁 [𝑞𝑞 + 𝑆𝑆] 𝑀𝑀[𝑆𝑆]
𝑠𝑠=∞

𝑠𝑠 =−∞

	(1)

Flood object data preparation

The Flood team compiles the bespoke Flood
object dataset without any processing. The Flood
team compiled it from both fieldwork and online
sources. Figure 3 illustrates that the compiled da-
taset consists of approximately one hundred pho-
tos, each associated with three distinct categories.
Images in the collection showcase key locations
that can significantly impact metropolitan zones
worldwide, including India. We save each down-
loaded photograph in a unique JPG file, utilizing
the RGB color space by default. Similarly, class
1 consists of submerged automobiles, while class
2 comprises water markers indicating the water
depth in the submerged areas. Finally, class 3 en-
compasses the collection of fallen electric poles.

This is because severe storms typically impact
them swiftly, and most floods and cyclones are con-
sidered natural disasters. Additionally, electricity is
the primary cause of severe shocks, which have the
potential to result in fatalities. Therefore, the current
detection of fallen electric poles plays a crucial role
in preventing life-threatening shocks.

Dataset pre-processing

Pre-processing facilitates the elimination of
unwanted distortions and boosts particular charac-
teristics that are essential for the intended purpose.
We utilize the subsequent pre-processing method-
ologies throughout the dataset preparation:
1.	Data profiling: the unprocessed Flood object

dataset was subjected to profiling stages in-
cluding analysis of size distribution, shuffling,
brightness distribution, and color distribution.
The Matlab simulation software is utilized to
analyze Flood datasets, with a focus on image
quality metrics like brightness, aspect ratios,
convexity, color distribution, fine details, reso-
lution and segmentation of flood affected im-
ages [Rauschmayr et al., 2022].

2.	Data cleaning: we eliminated erroneous, cor-
rupted, improperly formatted, redundant, or
unfinished photos of flood objects impacted
from the dataset. A total of 139 photographs
depicting ‘Car’ were received, and 29 images
were removed from the collection. Similarly,
we captured 126 images and discarded 16
of them; most of them are duplicates, while
only a few are hazy. Class 3, like the previous
class, has 142 photographs labeled as ‘Water-
markers’. However, 32 of these photos were
removed since they had low resolution and
brightness. We remove 77 anomalous data
points from the original dataset of 407, re-
sulting in a remaining set of 330 images to
restore the balance of the dataset [Angloher
et al., 2023].

3.	Balanced dataset: the classification of bal-
anced datasets yields higher accuracy and
lower bias in comparison to imbalanced da-
tasets. For the current research, a selection of
330 high-quality flood photographs was made.
These images were then resized to a resolution
of 720 × 720 pixels in each category. Subse-
quently, these photos undergo enhancement
(Chen et al., 2021).

4.	Augmentation: each flood class image under-
goes an augmentation operation that involves
Contrast (Adaptive Equalization), Bounding
Boxes, Flip (Horizontal (180O) and Vertical
(90O)), Blur, and Noise. This procedure is re-
peated eight times, resulting in a total of 2640
augmented images [Ignatowicz et al., 2024].
The dataset is partitioned into three groups,
with 70% allocated for training, 20% for test-
ing, and validation 10%.

242

Ecological Engineering & Environmental Technology 2024, 25(10), 236–257

To accelerate the training process and ensure
more realistic model testing calculations, we re-
sized the image dataset. Specifically, images were
downsized to 227 × 227 pixels for AlexNet and
299 × 299 pixels for XceptionNet, as illustrated
in Figure 5.

ARCHITECTURE OF DEEP
CONVOLUTION NEURAL NETWORK

Convolutional neural networks (CNNs) are
a prominent deep learning architecture requires
thorough training across multiple layers. They
have gained widespread adoption in computer vi-
sion tasks due to their remarkable effectiveness.
CNNs excel at processing complex visual inputs,
transforming chaotic image data into meaningful
classification results. This approach has been re-
fined to provide a structured framework for tack-
ling various visual recognition challenges. Ac-
cording to Figure 6, there are 3 layers: Kernels,
featured map and fully connected layers where

each layer has its own functional behaviour. Fully
connected layers transform the output by com-
pressing it, encoding spatial information into the
channel dimension through reshaping.

A kernel, also called a filter, is a small matrix
of learnable parameters used in the convolution
operation. It detects specific patterns or features
in the input data. Feature maps are the outputs of
convolutional layers, representing distinct fea-
tures from the input. This process transforms im-
ages into numerical features.

XceptionNet architecture

The architecture is built entirely on depth wise
separable convolution layers, representing a novel
approach in convolutional neural networks. This
design was introduced to address the computa-
tional costs associated with traditional convolu-
tion operations. The key innovation of Xception-
Net lies in utilization of two-stage convolution
process: (i) depth wise convolution and (ii) point-
wise convolution are used to combine information

Figure 4. Sample urban flood object dataset class (A–B): car; (C–D): water-markers; (E–F): electricity poles

243

Ecological Engineering & Environmental Technology 2024, 25(10), 236–257

Figure 6. Architecture of deep convolution neural network to classify flood objects

Figure 5. Annotated (pre-processed) urban flood object dataset class (1–2): car;
(3–4): water-markers; (5–6): electricity poles

244

Ecological Engineering & Environmental Technology 2024, 25(10), 236–257

across all channels. By decomposing the convolu-
tion process into these two distinct steps, Xcep-
tionNet achieves greater computational efficiency
while maintaining or even improving performance
in various deep learning tasks, particularly in im-
age processing and computer vision applications.

ReLU Layer

The ReLU (Rectified linear unit) layer is the
most prevalent in the XceptionNet model, appear-
ing 35 times throughout the network. It performs a
thresholding operation on each input element, zero-
ing out any negative values. In this implementation,
the layer’s attributes - max_value, threshold value,
and negative_slope - are all non-negative.

MaxPooling 2D Layer

The XceptionNet training architecture incor-
porates four MaxPooling 2D layers, which are
essential for reducing the spatial dimensions of
feature maps. These layers perform max pool-
ing, a process that extracts the highest value from
each window of a feature map, thereby decreas-
ing computational load and mitigating overfit-
ting. Each MaxPooling 2D layer is characterized
by three key parameters: Pool Size, Strides, and
Padding. The Pool Size, specified as an integer or
a tuple of 2 integers, determines the dimensions
of the pooling window. For example, a pool size
of (3, 3) means the layer will select the maximum
value from a 3x3 window.

Strides are a tuple of two integers, an integer,
or None that determine the distance at which the
pooling window moves for each stride. In this
specific XceptionNet implementation, strides
are set to (2, 2). Lastly, Padding adjusts the input
boundaries, and in this network, it is set to (0, 0,
0, 0), indicating no padding is applied.

