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INTRODUCTION

Natural disasters caused by climate change, 
such as earthquakes, tsunamis, floods, wildfires, 
and other communicable diseases [Seidel et al., 
2024; Rao et al., 2024; Prathyusha et al., 2024], 
have become very common in recent times. 
Whether natural or human-caused disasters, re-
sult in a high fatality rate and significant financial 
losses. Flooding stands out as a prominent natural 
disaster, often triggered by rapid environmental 
and climatic changes. In recent days, floods that 
have occurred in many places all across the world 
have resulted in high scores of deaths and have 
also broken various records for rainfall that have 

been in a few places for a very long time. Floods 
are unpredictable due to several meteorological 
and environmental conditions, making them chal-
lenging to forecast. Although floods are inevita-
ble natural occurrences, it is essential to imple-
ment preventive measures in order to limit loss 
of life and mitigate economic harm [Wenchao et 
al., 2021; Bentivoglio et al., 2022; Faruq et al., 
2020]. India is one of the world’s countries ex-
periencing severe urban and rural floods. India 
has identified approximately 12% of its land as 
a flooding zone, covering 40 million hectares. 
Andhra Pradesh, Uttar Pradesh, Haryana, Pun-
jab, Bihar, and Gujarat are especially vulnerable 
states. In particular, the state of Andhra Pradesh is 
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ABSTRACT
Climate change has had a significant impact on natural disasters, particularly floods, in recent times. Early warning 
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training network’s performance with the optimizer by tuning epochs and hyper-parameters as constants. Specifi-
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experiencing severe urban flooding due to heavy 
rainfall, as shown in Figure 1. Figure 1 shows a 
gradual increase in rainfall from 2014 to 2020. 
The severity of rainfall is increasing day by day 
in all 13 districts of Andhra Pradesh, as shown 
in Figure 2. Out of the 13 districts, West Goda-
vari, East Godavari, Guntur, and Chittoor districts 
experienced high rainfall in Srikakulam district, 
while the remaining 8 districts (Nellore and Vi-
jayawada) experienced normal rainfall. As per the 
Central Water Commission (CWC) Reports 2020, 
the Godavari River, which flows through Andhra 
Pradesh, has witnessed floods 34 times between 
1953 and 2019. Flooding remains a significant 
concern for the state, impacting both people and 

infrastructure [Bentivoglio et al., 2022; Sanka-
ranarayanan et al., 2020].  Currently, cloud bursts 
cause urban flash floods, resulting in severe dam-
age to the public and infrastructure. Global warm-
ing has led to a drastic increase in urban and flash 
floods, as evidenced by the floods in Chennai in 
2015, Hyderabad in 2020, and Bengaluru in 2022, 
among others. Recent global warming trends 
predict a significant increase in urban flooding, 
which could potentially trigger severe disasters 
and impact 60 percent of the country’s popula-
tion. Despite the increasing frequency of disasters 
causing numerous fatalities, the effectiveness of 
early warning systems remains limited in our cur-
rent smart digital era [Xinxiang et al., 2021].

Figure 1. Year wise minimum and maximum rainfall in Andhra Pradesh state during 
2014–2020 (Source: Central Water Commission, Govt. of AP, India)

Figure 2. Year wise district minimum and maximum rainfall of Andhra Pradesh state 
during 2014–2020. (Source: Central Water Commission, Govt. of AP, India)
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A six-year-old girl named Athidi drowned in 
an urban flood incident in Visakhapatnam Smart 
City due to heavy rain, and authorities reported 
her death five days later [The News Minute, 
2015]. Another flood event trapped three AP State 
Road Transport Corporation buses carrying pas-
sengers in flood waters near Ramapuram in Ra-
jampet mandal. Despite the fire services rescuing 
most of the passengers and APSRTC staff, they 
found 12 washed-away persons dead at various 
places in Rajampet mandal of Kadapa district 
[The News Minute, 2021]. 

The flooding of Kurnool town in Andhra 
Pradesh, India, in October 2009 illustrates how 
several factors combined to cause one of the 
worst floods in 100 years. More than 30 feet of 
water submerged several areas, and it took over 
three days for the water to fully recede from the 
town, affecting 4,70.000 people [Ramachand-
raiah, 2011]. These types of incidents are not 
unique to Andhra Pradesh; the rest of the states 
are also experiencing similar urban flood effects. 
An incident in Bangalore city highlights the de-
ficiency in the early warning system for urban 
floods [Deccan Herland, 2023]. On Sunday eve-
ning, the car carrying a software engineer from 
Andhra Pradesh drowned in the storm water at an 
underpass near KR Circle in Bengaluru. We iden-
tified the deceased as Bhanurekha, a native of Vi-
jayawada. Many such incidents are happening all 
over the globe due to heavy rains and flash floods. 
At present, there is a technical challenge in de-
veloping an Urban Flood (UF) early warning sys-
tem. While rescue teams like the National Disas-
ter Response Force (NDRF) are well-trained and 
equipped to respond swiftly, the dissemination of 
location information and early warnings remain 
two critical tasks for effective UF rescue opera-
tions (Eric et al., 2020). At present, there is a need 
for early identification of urban flood regions. 
The researchers have addressed the conditions of 
pre-flood and post-flood areas using SAR (Syn-
thetic Aperture Radar) images to support rescue 
operations across coastal regions [Shreekumar 
et al., 2021]. Researchers have recommended di-
verse solutions through deep learning algorithms 
using a variety of SAR datasets to detect floods 
[Eric et al., 2020].

Urban floods will have a significant impact, 
leading to the drowning of humans and other 
objects such as vehicles, road networks, electric 
poles, fallen trees, and manholes. In nations like 
India, the lack of urban flood water-level alert 

systems contributes to the drowning of numerous 
people, leading to fatalities; in some cases, the 
bodies remain unidentified and untraceable for 
months. In particular, poor solid and liquid waste 
management during post-urban floods contributes 
to the spread of communicable diseases. Current-
ly, rescue teams are encountering a technological 
challenge in obtaining immediate information 
about urban floods, a crucial step in expediting 
rescue operations to save lives and valuable as-
sets. Currently, there is a need to develop smart 
urban flood prediction and monitoring systems 
that disseminate instant flood information to res-
cue teams for a quick response. Currently, river-
based flood prediction tasks have advanced sig-
nificantly, incorporating factors such as flood ve-
locity, water levels, and rainfall, and utilizing the 
Internet of-Things (IoT) and artificial intelligence 
(AI) to inform the public about flood events. Cur-
rently, AI-based deep learning technologies play 
a significant role in object prediction, but their 
accuracy in predicting urban flood objects is rela-
tively low. In deep learning algorithms, the train-
ing of networks, in conjunction with optimizers 
and epochs, plays a crucial role in achieving high-
er accuracies in object detection.