Input layer

The XceptionNet typically accepts input im-
ages of 299 × 299 pixels. This input layer consists
of artificial neurons that receive the initial RGB
image data, which is then processed by subse-
quent layers in the neural network.

Grouped convolution 2D layer

The Grouped Convolution 2D layer is the pre-
dominant layer in the XceptionNet deep learning
model, occurring 34 times throughout the net-
work. In this layer, the input channels are split
into groups by a 2-D grouped convolutional layer,

which then uses sliding convolutional filters. The
grouped convolution layers are separated into two
channels, referred to as Depth-wise Separable
Convolution. This procedure involves applying a
convolution filter to each input channel individu-
ally. Then, a point-wise convolution is used to
combine the result of the depth-wise convolution
with 1 × 1 convolutions in a linear manner.

Addition layer

The ‘Addition layer’ performs element-wise
addition of inputs from several neural network
layers. When constructing the layer, it is crucial
to explicitly provide the desired amount of inputs.
The layer’s inputs are designated with specific
names, totaling N inputs. All inputs to an addi-
tion layer possess identical size. The ‘Addition
layer’ is the most frequently occurring layer in the
XceptionNet deep learning model, appearing 12
times throughout the network

Output layer

Generally, the Output Layer has 1000 neurons
(for the 1000 classes in the ImageNet dataset) with
a SoftMax activation. In this case, the classification
layer forms the designated output layer. The size of
the input layer contains three flood image classes for
classification: drowning vehicles, fallen poles, and
water marker reading. The output size is two, and
cross-entropy is used as the loss function.

SoftMax layer

The SoftMax function is utilized as an acti-
vation function in the XceptionNet deep learn-
ing model. The function normalizes the result by
applying a transformation that converts it into a
probability distribution, using the axis supplied.
The function accepts an integer or a list of num-
bers as input to determine the axis, and the output
preserves the same shape as the input.

Convolution 2D layer

The convolution layer forms the core of the
XceptionNet deep learning model, appearing 40
times throughout the network architecture. This
layer processes input data through three distinct
phases: the Entry Flow, Middle Flow, and Exit
Flow. The Entry Flow begins with three convo-
lution layers, each employing 32 filters of size 3
× 3. Following this, the Middle Flow consists of
8 blocks, each containing a depth-wise separable
convolution layer with 3 × 3 filters and a max pooling

245

Ecological Engineering & Environmental Technology 2024, 25(10), 236–257

layer. The network concludes with the Exit Flow,
which incorporates two depth-wise separable con-
volution layers (also with 3 × 3 filters) and a global
average pooling layer. Each Convolution 2D Layer
is characterized by specific properties: a filter size of
(3, 3), 64 filters, a stride of (2, 2), and a scale factor
of (1, 1). The padding value is set to ‘0’, with weights
dimensioned as 3 × 3 × 3 × 64 and bias as 1 × 1 × 64.
Additional weight parameters such as WeightLearn-
RateFactor, WeightL2Factor, and BiasLearnRate-
Factor are all set to 1, while BiasL2Factor is 0. The
network utilizes the glorot method for weight initial-
ization and zeros for bias initialization. This intricate
structure allows the XceptionNet to effectively pro-
cess and learn from complex image data, making it a
powerful tool in deep learning applications.

Fully connected layer

The XceptionNet’s training architecture includes
two fully connected layers, each containing 4096
neurons with ReLU activation. The final layer auto-
matically determines the input size and sets the out-
put size to 2. Several parameters, including Weight-
LearnFactor, WeightL2Factor, and BiasLearnRate-
Factor, are set to 1, while BiasL2Factor is set to 0.
The weights are initialized using the Glorot method,
and biases are initialized to zeros.

Batch normalization

The Batch Normalization layer is the predomi-
nant layer in the XceptionNet deep learning model,

occurring 40 times within the network. A Batch Nor-
malization layer performs a normalization process
on a small batch of data, treating each channel’s ob-
servations independently. To expedite the training
of the convolutional neural network and reduce its
vulnerability to network initialization, it is recom-
mended to include batch. The XceptionNet consists
of 170 layers, including 22.8 million parameters. As
shown in Table 1. The default input image size for the
model is 299 × 299 × 3. Subsequently, it undergoes
a continuous reduction process, gradually decreasing
from 149 × 149 × 32. Finally, the classification out-
put is compressed to 1× 1 s × 1000 c convolutions.

AlexNet architecture

AlexNet is a ground breaking convolutional
neural network (CNN) widely recognized for its
exceptional performance in image recognition and
classification tasks. Among the components that
make up Alex Net are five convolution layers, three
max-pooling layers, two normalized layers, two fully
linked layers, and one SoftMax layer. A convolution
filter and a non-linear activation function known as
“ReLU” are the components that make up each in-
dividual convolution layer. The pooling layers carry
out the max-pooling function, and the presence of
completely connected layers fixes the input size.

Convolution 2D layer

The AlexNet deep learning model mainly de-
pends on convolution layers, incorporating a total

Table 1. Prototype of 170 Layers of XceptionNet Deep Convolution Networks

No. Name Type Activations Learnable
properties

1 Input_1 299 × 299 × 3 images
With rescale symmetric normalization Image input 299(s) × 299(s) × 3(c) ×

1(B) -

2
Block1_conv1 32 3 × 3 × 3
convolution with stride [2 2] and padding
[0 0 0 0]

Convolution 149(s) × 19(s) × 32(c) × 1B
Weights

(3 × 3 × 3 × 32)
Bias (1 × 1 × 32)

3 Block1_conv1_bn
Batch Normalization with 32 channels

Batch
normalization 149(s) × 19(s) × 32(c) × 1B Offset (1 × 1 × 32)

Scale (1 × 1 × 32)
4 Block1_conv1_act ReLU ReLU 149(s) × 19(s) × 32(c) × 1B -

5 Block1_conv2 64 3 × 3 × 32 convolutions
with stride [1 1] and padding [0 0 0 0] Convolution 147(s) × 147(s) × 64(c) × 1B

Weights
(3 × 3 × 32 × 64)
Bias (1 × 1 × 64)

|
|
|

|
|
|

|
|
|

|
|
|

|
|
|

168 Predictions
1000 fully connected layers Fully connected 1(s) × 1(s) × 1000 (c) × 1B

Weights
(1000 × 2048)
Bias (1000 ×1)