At present, there is a need to develop smart 
artificial intelligence technologies that function 
intelligently, capable of alerting citizens and lo-
cal administrations to initiate immediate rescue 
operations. Detecting objects in flood water poses 
a significant challenge, particularly during urban 
floods. The urban flood object detection accuracy 
poses a significant challenge for researchers and 
practitioners, as achieving higher detection accu-
racies primarily depends on the object’s training 
accuracy. However, researchers have conducted 
limited pre-training studies to assess the perfor-
mance of urban flood object detections. In gen-
eral, if the training accuracy is high, it may result 
in excellent test accuracy. Despite the network 
training model’s reputation for object detection, 
the epoch rate at which the data undergoes opti-
mal training remains unknown. The current work 
focuses on incorporating deep learning technolo-
gies to identify and monitor flood objects in urban 
areas, where the detection accuracy of multi-class 
flood objects is poor [Anil et al., 2022; Yazeed 
et al., 2022]. Generally, object detection accuracy 
depends on training accuracy, but researchers are 
often unsure how to set hyperparameters such as 
learning rate, epochs, optimizers, etc. to achieve 
100% accuracy. 
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Object detection accuracy is dependent on 
training quality. Researchers often struggle to 
optimize hyperparameters like learning rate, ep-
ochs, optimizers, etc., for perfect accuracy. The 
choice of training network also depends on data 
characteristics and the number of classes, aim-
ing for higher accuracy. The current investigation 
adopted two popular pre-trained models, namely 
AlexNet and XceptionNet, to attain higher train-
ing accuracy on a novel custom flood object data-
set. We collected 110 flood images from various 
regions of Andhra Pradesh state without segmen-
tation for this analysis. Incorporating a segmenta-
tion block into the main procedure can enhance 
classification accuracy while simultaneously re-
ducing processing time. We run each of the train-
ing networks separately, keeping all other hyper-
parameters (like learning rate, etc.) the same. We 
change optimisers like SGDM, ADAM, and RM-
SProp from 20 to 100 epochs. We look at how 
well AlexNet and XceptionNet worked and find 
that XceptionNet did better with SDGM, ADAM, 
and RMSPROP, getting a 96.47% accuracy rate 
in training classification. However, in each ep-
och, the success rate of SGDM is higher than that 
of ADAM and RMSProp. In the present work, 
the Xception Net pre-trained model shows good 
training accuracy of 97.67% when classes are 
limited and less complex. However, when trained 
on flood datasets with three types of flood im-
ages, both AlexNet and Xception Net pre-trained 
models get between 23% and 50% accuracy, with 
extra help [Gaffinet et al., 2023; Vanama et al., 
2020]. The current study solved important train-
ing problems in balanced flood object datasets by 
finding the best deep learning network, optimiz-
ers, and epoch rate to improve training accuracy. 
The present study is limited to verifying the best 
training accuracy on popular deep learning mod-
els such as XceptionNet and AlexNet, whereas 
very little research has been performed on Urban 
Flood Object data. This work aims to find the op-
timal hyperparameters to attain higher accuracies 
on XceptionNet and AlexNet using flood datas-
ets [Mohammadtaghi et al., 2021]. The analysis 
of the dataset training results suggests that Xcep-
tionNet is the optimal network for applying de-
tector algorithms.

The current research solely focuses on train-
ing problems with flood object datasets, and ad-
ditionally, it must undergo accuracy tests using 
detector algorithms such as YOLO, MobileNet, 
etc. The current study discovered that the present 

XceptionNet is preferable to training the flood 
object dataset if they are associated with water 
images. This technical analysis is beneficial to 
the National Disaster Response Force (NDRF), 
which currently has limited facilities for dealing 
with Urban Floods (UF). Implementing a system 
to share Location Information and Early Warn-
ings periodically would allow for early detection 
of urban floods, potentially reducing economic 
losses and fatalities [Anil et al., 2022].The rest 
of the article is organized as follows: Section II 
begins by reviewing relevant literature and tech-
nique to set the stage for our investigation. Sec-
tion III details our novel approach and strategy. 
Section IV explains the steps taken to achieve our 
goals, providing a clear research plan. Section V 
analyses the recommended technique, its efficacy, 
and its consequences, and presents our findings in 
depth. Section VI Concludes by providing a con-
cise overview of our primary discoveries and pro-
posing potential avenues for future investigation.

RELATED WORKS

This study examines various ways utilizing deep 
learning algorithms to predict urban floods [Hashi et 
al., 2021]. The Esfandiari et al (2020) presented an 
advanced approach to flood detection and classifica-
tion, addressing limitations in previous studies that 
relied on single image types like SAR (Synthetic Ap-
erture Radar) [Esfandiari et al., 2020]. CNN observe 
multi-class scenarios along with water flow levels to 
differentiate emergency of flood events on the vis-
ible impacts of flooded regions. At the event, a Flood 
picture was put on a CNN design and tested on a part 
of the Custom Dataset from Google. The proposed 
Convolutional Neural Network (CNN) architecture 
outperforms pre-trained VGG models in terms of 
precision and retraining time on standard PCs [Mau-
rya et al., 2021]. 

To enhance the dataset without additional data 
collection, rotational changes were applied as an 
augmentation technique. Despite these advance-
ments, the resulting 96.67% accuracy is considered 
insufficient for flood detection applications, under-
scoring the critical need for extremely high preci-
sion in emergency response scenarios [Ghasemi et 
al., 2020]. Ahmed et al. developed and deployed a 
flood segmentation system named DeepLab, which 
use a deep learning algorithm to precisely and ef-
ficiently identify and differentiate the presence and 
magnitude of floods using visual data. The neural 
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network underwent training using a vast assort-
ment of satellite photos, which were augmented 
with ground truth labels denoting the existence 
of flooded regions. During the inference process, 
the DeepLabv3 model, which has been trained, is 
utilized to predict the probability of each pixel in 
new satellite photos being part of a flooded area 
[Ahmed et al., 2023]. Braveen et al. proposed a 
unique Internet of Things-based IDI Sense app has 
been presented to monitor and transmit real-time 
parameters concerning dams and weather condi-
tions. Initially, a combination of rainfall sensors, 
waterfall sensors, flow sensors, and ultrasonic sen-
sors are utilized to accurately measure the quantity 
of water, the extent of vacant space in the dam, and 
the velocity of water flow within the dam. The data 
gathered by sensors positioned at several locations 
on the dam is transmitted to an Arduino device that 
is connected to the Internet. The spiking neural net-
work (SNN) is utilized to forecast rainfall by ana-
lysing historical data from the meteorology dataset 

[Braveen et al., 2023]. However, the pursuit of 
even higher accuracy remains a priority for reli-
able real-world deployment, highlighting poten-
tial areas for future research such as incorporating 
additional data sources, exploring more advanced 
model architectures, and further refining data aug-
mentation techniques.