169 Prediction_ SoftMax SoftMax 1(s) × 1(s) × 1000 (c) × 1B -

170 Classification Layer _Predictions Classification output 1(s) × 1(s) × 1000 (c) × 1B -

246

Ecological Engineering & Environmental Technology 2024, 25(10), 236–257

of 40 instances in its design. The network is
organized with five separate convolutional lay-
ers, each tailored with appropriate parameters
to analyze and extract characteristics from the
input data. The initial convolutional layer uti-
lizes 96 filters measuring 11 × 11, with a stride
of 4 and ReLU activation. Next, the second
layer is implemented with 256 filters of dimen-
sions 5 × 5, a stride of 1, and ReLU activation.
Both the third and fourth layers employ 384 fil-
ters of dimensions 3 × 3, with a stride of 1 and
ReLU activation. The last convolutional layer
consists of 256 filters, each having a size of 3 ×
3 and a stride of 1. The Convolution 2D Layer
is defined by specific properties, such as a filter
size of (3, 3), 64 filters, a stride of (2, 2), and
a dilation factor of (1, 1). The padding value is
set to zero, with weights dimensioned as 3 by 3
by 3 by 64 and bias as 1 by 1 by 64. The weight
parameters WeightLearnRateFactor, Weight-
2Factor, and BiasLearnRateFactor are assigned
a value of 1, while the BiasL2Factor is set to
0. The network utilizes the glorot approach for
weight initialization and initializes biases with
zeros. The complex arrangement of convolu-
tional layers of AlexNet allows it to efficiently
analyze sophisticated visual data, making it a
formidable tool for jobs involving picture rec-
ognition and classification.

Cross channel normalization

A layer called ‘channel-wise local response
normalization’ performs normalizing on each
channel individually. This layer conducts local
response normalization on each channel individ-
ually and allows the user to specify the size of
the ‘WindowChannelSize’ parameter. The ‘Cross
Channel Normalization’ layer used only two
times in Alex Net.

Fully connected layer

The AlexNet architecture includes three fully
connected layers:Two layers with 4096 neurons
each, using ReLU activation and An output layer
with 1000 neurons (matching ImageNet classes)
and SoftMax activation.The input size is automat-
ically determined, while the output size is set to
three. Weight-related parameters (WeightLearn-
Factor, WeightL2Factor, BiasLearnRateFactor)
are set to 1, with BiasL2Factor at 0. Weights are
initialized using the Glorot method, and biases
are initialized to zeros.

Grouped convolution 2D layer

In the AlexNet deep learning model, the
Grouped Convolution 2D layer is the most fre-
quently used layer, appearing 34 times throughout
the network. This layer divides the input channels
into groups and applies sliding convolutional fil-
ters to each group. Grouped convolutional layers
are ideal for channel-wise separable convolutions

Output layer

Classification Output Layer has1000 neurons
(for the 1000 classes in the ImageNet dataset)
with a SoftMax activation. The output layer is
a feature map forms the designated size of input
image with the filters applied. As opposed to the
fact that the output size is two and cross-entropy
is utilized as a loss function.

Input layer

The input layer of the neural network accepts
an RGB image with dimensions of 227 × 227 pix-
els. This layer consists of artificial neurons that
receive the initial image data, which is then pro-
cessed by subsequent layers in the network.

ReLU layer

The AlexNet deep learning model features the
ReLU (Rectified Linear Unit) layer seven times
throughout its architecture. This layer applies a
simple threshold operation: it sets any input value
below zero to zero, while leaving positive values
unchanged. In AlexNet’s implementation, the ReLU
layer’s properties – max_value, threshold value, and
negative_slope – are all non-negative. This configu-
ration helps prevent vanishing gradients, enabling
more efficient learning in the network.

Max pooling 2D layer

The Alex Net training network consists of four
Max Pooling 2D layers. The Max Pooling 2D layer
typically comprises three components: Pool Size,
Strides, and Padding. When training, specify an inte-
ger or a tuple of three integers to determine the win-
dow size for calculating the maximum value. The
coordinates (3, 3) will determine the maximum value
within a pooling window of size 3 × 3. The possible
values for the variable are an Integer, which is a tuple
of 2 integers, or None. Values of strides. The pooling
stride is set to (2, 2) and the padding is set to (0, 0, 0,
0), which determines the movement of the pooling
window for each pooling step.

247

Ecological Engineering & Environmental Technology 2024, 25(10), 236–257

SoftMax layer

The AlexNet model uses the SoftMax func-
tion once as an activation layer. This function
normalizes its input along a specified axis, pro-
ducing a probability distribution while maintain-
ing the input’s shape. It’s typically applied to the
final layer for multi-class classification tasks.

Dropout layer

The ‘dropout layer’ is a layer that applies a ran-
dom opportunity rate of 0.5 to the input objects and
sets them to zero. This layer is a syntax that can
be used to specify the non-obligatory Name and
opportunity belongings by way of using a name-
price pair and any of the arguments outlined inside
the preceding syntaxes. In the deep getting to know
model that Alex Net uses, the dropout layer is the
maximum distinguished layer, and it appears times
across the community. The Alex Net consists of
25 layers. As shown in Table 2. The default input
image size for the model is 277 × 277 × 3 RGM
image. Subsequently, it undergoes a continuous
reduction process, gradually decreasing from 55 ×
55 × 96. Finally, the classification output is com-
pressed to 1 × 1 s × 1000 c convolutions.

EXPERIMENTATION

The Experimentation of Urban Flood De-
tection Dataset Training on both ‘Alex Net’

and ‘XceptionNet’ pre-trained deep neural
networks that have been proposed as excellent
models for identifying and classifying flood
images. These models are highly regarded in
the field of deep learning for their exceptional
accuracy in classifying the 1000 natural imag-
es of ImageNet. For training purposes, a data
set of 100 images is constructed to train the
classifier on flood images. The functionality
of both network designer architectures is illus-
trated in Figures 7 and 8.

Flood object dataset classification

The Flood Image dataset trains 3 primary
classes of pictures for the cause of identity and
classification of detection. The schooling statis-
tics consists of 110 photographs for each class,
specifically Cars, Electricity-Poles, and Water-
marker. The photo shows a screenshot of the flood
facts set used for training. Figure 8 displays two
types of training consequences: Training_Vali-
dation_Accuracy and Training_Data_Loss func-
tions. The training dataset employs multi-layer
deep convolutional networks including of 5 pool-
ing layers, 10 convolutional layers, and 10 ReLU-
convolutional layers. The system utilizes three
widely-used training optimizer algorithms: Root
Mean Square Propagation (RMSProp), Adap-
tive Moment Estimation (ADAM) optimizer and
Stochastic Gradient Descent with Momentum
(SGDM) optimizer. We conducted an experiment

Table 2. Prototype of 25 Layers of AlexNet Deep Convolution Networks

No. Name Type Activations Learnable
properties

1 Data 227 × 227 × 3 images with ‘zero
center’ normalization Image Input 227(s) × 227(s) × 3(c) ×

1(B) -

2 conv1 96 11 × 11 × 3 convolution with
stride [4 4] and padding [0 0 0 0] Convolution 55(s) × 55(s) × 96(c) × 1(B)

Weights
(11 × 11 × 3 × 96)
Bias (1 × 1 × 96)