METHODOLOGY

The study utilizes the analysis process de-
picted in Figure 3. The recommended approach 
consists of six main steps: Data Collection, Pre-
processing, Learning Flood Data, DCNN, Classi-
fier, and Test Flood Data. It also recommends the 
highest training accuracy for the flood object da-
taset. The methodology outlines the consecutive 
process of two convolutional network topologies 
– AlexNet and XceptionNet. Using input sizes 
of 227 × 227 pixels for AlexNet and 299 × 299 

Figure 3. Methodology for data training on custom flood object dataset
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pixels for Xception Net, the study put into prac-
tice a custom three-class flood dataset collected 
from Google. This dataset is applied to both mod-
els, experimenting with various training options 
including different solvers or optimizers, epoch 
numbers, and training parameters such as learning 
rate, constant etc. The use of a custom Google-
sourced dataset and the exploration of different 
training parameters highlight the efforts to find 
the most accurate flood image classification.

MATHEMATICAL NOTATIONS 
AND ASSUMPTIONS

As specified earlier section, the XceptionNet 
and AlexNet is used for the study. The mathemat-
ical representation of XecptionNet and AlexNet 
is represented in equation 1. The flood detection 
classification is performed on the feature map’s 
function. The feature map F(z) is the product of 
Input (M) and Kernels (W). The feature classifica-
tion function is designated in Equation 1. Where, 
‘S’ represents the list of flood data samples that 
range from -∞ to ∞ and Q, M, N represents Fea-
ture maps, Input and Kernels respectively.

	 𝐹𝐹(𝑧𝑧) = [𝑞𝑞] (𝑀𝑀 ×  𝑁𝑁) = ∑  𝑁𝑁 [𝑞𝑞 +  𝑆𝑆] 𝑀𝑀[𝑆𝑆] 
𝑠𝑠=∞

𝑠𝑠 =−∞
 

 

	(1)

Flood object data preparation

The Flood team compiles the bespoke Flood 
object dataset without any processing. The Flood 
team compiled it from both fieldwork and online 
sources. Figure 3 illustrates that the compiled da-
taset consists of approximately one hundred pho-
tos, each associated with three distinct categories. 
Images in the collection showcase key locations 
that can significantly impact metropolitan zones 
worldwide, including India. We save each down-
loaded photograph in a unique JPG file, utilizing 
the RGB color space by default. Similarly, class 
1 consists of submerged automobiles, while class 
2 comprises water markers indicating the water 
depth in the submerged areas. Finally, class 3 en-
compasses the collection of fallen electric poles. 

This is because severe storms typically impact 
them swiftly, and most floods and cyclones are con-
sidered natural disasters. Additionally, electricity is 
the primary cause of severe shocks, which have the 
potential to result in fatalities. Therefore, the current 
detection of fallen electric poles plays a crucial role 
in preventing life-threatening shocks.

Dataset pre-processing

Pre-processing facilitates the elimination of 
unwanted distortions and boosts particular charac-
teristics that are essential for the intended purpose. 
We utilize the subsequent pre-processing method-
ologies throughout the dataset preparation:
1.	Data profiling:  the unprocessed Flood object 

dataset was subjected to profiling stages in-
cluding analysis of size distribution, shuffling, 
brightness distribution, and color distribution. 
The Matlab simulation software is utilized to 
analyze Flood datasets, with a focus on image 
quality metrics like brightness, aspect ratios, 
convexity, color distribution, fine details, reso-
lution and segmentation of flood affected im-
ages [Rauschmayr et al., 2022].

2.	Data cleaning: we eliminated erroneous, cor-
rupted, improperly formatted, redundant, or 
unfinished photos of flood objects impacted 
from the dataset. A total of 139 photographs 
depicting ‘Car’ were received, and 29 images 
were removed from the collection. Similarly, 
we captured 126 images and discarded 16 
of them; most of them are duplicates, while 
only a few are hazy. Class 3, like the previous 
class, has 142 photographs labeled as ‘Water-
markers’. However, 32 of these photos were 
removed since they had low resolution and 
brightness. We remove 77 anomalous data 
points from the original dataset of 407, re-
sulting in a remaining set of 330 images to 
restore the balance of the dataset [Angloher 
et al., 2023]. 

3.	Balanced dataset:  the classification of bal-
anced datasets yields higher accuracy and 
lower bias in comparison to imbalanced da-
tasets. For the current research, a selection of 
330 high-quality flood photographs was made. 
These images were then resized to a resolution 
of 720 × 720 pixels in each category. Subse-
quently, these photos undergo enhancement 
(Chen et al., 2021). 

4.	Augmentation:  each flood class image under-
goes an augmentation operation that involves 
Contrast  (Adaptive Equalization), Bounding 
Boxes, Flip (Horizontal (180O) and Vertical 
(90O)), Blur, and Noise. This procedure is re-
peated eight times, resulting in a total of 2640 
augmented images [Ignatowicz et al., 2024]. 
The dataset is partitioned into three groups, 
with 70% allocated for training, 20% for test-
ing, and validation 10%. 
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To accelerate the training process and ensure 
more realistic model testing calculations, we re-
sized the image dataset. Specifically, images were 
downsized to 227 × 227 pixels for AlexNet and 
299 × 299 pixels for XceptionNet, as illustrated 
in Figure 5.

ARCHITECTURE OF DEEP 
CONVOLUTION NEURAL NETWORK 

Convolutional neural networks (CNNs) are 
a prominent deep learning architecture requires 
thorough training across multiple layers. They 
have gained widespread adoption in computer vi-
sion tasks due to their remarkable effectiveness. 
CNNs excel at processing complex visual inputs, 
transforming chaotic image data into meaningful 
classification results. This approach has been re-
fined to provide a structured framework for tack-
ling various visual recognition challenges. Ac-
cording to Figure 6, there are 3 layers: Kernels, 
featured map and fully connected layers where 

each layer has its own functional behaviour. Fully 
connected layers transform the output by com-
pressing it, encoding spatial information into the 
channel dimension through reshaping. 

A kernel, also called a filter, is a small matrix 
of learnable parameters used in the convolution 
operation. It detects specific patterns or features 
in the input data. Feature maps are the outputs of 
convolutional layers, representing distinct fea-
tures from the input. This process transforms im-
ages into numerical features.

XceptionNet architecture

The architecture is built entirely on depth wise 
separable convolution layers, representing a novel 
approach in convolutional neural networks. This 
design was introduced to address the computa-
tional costs associated with traditional convolu-
tion operations. The key innovation of Xception-
Net lies in utilization of two-stage convolution 
process: (i) depth wise convolution and (ii) point-
wise convolution are used to combine information 

Figure 4. Sample urban flood object dataset class (A–B): car; (C–D): water-markers; (E–F): electricity poles
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Figure 6. Architecture of deep convolution neural network to classify flood objects

Figure 5. Annotated (pre-processed) urban flood object dataset class (1–2): car; 
(3–4): water-markers; (5–6): electricity poles
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across all channels. By decomposing the convolu-
tion process into these two distinct steps, Xcep-
tionNet achieves greater computational efficiency 
while maintaining or even improving performance 
in various deep learning tasks, particularly in im-
age processing and computer vision applications.

ReLU Layer

The ReLU (Rectified linear unit) layer is the 
most prevalent in the XceptionNet model, appear-
ing 35 times throughout the network. It performs a 
thresholding operation on each input element, zero-
ing out any negative values. In this implementation, 
the layer’s attributes - max_value, threshold value, 
and negative_slope - are all non-negative.

MaxPooling 2D Layer

The XceptionNet training architecture incor-
porates four MaxPooling 2D layers, which are 
essential for reducing the spatial dimensions of 
feature maps. These layers perform max pool-
ing, a process that extracts the highest value from 
each window of a feature map, thereby decreas-
ing computational load and mitigating overfit-
ting. Each MaxPooling 2D layer is characterized 
by three key parameters: Pool Size, Strides, and 
Padding. The Pool Size, specified as an integer or 
a tuple of 2 integers, determines the dimensions 
of the pooling window. For example, a pool size 
of (3, 3) means the layer will select the maximum 
value from a 3x3 window. 

Strides are a tuple of two integers, an integer, 
or None that determine the distance at which the 
pooling window moves for each stride. In this 
specific XceptionNet implementation, strides 
are set to (2, 2). Lastly, Padding adjusts the input 
boundaries, and in this network, it is set to (0, 0, 
0, 0), indicating no padding is applied.

Input layer

The XceptionNet typically accepts input im-
ages of 299 × 299 pixels. This input layer consists 
of artificial neurons that receive the initial RGB 
image data, which is then processed by subse-
quent layers in the neural network.

Grouped convolution 2D layer

The Grouped Convolution 2D layer is the pre-
dominant layer in the XceptionNet deep learning 
model, occurring 34 times throughout the net-
work. In this layer, the input channels are split 
into groups by a 2-D grouped convolutional layer, 

which then uses sliding convolutional filters. The 
grouped convolution layers are separated into two 
channels, referred to as Depth-wise Separable 
Convolution. This procedure involves applying a 
convolution filter to each input channel individu-
ally. Then, a point-wise convolution is used to 
combine the result of the depth-wise convolution 
with 1 × 1 convolutions in a linear manner.

Addition layer

The ‘Addition layer’ performs element-wise 
addition of inputs from several neural network 
layers. When constructing the layer, it is crucial 
to explicitly provide the desired amount of inputs. 
The layer’s inputs are designated with specific 
names, totaling N inputs. All inputs to an addi-
tion layer possess identical size. The ‘Addition 
layer’ is the most frequently occurring layer in the 
XceptionNet deep learning model, appearing 12 
times throughout the network

Output layer

Generally, the Output Layer has 1000 neurons 
(for the 1000 classes in the ImageNet dataset) with 
a SoftMax activation. In this case, the classification 
layer forms the designated output layer. The size of 
the input layer contains three flood image classes for 
classification: drowning vehicles, fallen poles, and 
water marker reading. The output size is two, and 
cross-entropy is used as the loss function.

SoftMax layer

The SoftMax function is utilized as an acti-
vation function in the XceptionNet deep learn-
ing model. The function normalizes the result by 
applying a transformation that converts it into a 
probability distribution, using the axis supplied. 
The function accepts an integer or a list of num-
bers as input to determine the axis, and the output 
preserves the same shape as the input.

Convolution 2D layer

The convolution layer forms the core of the 
XceptionNet deep learning model, appearing 40 
times throughout the network architecture. This 
layer processes input data through three distinct 
phases: the Entry Flow, Middle Flow, and Exit 
Flow. The Entry Flow begins with three convo-
lution layers, each employing 32 filters of size 3 
× 3. Following this, the Middle Flow consists of 
8 blocks, each containing a depth-wise separable 
convolution layer with 3 × 3 filters and a max pooling 
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layer. The network concludes with the Exit Flow, 
which incorporates two depth-wise separable con-
volution layers (also with 3 × 3 filters) and a global 
average pooling layer. Each Convolution 2D Layer 
is characterized by specific properties: a filter size of 
(3, 3), 64 filters, a stride of (2, 2), and a scale factor 
of (1, 1). The padding value is set to ‘0’, with weights 
dimensioned as 3 × 3 × 3 × 64 and bias as 1 × 1 × 64. 
Additional weight parameters such as WeightLearn-
RateFactor, WeightL2Factor, and BiasLearnRate-
Factor are all set to 1, while BiasL2Factor is 0. The 
network utilizes the glorot method for weight initial-
ization and zeros for bias initialization. This intricate 
structure allows the XceptionNet to effectively pro-
cess and learn from complex image data, making it a 
powerful tool in deep learning applications.

Fully connected layer 

The XceptionNet’s training architecture includes 
two fully connected layers, each containing 4096 
neurons with ReLU activation. The final layer auto-
matically determines the input size and sets the out-
put size to 2. Several parameters, including Weight-
LearnFactor, WeightL2Factor, and BiasLearnRate-
Factor, are set to 1, while BiasL2Factor is set to 0. 
The weights are initialized using the Glorot method, 
and biases are initialized to zeros.

Batch normalization

The Batch Normalization layer is the predomi-
nant layer in the XceptionNet deep learning model, 

occurring 40 times within the network. A Batch Nor-
malization layer performs a normalization process 
on a small batch of data, treating each channel’s ob-
servations independently. To expedite the training 
of the convolutional neural network and reduce its 
vulnerability to network initialization, it is recom-
mended to include batch. The XceptionNet consists 
of 170 layers, including 22.8 million parameters. As 
shown in Table 1. The default input image size for the 
model is 299 × 299 × 3. Subsequently, it undergoes 
a continuous reduction process, gradually decreasing 
from 149 × 149 × 32. Finally, the classification out-
put is compressed to 1× 1 s × 1000 c convolutions.

AlexNet architecture

AlexNet is a ground breaking convolutional 
neural network (CNN) widely recognized for its 
exceptional performance in image recognition and 
classification tasks. Among the components that 
make up Alex Net are five convolution layers, three 
max-pooling layers, two normalized layers, two fully 
linked layers, and one SoftMax layer. A convolution 
filter and a non-linear activation function known as 
“ReLU” are the components that make up each in-
dividual convolution layer. The pooling layers carry 
out the max-pooling function, and the presence of 
completely connected layers fixes the input size.