3 ReLU ReLU 55(s) × 55(s) × 96 (c) × 1(B) -

4 Norm1 Cross channel normalization with
5 channels

Cross channel
normalization. 55(s) × 55(s) × 96 (c) × 1(B) -

5 Pool1 3 × 3 max pooling with sti
de [2 2] and padding[0 0 0 0] Max polling 27(s) × 27(s) × 96(c) × 1(B) 1 × 1 × 64

|
|
|
|

|
|
|
|

|
|
|
|

|
|
|
|

|
|
|
|

23 fc8 1000 fully connected layers Fully connected 1(s) × 1(s) × 1000(c) × 1(B) Weighs: 1000 × 40
Bias: 1000 × 1

24 Prob softmax Softmax 1(s) × 1(s) × 1000(c) × 1(B) -

25 Output Crossentropyex with ‘Tench’ and
999 other classes Classification output 1(s) × 1(s) × 1000(c) × 1(B) -

248

Ecological Engineering & Environmental Technology 2024, 25(10), 236–257

about the number of epochs varied between three
algorithms to optimize accuracy for flood dataset.

All the other training parameters were fixed:
we used longest sequence length typically 100, an
initial learning rate of.01 which was halved after
each epoch if no improvement in validation loss
was seen for last three epochs, minibatch size of
128 and zero padding on right. Additional con-
stants were L2 regularization = 0.01, drop factor
of learning rate = 0.1 applied for each (10) epochs,
decay factor for squared gradient = .9 (epsilon was
set to - le-08). We used the L2 norm technique
for gradient thresholding which calculates the
absolute distance of coordinates from vector
space origin. This approach allowed us to sys-
tematically assess the impact of epoch variation
on model performance while controlling for oth-
er variables.

Hyper parameter tuning

The Hyperparameters include the Learning
rate, Weight decay, Momentum, and Batch size.
The learning rate determines how quickly the net-
work adjusts its weights during training, while
weight decay controls the regularization of the

network. Momentum helps the network avoid
local minima during training, and batch size
determines the number of samples used in each
training iteration. The experimentation was done

Figure 8. Training layered
architecture of XceptionNet

Figure 7. Training layered architecture of XceptionNet

249

Ecological Engineering & Environmental Technology 2024, 25(10), 236–257

based on turning the hyper parameters, which has
shown greater impact on data sets. Key hyper pa-
rameters used:
	• basic – determines how often the validation

performance is evaluated during the training
process. The “Basic” training options typically
include the following parameters: Max Ep-
ochs: This sets the maximum number of train-
ing iterations. Mini-Batch Size: This specifies
the number of training examples to include in
each mini-batch used for computing gradients
and updating weights. Validation Frequency:
As discussed earlier, this parameter determines
how often the validation performance is evalu-
ated during the training process. Execution
Environment: This option allows to specify
the hardware resources and computational en-
vironment to be used for training the neural net-
work. The Execution Environment options typ-
ically include the following choices. CPU: This
is the default setting and is suitable for small to
moderate-sized neural networks or when GPU
resources are not available. GPU: This option
allows you to utilize the computational power
of a graphics processing unit (GPU) for training
the neural network. Parallel Pool: This option
enables parallel computing by distributing the
training workload across multiple CPU cores or
GPUs (if available). Cloud: This option allows
you to offload the training process to cloud
computing resources, such as MATLAB Cloud
Services or third-party cloud platforms.

	• solver – this is considered to specify the train-
ing algorithm or optimizer used for updating
the network weights during the training pro-
cess. This optimizer has different solver options
available: SGDM (SGD with Momentum):
This solver combines the SGD algorithm with
a momentum term. The momentum term ac-
cumulates the gradients of previous iterations,
helping to accelerate the training process and
potentially escape local minima. RMSProp:
This is an adaptive learning rate optimization
algorithm It adapts the learning rate for each
weight based on the magnitude of recent gra-
dients, which can help mitigate the problem of
vanishing or exploding gradients. ADAM: The
Adam (Adaptive Moment Estimation) optimiz-
er is one of the most popular and effective opti-
mization algorithms for deep learning. It com-
bines the ideas of momentum and RMSProp,
adapting the learning rate for each weight
based on both the moving average of the gra-
dients and the moving average of the squared
gradients. Initial Learn Rate: The learning rate
determines the step size during the weight up-
date process. It is generally recommended to
start with a relatively small learning rate (0.001
or 0.01) and gradually increase it if the training
process is progressing too slowly.

	• advanced – this option is used to configure ad-
vanced parameters and settings for the neural
network training process. Here are some of
the common “Advanced” training options: L2

Figure 9. Flood object custom dataset with three classes (water-marker, electricity pole, and car)

250

Ecological Engineering & Environmental Technology 2024, 25(10), 236–257

Regularization: This option enables to prevent
overfitting (also known as weight decay). It
adds a penalty term to the loss function, which
shrinks the weights towards zero, encouraging
the network to learn simpler and more gener-
alizable representations. Gradient Threshold
Method: Implements gradient clipping to pre-
vent excessively large gradients, which can
cause numerical instability or exploding gradi-
ents, Options include ‘l2norm’ (clip gradients
by teir L2 norm) and ‘absmax’ (clip gradients
by their absolute maximum value). Gradient
Threshold: This parameter sets the threshold
value used for clipping the gradients when us-
ing the selected gradient threshold method.
Validation Patience: This helps prevent exces-
sive training and overfitting once the validation
performance plateaus or starts to degrade. Shuf-
fle: This option determines whether the train-
ing data should be shuffled before each epoch
during training.

• checkpoint path: this option allows you to specify
a file path where checkpoint files will be saved
during the training process with current state of
the neural network, including the weights, biases,
and other relevant information.

• sequence – this specifies how the training
data should be organized and presented to
the neural network during work out. Se-
quence Length: It represents the length of
the input sequences using this option. The
sequence length can be set to a fixed value
or set to “longest” to automatically deter-
mine the maximum sequence length from the
training data. Sequence Padding Direction:
determines how the input sequences should
be padded for different lengths. The avail-
able options are “left” (pad at the beginning
of the sequence) or “right” (pad at the end
of the sequence). Sequence Padding Value:
When padding input sequences are set to a
fixed length, this option specifies the value
to be used for padding. The default padding
value is typically 0, but you can set it to a
different value depending on your data and
problem requirement.

• checkpoint frequency – this setting determines
how often the number of iterations (epochs or
iterations) are saved during the training pro-
cess in checkpoint files. Checkpoint Frequen-
cy Unit: This option specifies the unit of mea-
surement for the checkpoint frequency. Learn-
ing Rate Schedule: This option allows you to

specify a schedule for adjusting the learning
rate during training. Common schedules in-
clude step decay (reducing the learning rate by
a fixed factor at specific intervals), exponen-
tial decay (gradually reducing the learning rate
over time), and piecewise learning rate (manu-
ally specifying different learning rates for dif-
ferent epochs). Learn Rate Drop Factor: It de-
termines the multiplicative factor by which the
learning rate is reduced at each step.