Convolution 2D layer

The AlexNet deep learning model mainly de-
pends on convolution layers, incorporating a total 

Table 1. Prototype of 170 Layers of XceptionNet Deep Convolution Networks

No. Name Type Activations Learnable
properties

1 Input_1 299 × 299 × 3 images
With rescale symmetric normalization Image input 299(s) × 299(s) × 3(c) × 

1(B) -

2
Block1_conv1 32 3 × 3 × 3
convolution with stride [2 2] and padding 
[0 0 0 0]

Convolution 149(s) × 19(s) × 32(c) × 1B
Weights

(3 × 3 × 3 × 32)
Bias (1 × 1 × 32)

3 Block1_conv1_bn
Batch Normalization with 32 channels

Batch
normalization 149(s) × 19(s) × 32(c) × 1B Offset (1 × 1 × 32)

Scale (1 × 1 × 32)
4 Block1_conv1_act ReLU ReLU 149(s) × 19(s) × 32(c) × 1B -

5 Block1_conv2 64 3 × 3 × 32 convolutions 
with stride [1 1] and padding [ 0 0 0 0 ] Convolution 147(s) × 147(s) × 64(c) × 1B

Weights
(3 × 3 × 32 × 64)
Bias (1 × 1 × 64)

|
|
|

|
|
|

|
|
|

|
|
|

|
|
|

168 Predictions
1000 fully connected layers Fully connected 1(s) × 1(s) × 1000 (c) × 1B

Weights
(1000 × 2048)
Bias (1000 ×1)

169 Prediction_ SoftMax SoftMax 1(s) × 1(s) × 1000 (c) × 1B -

170 Classification Layer _Predictions Classification output 1(s) × 1(s) × 1000 (c) × 1B -
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of 40 instances in its design. The network is 
organized with five separate convolutional lay-
ers, each tailored with appropriate parameters 
to analyze and extract characteristics from the 
input data. The initial convolutional layer uti-
lizes 96 filters measuring 11 × 11, with a stride 
of 4 and ReLU activation. Next, the second 
layer is implemented with 256 filters of dimen-
sions 5 × 5, a stride of 1, and ReLU activation. 
Both the third and fourth layers employ 384 fil-
ters of dimensions 3 × 3, with a stride of 1 and 
ReLU activation. The last convolutional layer 
consists of 256 filters, each having a size of 3 × 
3 and a stride of 1. The Convolution 2D Layer 
is defined by specific properties, such as a filter 
size of (3, 3), 64 filters, a stride of (2, 2), and 
a dilation factor of (1, 1). The padding value is 
set to zero, with weights dimensioned as 3 by 3 
by 3 by 64 and bias as 1 by 1 by 64. The weight 
parameters WeightLearnRateFactor, Weight-
2Factor, and BiasLearnRateFactor are assigned 
a value of 1, while the BiasL2Factor is set to 
0. The network utilizes the glorot approach for 
weight initialization and initializes biases with 
zeros. The complex arrangement of convolu-
tional layers of AlexNet allows it to efficiently 
analyze sophisticated visual data, making it a 
formidable tool for jobs involving picture rec-
ognition and classification.

Cross channel normalization

A layer called ‘channel-wise local response 
normalization’ performs normalizing on each 
channel individually. This layer conducts local 
response normalization on each channel individ-
ually and allows the user to specify the size of 
the ‘WindowChannelSize’ parameter. The ‘Cross 
Channel Normalization’ layer used only two 
times in Alex Net.

Fully connected layer

The AlexNet architecture includes three fully 
connected layers:Two layers with 4096 neurons 
each, using ReLU activation and An output layer 
with 1000 neurons (matching ImageNet classes) 
and SoftMax activation.The input size is automat-
ically determined, while the output size is set to 
three. Weight-related parameters (WeightLearn-
Factor, WeightL2Factor, BiasLearnRateFactor) 
are set to 1, with BiasL2Factor at 0. Weights are 
initialized using the Glorot method, and biases 
are initialized to zeros.

Grouped convolution 2D layer

In the AlexNet deep learning model, the 
Grouped Convolution 2D layer is the most fre-
quently used layer, appearing 34 times throughout 
the network. This layer divides the input channels 
into groups and applies sliding convolutional fil-
ters to each group. Grouped convolutional layers 
are ideal for channel-wise separable convolutions

Output layer

Classification Output Layer has1000 neurons 
(for the 1000 classes in the ImageNet dataset) 
with a SoftMax activation. The output layer is 
a feature map forms the designated size of input 
image with the filters applied. As opposed to the 
fact that the output size is two and cross-entropy 
is utilized as a loss function.

Input layer 

The input layer of the neural network accepts 
an RGB image with dimensions of 227 × 227 pix-
els. This layer consists of artificial neurons that 
receive the initial image data, which is then pro-
cessed by subsequent layers in the network.

ReLU layer

The AlexNet deep learning model features the 
ReLU (Rectified Linear Unit) layer seven times 
throughout its architecture. This layer applies a 
simple threshold operation: it sets any input value 
below zero to zero, while leaving positive values 
unchanged. In AlexNet’s implementation, the ReLU 
layer’s properties – max_value, threshold value, and 
negative_slope – are all non-negative. This configu-
ration helps prevent vanishing gradients, enabling 
more efficient learning in the network.

Max pooling 2D layer

The Alex Net training network consists of four 
Max Pooling 2D layers. The Max Pooling 2D layer 
typically comprises three components: Pool Size, 
Strides, and Padding. When training, specify an inte-
ger or a tuple of three integers to determine the win-
dow size for calculating the maximum value. The 
coordinates (3, 3) will determine the maximum value 
within a pooling window of size 3 × 3. The possible 
values for the variable are an Integer, which is a tuple 
of 2 integers, or None. Values of strides. The pooling 
stride is set to (2, 2) and the padding is set to (0, 0, 0, 
0), which determines the movement of the pooling 
window for each pooling step.
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SoftMax layer

The AlexNet model uses the SoftMax func-
tion once as an activation layer. This function 
normalizes its input along a specified axis, pro-
ducing a probability distribution while maintain-
ing the input’s shape. It’s typically applied to the 
final layer for multi-class classification tasks.

Dropout layer

The ‘dropout layer’ is a layer that applies a ran-
dom opportunity rate of 0.5 to the input objects and 
sets them to zero. This layer is a syntax that can 
be used to specify the non-obligatory Name and 
opportunity belongings by way of using a name-
price pair and any of the arguments outlined inside 
the preceding syntaxes. In the deep getting to know 
model that Alex Net uses, the dropout layer is the 
maximum distinguished layer, and it appears times 
across the community. The Alex Net consists of 
25 layers. As shown in Table 2. The default input 
image size for the model is 277 × 277 × 3 RGM 
image. Subsequently, it undergoes a continuous 
reduction process, gradually decreasing from 55 × 
55 × 96. Finally, the classification output is com-
pressed to 1 × 1 s × 1000 c convolutions.