RESULTS

Performance analysis of XceptionNet

The training results, as detailed in Table 3,
demonstrate the effectiveness of the Xception-
Net architecture in achieving 96% accuracy on
the training data using our specified parame-
ters. This performance varied depending on the
choice of optimizer algorithm and the number
of epochs. Interestingly, we observed that this
peak accuracy was reached using three different
optimizers: ADAM, RMSPROP, and SGDM.
In contrast, when applied to the ALEXNET
architecture on the same Flood dataset, these
optimizers struggled, managing only a maxi-
mum training accuracy of 50%. Further analy-
sis revealed that with XceptionNet, the SGDM
optimizer consistently achieved 96% accuracy
across a range of epoch values (20, 40, 60, 80,
and 100), while RMSPROP required 100 ep-
ochs to reach the same benchmark. The ADAM
optimizer showed a unique pattern, with lower
accuracy at both low and high epoch counts,
peaking only in the mid-range. Figures 11 and
12 visually represent these findings for SGDM
and ADAM optimizers. Notably, SGDM
emerged as the top performer, reaching the
96% accuracy mark in just 20 epochs. This
performance variability across different epoch
ranges and optimizers is clearly illustrated in
Figures 10–12, providing valuable insights
into the optimization process for this particular
flood dataset and model architecture.

Performance analysis of AlexNet

The training of AlexNet using the flood
object dataset was unsuccessful. Taking into
account the earlier factors, which change the
training accuracy depending on the optimizer

251

Ecological Engineering & Environmental Technology 2024, 25(10), 236–257

method and epochs, the AlexNet architec-
ture achieved 96% accuracy with the training
data (Table 3). The training data set achieved
an accuracy of 96% when simulating us-
ing the ADAM optimizer and SDGM. Due to
AlexNet’s 50% maximum training accuracy,
the SGDM, RMSPROP, and ADAM optimizers
yielded subpar results on the Flood dataset. At
20 Max_Epochs, though, both the SGDM and
ADAM optimizers achieved 96% accuracy.
Figures 13–15 display the outcomes of the edu-
cation accuracy tests conducted on the SDGM,
RMSPROP, and ADAM optimizers. With a
training accuracy of 96% after 20 epochs,
SDGM outperformed ADAM and RMSPROP.
Figures 13–15 demonstrate that ADAM accu-
racy was lowest at lower and higher epochs
and highest at middle-range epochs.

Performance comparison between
XceptionNet and AlexNet

The training performance of XceptionNet on
the flood object dataset is comparatively higher
than that of AlexNet in all three optimizers (Fig-
ure 16). In particular, the performance of Xcep-
tionNet reaches its peak in SGDM, with ADAM
and RMSProp following closely behind (Table 3).

All three optimizers performed poorly with
AlexNet. In most cases, the resultant accuracy
of AlexNet remains consistently stable and low,
regardless of the number of epochs, while the
performance of XceptionNet exhibits varying ac-
curacies across the three optimizers. We have ob-
served that the SDGM optimizer’s training accu-
racy for both deep learning training architectures
remains constant. However, when we vary the

Figure 10. Loss and traning accuracy line plot of SGDM Optimizer on XceptionNet

Figure 11. Loss and training accuracy line plot of ADAM Optimizer on XceptionNet

252

Ecological Engineering & Environmental Technology 2024, 25(10), 236–257

Figure 12. Loss and traning accuracy line plot of RMSPROP Optimizer on XceptionNet

Figure 13. Loss and training accuracy line plot of SGDM Optimizer using AlexNet

Figure 14. Loss and traning accuracy line plot of ADAM Optimizer using Alex Net

253

Ecological Engineering & Environmental Technology 2024, 25(10), 236–257

epochs from 20 to 100 while keeping other tun-
ing parameters like learning rate and batch size
constant, the performance of the ADAM and RM-
SPROP optimizers significantly changes. rate,
batch size, etc. The AlexNet dataset’s training is
faster than that of XceptionNet, with XceptionNet
requiring nearly five times more resources to train
the current custom dataset. Even AlexNet is very
fast in training datasets compared with Xception-
Net, but the average dataset training performance
is 50% lower when using SGDM, followed by
ADAM with 46% and RMSPROP with 42%.
XceptionNet showed a significant performance
advantage over AlexNet due to the use of depth
wise separable convolutions, which reduce the
number of parameters and computational cost.

The custom flood object dataset comprises
65421 annotated images classified into three distinct
classes. This experiment revealed that AlexNet is not
suitable for larger datasets, while XceptionNet could
potentially consider training larger datasets. All three
optimizers achieve a peak accuracy of 97.47% for
XceptionNet, while the ADAM optimizer achieves
the highest accuracy of 83.33% for AlexNet. The rest
of the two optimizers recorded a very low accuracy
that ranges from 23.33% to 40% for AlexNet. We
also observe a significant improvement in accuracy
in XceptionNet, but AlexNet’s behavior is not stable,
and it has begun to decline after reaching its peak
accuracy. XceptionNet’s shortfall lies in its larger
computation time, making it unsuitable for smaller
datasets due to execution time constraints.

Figure 15. Loss and traning accuracy line plot of RMSPROP Optimizer using Alex Net

Table 3. Training data performance of XceptionNet and AlexNet

Optimizer
algorithm Max_Epochs

XceptionNet AlexNet

Accuracy (%) Accuracy (%)

SGDM

20 96.47 40

40 96.47 40

60 96.47 40

80 96.47 40

100 96.47 40

ADAM

20 63.33 36.67

40 73.33 23.33

60 80 40

80 66.67 83.33

100 96.47 36.67

RMSProp

20 40.25 40

40 33.33 36.67

60 43.33 40

80 96.47 23.33

100 96.47 36.67

254

Ecological Engineering & Environmental Technology 2024, 25(10), 236–257

DISCUSSION

The current study compares the performance of
Google Net, AlexNet, and Squeeze Net with earlier
research, specifically the work of Khan et al. (2021)
[Ignatowicz, et al.,2024]. They were able to attain
accuracy rates of 94.99%, 94.61%, and 94.09%,
respectively, by adjusting hyper-parameters with
the help of electroencephalogram (EEG) data. The
results of the detection analysis reveal that AlexNet
surpasses both Google Net and SqueezeNet in terms
of performance ability. On the other hand, they fo-
cused solely on the epochs and the learning rate,
completely ignoring the importance of optimizers. In
this particular study, the hyper-parameters are only
fine-tuned, and researchers additionally investigate
the impact that optimizers have on the accuracy of
training [Kalantar et al.,2021]. Ullah et al. (2022)
explicitly evaluated the performance of AlexNet,
ResNet18, and Squeeze Net using a dataset that in-
cluded 4333 photographs classified into eight differ-
ent types of road cracks.