EXPERIMENTATION

The Experimentation of Urban Flood De-
tection Dataset Training on both ‘Alex Net’ 

and ‘XceptionNet’ pre-trained deep neural 
networks that have been proposed as excellent 
models for identifying and classifying flood 
images. These models are highly regarded in 
the field of deep learning for their exceptional 
accuracy in classifying the 1000 natural imag-
es of ImageNet. For training purposes, a data 
set of 100 images is constructed to train the 
classifier on flood images. The functionality 
of both network designer architectures is illus-
trated in Figures 7 and 8.

Flood object dataset classification

The Flood Image dataset trains 3 primary 
classes of pictures for the cause of identity and 
classification of detection. The schooling statis-
tics consists of 110 photographs for each class, 
specifically Cars, Electricity-Poles, and Water-
marker. The photo shows a screenshot of the flood 
facts set used for training. Figure 8 displays two 
types of training consequences: Training_Vali-
dation_Accuracy and Training_Data_Loss func-
tions. The training dataset employs multi-layer 
deep convolutional networks including of 5 pool-
ing layers, 10 convolutional layers, and 10 ReLU-
convolutional layers. The system utilizes three 
widely-used training optimizer algorithms: Root 
Mean Square Propagation (RMSProp), Adap-
tive Moment Estimation (ADAM) optimizer and 
Stochastic Gradient Descent with Momentum 
(SGDM) optimizer. We conducted an experiment 

Table 2. Prototype of 25 Layers of AlexNet Deep Convolution Networks

No. Name Type Activations Learnable
properties

1 Data 227 × 227 × 3 images with ‘zero 
center’ normalization Image Input 227(s) × 227(s) × 3(c) × 

1(B) -

2 conv1 96 11 × 11 × 3 convolution with 
stride [4 4] and padding [0 0 0 0] Convolution 55(s) × 55(s) × 96(c) × 1(B)

Weights
(11 × 11 ×   3 × 96)
Bias (1 × 1 × 96)

3 ReLU ReLU 55(s) × 55(s) × 96 (c) × 1(B) -

4 Norm1 Cross channel normalization with 
5 channels

Cross channel 
normalization. 55(s) × 55(s) × 96 (c) × 1(B) -

5 Pool1 3 × 3 max pooling with sti
de [2 2 ] and padding[0 0 0 0] Max polling 27(s) × 27(s) × 96(c) × 1(B) 1 × 1 × 64

|
|
|
|

|
|
|
|

|
|
|
|

|
|
|
|

|
|
|
|

23 fc8 1000 fully connected layers Fully connected 1(s) × 1(s) × 1000(c) × 1(B) Weighs: 1000 × 40
Bias:       1000 × 1

24 Prob softmax Softmax 1(s) × 1(s) × 1000(c) × 1(B) -

25 Output Crossentropyex with ‘Tench’ and 
999 other classes Classification output 1(s) × 1(s) × 1000(c) × 1(B) -



248

Ecological Engineering & Environmental Technology 2024, 25(10), 236–257

about the number of epochs varied between three 
algorithms to optimize accuracy for flood dataset.

All the other training parameters were fixed: 
we used longest sequence length typically 100, an 
initial learning rate of.01 which was halved after 
each epoch if no improvement in validation loss 
was seen for last three epochs, minibatch size of 
128 and zero padding on right. Additional con-
stants were L2 regularization = 0.01, drop factor 
of learning rate = 0.1 applied for each (10) epochs, 
decay factor for squared gradient = .9 (epsilon was 
set to - le-08). We used the L2 norm technique 
for gradient thresholding which calculates the 
absolute distance of coordinates from vector 
space origin. This approach allowed us to sys-
tematically assess the impact of epoch variation 
on model performance while controlling for oth-
er variables.

Hyper parameter tuning

The Hyperparameters include the Learning 
rate, Weight decay, Momentum, and Batch size. 
The learning rate determines how quickly the net-
work adjusts its weights during training, while 
weight decay controls the regularization of the 

network. Momentum helps the network avoid 
local minima during training, and batch size 
determines the number of samples used in each 
training iteration. The experimentation was done 

Figure 8. Training layered 
architecture of XceptionNet

Figure 7. Training layered architecture of XceptionNet
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based on turning the hyper parameters, which has 
shown greater impact on data sets. Key hyper pa-
rameters used:
	• basic – determines how often the validation 

performance is evaluated during the training 
process. The “Basic” training options typically 
include the following parameters: Max Ep-
ochs: This sets the maximum number of train-
ing iterations. Mini-Batch Size: This specifies 
the number of training examples to include in 
each mini-batch used for computing gradients 
and updating weights. Validation Frequency: 
As discussed earlier, this parameter determines 
how often the validation performance is evalu-
ated during the training process. Execution 
Environment: This option allows to specify 
the hardware resources and computational en-
vironment to be used for training the neural net-
work. The Execution Environment options typ-
ically include the following choices. CPU: This 
is the default setting and is suitable for small to 
moderate-sized neural networks or when GPU 
resources are not available. GPU: This option 
allows you to utilize the computational power 
of a graphics processing unit (GPU) for training 
the neural network. Parallel Pool: This option 
enables parallel computing by distributing the 
training workload across multiple CPU cores or 
GPUs (if available). Cloud: This option allows 
you to offload the training process to cloud 
computing resources, such as MATLAB Cloud 
Services or third-party cloud platforms.

	• solver – this is considered to specify the train-
ing algorithm or optimizer used for updating 
the network weights during the training pro-
cess. This optimizer has different solver options 
available: SGDM (SGD with Momentum): 
This solver combines the SGD algorithm with 
a momentum term. The momentum term ac-
cumulates the gradients of previous iterations, 
helping to accelerate the training process and 
potentially escape local minima. RMSProp: 
This is an adaptive learning rate optimization 
algorithm It adapts the learning rate for each 
weight based on the magnitude of recent gra-
dients, which can help mitigate the problem of 
vanishing or exploding gradients. ADAM: The 
Adam (Adaptive Moment Estimation) optimiz-
er is one of the most popular and effective opti-
mization algorithms for deep learning. It com-
bines the ideas of momentum and RMSProp, 
adapting the learning rate for each weight 
based on both the moving average of the gra-
dients and the moving average of the squared 
gradients. Initial Learn Rate: The learning rate 
determines the step size during the weight up-
date process. It is generally recommended to 
start with a relatively small learning rate (0.001 
or 0.01) and gradually increase it if the training 
process is progressing too slowly.

	• advanced – this option is used to configure ad-
vanced parameters and settings for the neural 
network training process. Here are some of 
the common “Advanced” training options: L2 

Figure 9. Flood object custom dataset with three classes (water-marker, electricity pole, and car)
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Regularization: This option enables to prevent 
overfitting (also known as weight decay). It 
adds a penalty term to the loss function, which 
shrinks the weights towards zero, encouraging 
the network to learn simpler and more gener-
alizable representations. Gradient Threshold 
Method: Implements gradient clipping to pre-
vent excessively large gradients, which can 
cause numerical instability or exploding gradi-
ents, Options include ‘l2norm’ (clip gradients 
by teir L2 norm) and ‘absmax’ (clip gradients 
by their absolute maximum value). Gradient 
Threshold: This parameter sets the threshold 
value used for clipping the gradients when us-
ing the selected gradient threshold method. 
Validation Patience: This helps prevent exces-
sive training and overfitting once the validation 
performance plateaus or starts to degrade. Shuf-
fle: This option determines whether the train-
ing data should be shuffled before each epoch 
during training. 

• checkpoint path: this option allows you to specify
a file path where checkpoint files will be saved
during the training process with current state of
the neural network, including the weights, biases,
and other relevant information.

• sequence – this specifies how the training
data should be organized and presented to
the neural network during work out. Se-
quence Length: It represents the length of
the input sequences using this option. The
sequence length can be set to a fixed value
or set to “longest” to automatically deter-
mine the maximum sequence length from the
training data. Sequence Padding Direction:
determines how the input sequences should
be padded for different lengths. The avail-
able options are “left” (pad at the beginning
of the sequence) or “right” (pad at the end
of the sequence). Sequence Padding Value:
When padding input sequences are set to a
fixed length, this option specifies the value
to be used for padding. The default padding
value is typically 0, but you can set it to a
different value depending on your data and
problem requirement.

• checkpoint frequency – this setting determines
how often the number of iterations (epochs or
iterations) are saved during the training pro-
cess in checkpoint files. Checkpoint Frequen-
cy Unit: This option specifies the unit of mea-
surement for the checkpoint frequency. Learn-
ing Rate Schedule: This option allows you to

specify a schedule for adjusting the learning 
rate during training. Common schedules in-
clude step decay (reducing the learning rate by 
a fixed factor at specific intervals), exponen-
tial decay (gradually reducing the learning rate 
over time), and piecewise learning rate (manu-
ally specifying different learning rates for dif-
ferent epochs). Learn Rate Drop Factor: It de-
termines the multiplicative factor by which the 
learning rate is reduced at each step.

RESULTS 

Performance analysis of XceptionNet

The training results, as detailed in Table 3, 
demonstrate the effectiveness of the Xception-
Net architecture in achieving 96% accuracy on 
the training data using our specified parame-
ters. This performance varied depending on the 
choice of optimizer algorithm and the number 
of epochs. Interestingly, we observed that this 
peak accuracy was reached using three different 
optimizers: ADAM, RMSPROP, and SGDM. 
In contrast, when applied to the ALEXNET 
architecture on the same Flood dataset, these 
optimizers struggled, managing only a maxi-
mum training accuracy of 50%. Further analy-
sis revealed that with XceptionNet, the SGDM 
optimizer consistently achieved 96% accuracy 
across a range of epoch values (20, 40, 60, 80, 
and 100), while RMSPROP required 100 ep-
ochs to reach the same benchmark. The ADAM 
optimizer showed a unique pattern, with lower 
accuracy at both low and high epoch counts, 
peaking only in the mid-range. Figures 11 and 
12 visually represent these findings for SGDM 
and ADAM optimizers. Notably, SGDM 
emerged as the top performer, reaching the 
96% accuracy mark in just 20 epochs. This 
performance variability across different epoch 
ranges and optimizers is clearly illustrated in 
Figures 10–12, providing valuable insights 
into the optimization process for this particular 
flood dataset and model architecture.

Performance analysis of AlexNet

The training of AlexNet using the flood 
object dataset was unsuccessful. Taking into 
account the earlier factors, which change the 
training accuracy depending on the optimizer 
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method and epochs, the AlexNet architec-
ture achieved 96% accuracy with the training 
data (Table 3). The training data set achieved 
an accuracy of 96% when simulating us-
ing the ADAM optimizer and SDGM. Due to 
AlexNet’s 50% maximum training accuracy, 
the SGDM, RMSPROP, and ADAM optimizers 
yielded subpar results on the Flood dataset. At 
20 Max_Epochs, though, both the SGDM and 
ADAM optimizers achieved 96% accuracy. 
Figures 13–15 display the outcomes of the edu-
cation accuracy tests conducted on the SDGM, 
RMSPROP, and ADAM optimizers. With a 
training accuracy of 96% after 20 epochs, 
SDGM outperformed ADAM and RMSPROP. 
Figures 13–15 demonstrate that ADAM accu-
racy was lowest at lower and higher epochs 
and highest at middle-range epochs.

Performance comparison between 
XceptionNet and AlexNet

The training performance of XceptionNet on 
the flood object dataset is comparatively higher 
than that of AlexNet in all three optimizers (Fig-
ure 16). In particular, the performance of Xcep-
tionNet reaches its peak in SGDM, with ADAM 
and RMSProp following closely behind (Table 3).

All three optimizers performed poorly with 
AlexNet. In most cases, the resultant accuracy 
of AlexNet remains consistently stable and low, 
regardless of the number of epochs, while the 
performance of XceptionNet exhibits varying ac-
curacies across the three optimizers. We have ob-
served that the SDGM optimizer’s training accu-
racy for both deep learning training architectures 
remains constant. However, when we vary the 

Figure 10. Loss and traning accuracy line plot of SGDM Optimizer on XceptionNet

Figure 11. Loss and training accuracy line plot of ADAM Optimizer on XceptionNet
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Figure 12. Loss and traning accuracy line plot of RMSPROP Optimizer on XceptionNet

Figure 13. Loss and training accuracy line plot of SGDM Optimizer using AlexNet

Figure 14. Loss and traning accuracy line plot of ADAM Optimizer using Alex Net
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epochs from 20 to 100 while keeping other tun-
ing parameters like learning rate and batch size 
constant, the performance of the ADAM and RM-
SPROP optimizers significantly changes. rate, 
batch size, etc. The AlexNet dataset’s training is 
faster than that of XceptionNet, with XceptionNet 
requiring nearly five times more resources to train 
the current custom dataset. Even AlexNet is very 
fast in training datasets compared with Xception-
Net, but the average dataset training performance 
is 50% lower when using SGDM, followed by 
ADAM with 46% and RMSPROP with 42%. 
XceptionNet showed a significant performance 
advantage over AlexNet due to the use of depth 
wise separable convolutions, which reduce the 
number of parameters and computational cost. 