While conducting this experiment, the training
and testing photos stayed the same throughout the
entire epoch and iteration. The choice of an opti-
mizer was not the primary focus of the investigation.
ResNet 18 can only achieve an accuracy of 85.2%.
We investigated the AlexNet and XceptionNet mod-
els in the suggested method, focusing primarily on
addressing training issues. We were able to accom-
plish this by fine-tuning hyper-parameters, with a
particular emphasis on optimizers such as ADAM,
SGDM, and RMSProp [Kumar et al.,2023]. Ash-
har et al. (2021) primarily focused their study on

assessing the accuracy of various deep learning
models, such as GoogleNet, SqueezeNet, DenseNet,
ShuffleNet, and MobileNetV2, in categorizing lung
cancers observed on a CT scan.

With the help of the GoogleNet model, they
were able to achieve an accuracy of 94.53%. [Ku-
mar et al., 2023]. The research that they conducted
did not take into account AlexNet and Xception-
Net, which largely focused on validation accura-
cy. In their study, Dahiya et al. (2022) focused on
training accuracy and utilized the Plant Village da-
taset, which consisted of 20,640 photos represent-
ing 15 different classes and three different species:
tomato, pepper, and potato. Using this dataset,
they applied eight distinct deep learning architec-
tures, which are as follows: AlexNet, GoogleNet,
MobileNet, ResNet 18, ResNet 50, ResNet 101,
ShuffleNet, and SqueezeNet. They utilized epochs,
learning rate, small batch size, and optimizer as hy-
perparameters; however, they did not discuss the
performance of XceptionNet.

They utilize a range of epochs from 30 to 50,
applying only the ADAM and SGDM optimizers.
The RMSProp optimizer is not utilized. However,
the current work modifies the epochs from 20 to
100. GoogleNet is the only one of the eight deep
learning architectures that displays improved per-
formance when it comes to reliably detecting larg-
er datasets. They can only work on a maximum
of three epochs and support a maximum of two
optimizers. The current study applied three dif-
ferent types of optimizers—SGDM, ADAM, and
RMSProp—to six different epochs, ranging from
twenty to one hundred. In addition to using vector

Figure 16. Training performance of SDGM, RMSPROP and ADAM Optimizer on AlexNet and XceptionNet

255

Ecological Engineering & Environmental Technology 2024, 25(10), 236–257

distance algorithms, we adjusted the batch size to
32 elements. To maintain simplicity, we limit the
current analysis to three specific pre-trained mod-
els. On the other hand, it is feasible to further train
the existing dataset by employing additional deep
learning models such as EfficeintNet, AlexNet,
VGG16, DarkNet, PANet, ShuffleNet, NasNet
XceptionNet, MobileNet-v2, and a number of
other models. Consequently, this will enable the
evaluation of the efficiency of the provided out-
comes. Researchers with balanced smaller datas-
ets can benefit from the current study as it enables
them to achieve higher accuracy by effectively
adjusting the hyper-parameters. Most of the deep
learning detection mechanisms is on medical and
agriculture datasets. The novelty of this study is
in the identification of objects harmed by floods
in metropolitan areas using a proprietary dataset
of flood-affected imagery. Utilizing flood-affected
imagery files enables rescue personnel to prompt-
ly warn and execute rescue operations.

CONCLUSIONS

The current investigation has fulfilled the
study’s objectives. The study has identified the
most effective deep-training network for success-
fully training flood object data. Additionally, the
study has demonstrated to researchers that the
SGDM optimiser is the most effective method for
training flood object datasets, resulting in higher
detection accuracies. The training accuracy results
specifically indicate that lower epoch rates result
in lower accuracies for the flood object dataset,
and that a minimum of median epoch rates, such
as 60 to 100, is necessary to achieve a higher learn-
ing rate. The study also recommends against using
ADAM and RMSProp Optimizer for training flood
object datasets. The overall observation leads to the
conclusion that using XceptionNet in conjunction
with the SGDM optimizer, with epochs ranging
from 60 to 100, will result in higher training accu-
racy for flood object datasets. Furthermore, these
studies assist researchers in maintaining recom-
mended epochs for training flood object datasets,
as choosing the appropriate optimizer can reduce
training time and potentially achieve higher train
and test accuracies. The current research serves
as a useful tool for training flood objects that in-
undate during flash urban floods caused by cloud
bursts, which are crucial for current climate change
scenarios. The present research only concentrates

on addressing training challenges associated with
flood object datasets. Furthermore, it is impera-
tive to subject the research to accuracy evaluations
utilizing detector algorithms such as YOLO, Mo-
bileNet, and RCNN.

Acknowledgements

Authors acknowledge their respective institu-
tions for providing support and facilities.

REERENCES

1.	 Agonafir C., Lakhankar T., Khanbilvardi R., Krakauer
N., Radell D., Devineni N. 2023. A review of recent
advances in urban flood research., Water Security, 19,
100141, https://doi.org/10.1016/j.wasec.2023.100141

2.	 Ahmed I., Ahmad M., Jeon, G. and Chehri A. 2023.
An Internet-of-Things and AI-Powered Framework
for Long-Term Flood Risk Evaluation. IEEE Inter-
net of Things Journal. 11(3), 3812–3819. https://doi.
org/10.1109/JIOT.2023.3308564

3.	 Alabbad Y., Demir I. 2022. Comprehensive flood vul-
nerability analysis in urban communities: Iowa case
study, International Journal of Disaster Risk Reduction,
74, 102955. https://doi.org/10.1016/j.ijdrr.2022.102955

4.	 Angloher G., Banik S., Bartolot D., Benato G.,
Bento A., Bertolini A., Breier R., Bucci C., Bur-
khart J., Canonica L. and D’Addabbo A. 2023. To-
wards an automated data cleaning with deep learn-
ing in CRESST. The European Physical Journal
Plus, 138(1), 1–11. https://doi.org/10.1140/epjp/
s13360-023-03674-2

5.	 Anil H., Pawan B. 2022. a review on urban flood
management techniques for smart city and future
research, Springer Charm, International conference
on Intelligent Cyber Physical Systems and Internet
of Things (ICoICI 2022) proceedings, 3, 319–336.
https://doi.org/10.1007/978-3-031-18497-0_23

6.	 Avand M., Moradi H.R., Ramazanzadeh Lasboyee
M. 2021. Spatial Prediction of Future Flood Risk:
An Approach to the Effects of Climate Change,
Geosciences, 11(1), 25. https://doi.org/10.3390/
geosciences11010025

7.	 Baghermanesh S.S., Jabari S., McGrath, H. 2021.
Urban flood detection using sentinel1-a images.
2021 IEEE International Geoscience and Remote
Sensing Symposium IGARSS, 527–530. https://doi.
org/10.1109/IGARSS47720.2021.9554283

8.	 Bagyaraj M., Senapathi V., Chung S.Y., Gopal-
akrishnan G., Xiao Y., Karthikeyan S., Nadiri
A.A., Barzegar R. 2023. A geospatial approach for
assessing urban flood risk zones in Chennai, Tamil
Nadu, India. Environmental Science and Pollution

256

Ecological Engineering & Environmental Technology 2024, 25(10), 236–257

Research, 30(45), 100562–100575. https://doi.
org/10.1007/s11356-023-29132-1

9.	 Bakhtiari V., Piadeh F., Behzadian K., Kapelan Z. 2023.
Dealing with urban floods within a resilience framework
regarding disaster stages. Habitat International, 136,
102783. https://doi.org/10.1016/j.scs.2023.104958

10.	Bentivoglio R., Isufi E., Jonkman S.N., Taormina
R. 2022. Deep learning methods for flood map-
ping: a review of existing applications and future
research directions. Hydrology and earth system sci-
ences, 26(16), 4345–4378, https://doi.org/10.5194/
hess-26-4345-2022

11.	Braveen M., Anusha K., Jerlin M.A., Seetha R.,
Sampath N. 2023. IDISense: IoT-based dam wa-
ter disaster sensing and prevention system. IEEE
Sensors Journal, 23(23), 29451–29457. https://doi.
org/10.1109/JSEN.2023.3322290

12.	Chen J., Li Y., Zhang C., Tian Y., Guo Z. 2023.
Urban flooding prediction method based on the
combination of LSTM neural network and numeri-
cal model. International Journal of Environmental
Research and Public Health, 20(2), 1043. https://
doi.org/10.3390/ijerph20021043

13.	Chen Z., Duan J., Kang L., Qiu G. 2021. Class-
imbalanced deep learning via a class-balanced en-
semble. IEEE transactions on neural networks and
learning systems, 33(10), 5626–5640. https://doi.
org/10.1109/TNNLS.2021.3071122

14.	Deccan Herland. 2023. FIR filed after Bengaluru
techie drowns in flooded underpass. (Accessed on
15 January, 2024) (https://www.deccanherald.com/
india/karnataka/bengaluru/fir-filed-after-bengaluru-
techie-drowns-in-flooded-underpass-1220935.html).

15.	Esfandiari M., Jabari S., McGrath H., Coleman
D. 2020. Flood mapping using random forest and
identifying the essential conditioning factors; a case
study in Fredericton New Brunswick Canada, IS-
PRS Annals of Photogrammetry Remote Sensing
Spatial Information Sciences, 3(3), 609–615. https://
doi.org/10.5194/isprs-annals-V-3-2020-609-2020

16.	Faruq A., Arsa H.P., Hussein S.F., Razali C.M.,
Marto A., Abdullah S.S. 2020. Deep learning-based
forecast and warning of floods in Klang River, Ma-
laysia. Ingénierie des Systems d Inf., 25(3), 365–
370, https://doi.org/10.18280/isi.250311

17.	Fazel-Rastgar F., Sivakumar V. 2023. A case study of an
extreme flooding episode in Charikar, Eastern Afghan-
istan, Journal of Water and Climate Change, 14(12),
4689–4707, https://doi.org/10.2166/wcc.2023.462

18.	Gaffinet B., Hagensieker R., Loi L. and Schumann
G. 2023. Supervised machine learning for flood
extent detection with optical satellite data,
IGARSS 2023 - 2023 IEEE International Geosci-
ence and Remote Sensing Symposium, Pasadena,
CA, USA, 2084–2087, https://doi.org/10.1109/
IGARSS52108.2023.10282274

19.	Ghasemi P., Karimian N. 2020. A qualitative study
of various aspects of the application of IoT in di-
saster management. 6th International Conference on
Web Research (ICWR), 77–83. IEEE. https://doi.
org/10.1109/ICWR49608.2020.9122323

20.	Goyal H.R., Sharma S. 2023. Flood management
system using cloud computing and internet-of-
things, 2023 5th Biennial International Conference
on Nascent Technologies in Engineering (ICNTE),
Navi Mumbai, India. 1–6, https://doi.org/10.1109/
ICNTE56631.2023.10146661

21.	Gude V., Corns S., Long S. 2020. Flood prediction
and uncertainty estimation using deep learning. Wa-
ter, 12(3), 884. https://doi.org/10.3390/w12030884

22.	Gupta L., Dixit J. 2023. Assessment of urban flood
susceptibility and role of urban green space (UGS)
on flooding susceptibility using GIS-based proba-
bilistic models. Environmental Monitoring and As-
sessment, 195(12), 1518, https://doi.org/10.1007/
s10661-023-12061-4

23.	Harshasimha A.C., Bhatt C.M. 2023. Flood vulner-
ability mapping using maxent machine learning and
Analytical Hierarchy Process (AHP) of Kamrup Met-
ropolitan District, Assam. Environ., Sci. Proc. 2023,
25(1), 73. https://doi.org/10.3390/ECWS-7-14301

24.	Hashi A.O., Abdirahman A.A., Elmi M.A., Hashi S.Z.,
Rodriguez O.E. 2021. A real-time flood detection sys-
tem based on machine learning algorithms with empha-
sis on deep learning. International Journal of Engineer-
ing Trends and Technology, 69(5), 249–256. https://doi.
org/10.14445/22315381/IJETT-V69I5P232

25.	Ignatowicz J., Kutt K., Nalepa G.J. 2024. Evaluation
and Comparison of Emotionally Evocative Image Aug-
mentation Methods. 28th International Conference on
Knowledge-Based and Intelligent Information & En-
gineering Systems (KES 2024), Procedia Computer
Science, Elsevier. https://arxiv.org/pdf/2406.16187

26.	Kalantar B., Ueda N., Saeidi V., Janizadeh S., Sha-
bani F., Ahmadi K., Shabani F. 2021. Deep neural
network utilizing remote sensing datasets for flood
hazard susceptibility mapping in Brisbane, Aus-
tralia. Remote Sensing, 13(13), 2638. https://doi.
org/10.3390/rs13132638

27.	Kumar V., Azamathulla H.M., Sharma K.V., Mehta
D.J., Maharaj K.T. 2023. The state of the art in deep
learning applications, challenges, and future pros-
pects: A comprehensive review of flood forecast-
ing and management, Sustainability, 15(13), 10543.
https://doi.org/10.3390/su151310543