The custom flood object dataset comprises 
65421 annotated images classified into three distinct 
classes. This experiment revealed that AlexNet is not 
suitable for larger datasets, while XceptionNet could 
potentially consider training larger datasets. All three 
optimizers achieve a peak accuracy of 97.47% for 
XceptionNet, while the ADAM optimizer achieves 
the highest accuracy of 83.33% for AlexNet. The rest 
of the two optimizers recorded a very low accuracy 
that ranges from 23.33% to 40% for AlexNet. We 
also observe a significant improvement in accuracy 
in XceptionNet, but AlexNet’s behavior is not stable, 
and it has begun to decline after reaching its peak 
accuracy. XceptionNet’s shortfall lies in its larger 
computation time, making it unsuitable for smaller 
datasets due to execution time constraints.

Figure 15. Loss and traning accuracy line plot of RMSPROP Optimizer using Alex Net

Table 3. Training data performance of XceptionNet and AlexNet

Optimizer
algorithm Max_Epochs

XceptionNet AlexNet

Accuracy (%) Accuracy (%)

SGDM

20 96.47 40

40 96.47 40

60 96.47 40

80 96.47 40

100 96.47 40

ADAM

20 63.33 36.67

40 73.33 23.33

60 80 40

80 66.67 83.33

100 96.47 36.67

RMSProp

20 40.25 40

40 33.33 36.67

60 43.33 40

80 96.47 23.33

100 96.47 36.67
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DISCUSSION

The current study compares the performance of 
Google Net, AlexNet, and Squeeze Net with earlier 
research, specifically the work of Khan et al. (2021) 
[Ignatowicz, et al.,2024]. They were able to attain 
accuracy rates of 94.99%, 94.61%, and 94.09%, 
respectively, by adjusting hyper-parameters with 
the help of electroencephalogram (EEG) data. The 
results of the detection analysis reveal that AlexNet 
surpasses both Google Net and SqueezeNet in terms 
of performance ability. On the other hand, they fo-
cused solely on the epochs and the learning rate, 
completely ignoring the importance of optimizers. In 
this particular study, the hyper-parameters are only 
fine-tuned, and researchers additionally investigate 
the impact that optimizers have on the accuracy of 
training [Kalantar et al.,2021]. Ullah et al. (2022) 
explicitly evaluated the performance of AlexNet, 
ResNet18, and Squeeze Net using a dataset that in-
cluded 4333 photographs classified into eight differ-
ent types of road cracks. 

While conducting this experiment, the training 
and testing photos stayed the same throughout the 
entire epoch and iteration. The choice of an opti-
mizer was not the primary focus of the investigation. 
ResNet 18 can only achieve an accuracy of 85.2%. 
We investigated the AlexNet and XceptionNet mod-
els in the suggested method, focusing primarily on 
addressing training issues. We were able to accom-
plish this by fine-tuning hyper-parameters, with a 
particular emphasis on optimizers such as ADAM, 
SGDM, and RMSProp [Kumar et al.,2023]. Ash-
har et al. (2021) primarily focused their study on 

assessing the accuracy of various deep learning 
models, such as GoogleNet, SqueezeNet, DenseNet, 
ShuffleNet, and MobileNetV2, in categorizing lung 
cancers observed on a CT scan. 

With the help of the GoogleNet model, they 
were able to achieve an accuracy of 94.53%. [Ku-
mar et al., 2023]. The research that they conducted 
did not take into account AlexNet and Xception-
Net, which largely focused on validation accura-
cy. In their study, Dahiya et al. (2022) focused on 
training accuracy and utilized the Plant Village da-
taset, which consisted of 20,640 photos represent-
ing 15 different classes and three different species: 
tomato, pepper, and potato. Using this dataset, 
they applied eight distinct deep learning architec-
tures, which are as follows: AlexNet, GoogleNet, 
MobileNet, ResNet 18, ResNet 50, ResNet 101, 
ShuffleNet, and SqueezeNet. They utilized epochs, 
learning rate, small batch size, and optimizer as hy-
perparameters; however, they did not discuss the 
performance of XceptionNet. 

They utilize a range of epochs from 30 to 50, 
applying only the ADAM and SGDM optimizers. 
The RMSProp optimizer is not utilized. However, 
the current work modifies the epochs from 20 to 
100. GoogleNet is the only one of the eight deep 
learning architectures that displays improved per-
formance when it comes to reliably detecting larg-
er datasets. They can only work on a maximum 
of three epochs and support a maximum of two 
optimizers. The current study applied three dif-
ferent types of optimizers—SGDM, ADAM, and 
RMSProp—to six different epochs, ranging from 
twenty to one hundred. In addition to using vector 

Figure 16. Training performance of SDGM, RMSPROP and ADAM Optimizer on AlexNet and XceptionNet
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distance algorithms, we adjusted the batch size to 
32 elements. To maintain simplicity, we limit the 
current analysis to three specific pre-trained mod-
els. On the other hand, it is feasible to further train 
the existing dataset by employing additional deep 
learning models such as EfficeintNet, AlexNet, 
VGG16, DarkNet, PANet, ShuffleNet, NasNet 
XceptionNet, MobileNet-v2, and a number of 
other models. Consequently, this will enable the 
evaluation of the efficiency of the provided out-
comes. Researchers with balanced smaller datas-
ets can benefit from the current study as it enables 
them to achieve higher accuracy by effectively 
adjusting the hyper-parameters. Most of the deep 
learning detection mechanisms is on medical and 
agriculture datasets. The novelty of this study is 
in the identification of objects harmed by floods 
in metropolitan areas using a proprietary dataset 
of flood-affected imagery. Utilizing flood-affected 
imagery files enables rescue personnel to prompt-
ly warn and execute rescue operations.

CONCLUSIONS

The current investigation has fulfilled the 
study’s objectives. The study has identified the 
most effective deep-training network for success-
fully training flood object data. Additionally, the 
study has demonstrated to researchers that the 
SGDM optimiser is the most effective method for 
training flood object datasets, resulting in higher 
detection accuracies. The training accuracy results 
specifically indicate that lower epoch rates result 
in lower accuracies for the flood object dataset, 
and that a minimum of median epoch rates, such 
as 60 to 100, is necessary to achieve a higher learn-
ing rate. The study also recommends against using 
ADAM and RMSProp Optimizer for training flood 
object datasets. The overall observation leads to the 
conclusion that using XceptionNet in conjunction 
with the SGDM optimizer, with epochs ranging 
from 60 to 100, will result in higher training accu-
racy for flood object datasets. Furthermore, these 
studies assist researchers in maintaining recom-
mended epochs for training flood object datasets, 
as choosing the appropriate optimizer can reduce 
training time and potentially achieve higher train 
and test accuracies. The current research serves 
as a useful tool for training flood objects that in-
undate during flash urban floods caused by cloud 
bursts, which are crucial for current climate change 
scenarios. The present research only concentrates 

on addressing training challenges associated with 
flood object datasets. Furthermore, it is impera-
tive to subject the research to accuracy evaluations 
utilizing detector algorithms such as YOLO, Mo-
bileNet, and RCNN.
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