28.	Lei X., Chen W., Panahi M., Falah F., Rahmati O.,
Uuemaa E., Kalantari Z., Ferreira C.S., Rezaie F.,
Tiefenbacher J.P., Lee S. 2021. Urban flood model-
ing using deep-learning approaches in Seoul, South
Korea. Journal of Hydrology, 601, 126684, https://
doi.org/10.1016/j.jhydrol.2021.126684

29.	Putranto M.F. and Munir R. 2023. Deep

257

Ecological Engineering & Environmental Technology 2024, 25(10), 236–257

Learning Approach for Heavy Rainfall Predic-
tion Using Himawari-8 And RDCA Data, In-
ternational Conference on Computer, Control,
Informatics and its Applications (IC3INA), Band-
ung, Indonesia, 424–429. https://doi.org/10.1109/
IC3INA60834.2023.10285744

30.	Maurya J., Pant H., Dwivedi S., Jaiswal M. 2021,
Flood avoidance using IOT. International Journal
of Engineering Applied Sciences and Technol-
ogy, 6(1), 155–158. https://ijeast.com/papers/155-
158,Tesma601,IJEAST.pdf

31.	Miau S., Hung W.H. 2020. River flooding forecast-
ing and anomaly detection based on deep learn-
ing. IEEE Access, 8, 198384–198402. https://doi:
10.1109/ACCESS.2020.3034875

32.	Munawar H.S., Ullah F., Qayyum S., Heravi A. 2021.
Application of deep learning on uav-based aerial
images for flood detection. Smart Cities, 4(3), 1220–
1242, https://doi.org/10.3390/smartcities4030065

33.	Patil S., Sawant S., Joshi A. 2023. Flood detec-
tion using remote sensing and deep learning
approaches, 14th International Conference on
Computing Communication and Networking Tech-
nologies (ICCCNT), Delhi, India, 1–6, https://doi.
org/10.1109/ICCCNT56998.2023.10306978

34.	Prathyusha K., Raju A.J., Rao P.J. 2024. Novel
Malaria Risk Prediction and Mapping of Integrat-
ed Tribal Development Agency, Paderu Region,
India, Using SAMRR. Journal of the Indian Soci-
ety of Remote Sensing, 52(1),167–187. https://doi.
org/10.1007/s12524-023-01796-9

35.	Ramachandraiah C. 2011. Coping with urban flood-
ing: a study of the 2009 Kurnool floods, India. En-
vironment and Urbanization, 23(2), 431–46. https://
doi/10.1177/0956247811418733

36.	Rao G.N., Rao P.J., Duvvuru R., Beulah K., Lydia
E.L., Rathnala P., Balakrishna B., Motru V.R. 2024.
Neural fuzzy system design in forest fire detec-
tion. Microsystem Technologies, 30(4), 455–467.
https://doi.org/10.1007/s00542-023-05496-9

37.	Rauschmayr N., Kama S., Kim M., Choi M., Ken-
thapadi K. 2022. Profiling deep learning workloads
at scale using amazon sagemaker. In Proceedings of
the 28th ACM SIGKDD Conference on Knowledge
Discovery and Data Mining, 3801–3809. https://doi.
org/10.1145/3534678.3539036

38.	Roy P., Pal S.C., Chakrabortty R., Chowdhuri I.,
Malik S., Das B. 2020. Threats of climate and land
use change on future flood susceptibility. Journal
of Cleaner Production, 272, 122757, https://doi.
org/10.1016/j.jclepro.2020.122757

39.	Samikwa E., Voigt T., Eriksson J. 2020. Flood Predic-
tion Using IoT and Artificial Neural Networks with
Edge Computing, 2020 International Conferences
on Internet of Things (iThings) and IEEE Green
Computing and Communications (GreenCom) and

IEEE Cyber, Physical and Social Computing (CP-
SCom), IEEE Smart Data(SmartData), 234–240,
https://doi.org/10.1109/iThings-GreenCom-CP-
SComSmartData-Cybermatics50389.2020.00053

40.	Sankaranarayanan S., Prabhakar M., Satish S., Jain
P., Ramprasad A., Krishnan A. 2020. Flood predic-
tion based on weather parameters using deep learn-
ing. Journal of Water and Climate Change, 11(4),
1766–1783. https://doi.org/10.2166/wcc.2019.321

41.	Seidel D., Wurster S., Jenks J.D., Sati H., Gangneux
J.P., Egger M., Alastruey-Izquierdo A., Ford N.P.,
Chowdhary A., Sprute R., Cornely O. 2024. Impact
of climate change and natural disasters on fungal
infections. The Lancet Microbe. 5(6), e594-e605.
https://doi.org/10.1016/S2666-5247(24)00039-9

42.	Sharma V.K., Azad R.K., Chowdary V.M., Jha
C.S. 2022. Delineation of Frequently Flooded
Areas Using Remote Sensing: A Case Study in
Part of Indo-Gangetic Basin, Geospatial Tech-
nologies for Land and Water Resources Manage-
ment, Springer, Cham, 103, 505–530. https://doi.
org/10.1007/978-3-030-90479-1_27

43.	Shreekumar S., Madhu D., Akella A.K. 2021. Urban
Flood Susceptibility Mapping of Kochi Taluk Using
Remote Sensing and GIS. Fourth International Con-
ference on Electrical, Computer and Communication
Technologies (ICECCT), Erode, India, 1–6. https://
doi.org/10.1109/ICECCT52121.2021.9616790

44.	The News Minute. 2015. Body of six-year-old washed
away in Vizag drain, found 50 km off coast (Accessed
on 21September, 2024) (https://www.thenewsminute.
com/andhra-pradesh/body-six-year-old-washed-away-
vizag-drain-found-50-km-coast-34811)

45.	The News Minute. 2021. Andhra flash floods: 30
passengers travelling in RTC buses washed away,
12 dead. (Accessed on 24 December, 2023) (https://
www.thenewsminute.com/andhra-pradesh/andhra-
flash-floods-30-passengers-travelling-rtc-buses-
washed-away-12-dead-157835).

46.	Vanama V.S., Shitole S., Rao Y.S. 2020. Urban Flood
Mapping with C-band RISAT-1 SAR Images: 2016
Flood Event of Bangalore City, India, 2020 Interna-
tional Conference on Convergence to Digital World
- Quo Vadis (ICCDW), Mumbai, India, 1–4, https://
doi.org/10.1109/ICCDW45521.2020.9318710

47.	Qi W., Ma C., Xu H., Chen, Z., Zhao K., Han H.
2021. A review on applications of urban flood
models in flood mitigation strategies, Natural
Hazards, 108, 31–62. https://doi.org/10.1007/
s11069-021-04715-8

48.	Yin Y. 2023. Research on natural disaster target
change detection method based on deep learn-
ing, IEEE 3rd International Conference on Power,
Electronics and Computer Applications (ICPECA),
Shenyang, China, 946–950. https://doi.org/10.1109/
ICPECA56706.2023.10076044

