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INTRODUCTION

Soil erosion is a natural phenomenon that oc-
curs due to the wear and tear of the Earth’s surface 
under the influence of forces such as water, wind, 
soil characteristics, precipitation, anthropogenic 
factors, vegetation, slopes, lithology, and gravity.

In Morocco, a country characterized by arid 
and semi-arid regions, this process holds particu-
lar significance. However, human activities such 

as intensive agriculture, deforestation, and urban-
ization have significantly accelerated this natural 
process. As a result, we are facing massive losses 
of arable soil, water quality issues, and disrup-
tions in the delicate ecosystems of these regions.

Over the past few decades, several empirical 
models have been developed to assess soil ero-
sion and sediment transport based on physical 
and geomorphological parameters (Wischmeier, 
Smith, 1978; Renard et al., 1997). Empirical 
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models can be used in the evaluation of soil wa-
ter erosion. However, these models may have 
limitations in certain regions. For example, they 
are constrained by their uncertainty and a signifi-
cant gap between predicted and measured values 
(Alewell et al., 2019). ML techniques play a cru-
cial role in the management of soil water erosion 
for several reasons. They enable the identification 
and analysis of complex datasets that encompass 
factors contributing to erosion. These methods 
provide advanced and powerful tools for a more 
effective understanding and modeling of soil ero-
sion susceptibility.

Currently, multiple studieshave been con-
ducted to investigate soil erosion management 
using machine learning investigations (Pradhan 
2013; Padarian et al., 2020; Sahour et al., 2021; 
Folharini et al., 2023). These studies have dem-
onstrated the effectiveness of machine learning 
techniques in assessing soil water erosion and in 
overall natural risk management.

In order to address these critical environ-
mental issues, it is imperative to conduct an in-
depth analysis of the factors contributing to soil 
erosion and develop highly accurate prediction 
tools. These prediction tools are of paramount 
importance in guiding the implementation of ef-
fective and sustainable conservation measures. In 

the context of this study, the Oued Ourika water-
shed was chosen as a case study due to its unique 
geographical and climatic characteristics, with a 
particular focus on semi-arid regions where vul-
nerability to erosion is often heightened.

The ultimate goal of this study is to utilize 
machine learning techniques to analyze and pre-
dict soil erosion based on various environmental 
factors within the Ourika watershed. The over-
arching aim is to provide valuable information to 
farmers and relevant stakeholders, assisting them 
in better managing and preventing water erosion 
in these arid and semi-arid regions of the High 
Atlas. By comprehending the underlying factors 
contributing to erosion, we can implement target-
ed and sustainable conservation measures, thus 
contributing to soil preservation, safeguarding 
water resources, and preserving the fragile eco-
systems of these critical regions essential for food 
and environmental security.

MATERIALS AND METHODS

Study area

The Ourika watershed (Fig. 1) is located be-
tween latitude 31°N and 31°21’N and longitude 

Figure 1. Geographical location of the study area
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7°30’W and 7°60’W. It is bounded to the south 
by the Souss watershed, to the north by the Ha-
ouz plain, to the east by the Zat watershed, and to 
the west by the Rheraya watershed. The slopes in 
the watershed are generally steep, which enhances 
runoff and erosion. It is a continental watershed 
with an area of approximately 582 km². It is situ-
ated on the northwestern front of the high atlas in 
Marrakech, Morocco. This watershed is known for 
its devastating floods and land movements that pri-
marily affect the less competent Triassic terrains.

Data collection

We gathered detailed data on topography, 
vegetation, precipitation, and agricultural practic-
es. Subsequently, we developed Machine Learn-
ing models to predict areas susceptible to water 
erosion in the Ourika watershed, located on the 
southern slopes of the high atlas in Marrakech.

Geology

A geological map (Fig. 3a) is digitized from 
Proust’s (1961), geological map, and the various 
lithological facies are grouped into four classes: 
clays and unconsolidated materials, shales, con-
glomerates, and hard Precambrian materials (Bi-
ron et al., 1982; Nefly 1998). Subsequently, each 
lithology type is assigned an index that depends 
on its contribution to erosion. 

Rainfal

The rainfall map was established using his-
torical precipitation data for the Ourika region. 
The region is characterized by spatiotemporal 

variability in precipitation and relative irregular-
ity in surface streamflow of rivers (Saidi, 1994; 
2010). Altitudes disturbances, particularly con-
centrated on high peaks, result in predominantly 
summer thunderstorms (Delannoy, 1981).

The average annual rainfall (Fig. 2 and Fig. 3b) 
in the Ourika watershed varies from 400 to over 
650 mm (semiarid to subhumid bioclimate) in the 
foothills and sub-Atlas zone, and from 800 to 1000 
mm (upper subhumid bioclimate) on the high peaks 
exposed to oceanic winds (Ouhammou, 1986). The 
rainiest months are February, March, and April, 
while July and August are the driest. The analysis 
of average monthly rainfall shows that April is the 
wettest month with an average of 88.4 mm, and 
July is the driest month with an average of 3.5 mm. 
The monthly distribution of rainfall indicates that 
the dry season is in summer, and the rainy season 
is in winter, accounting for nearly 40% of the an-
nual precipitation, with autumn and spring having 
almost equal precipitation rates. 

Hypsometry

In the Ourika watershed, the main water-
course originates at an altitude of approximately 
3600 m. The hypsometric map (Fig. 3c) illus-
trates that the watershed encompasses high alti-
tudes ranging from 800 m downstream to 4000 m 
at its upstream extremity. The Aghbalou to Imin 
Taddert region is characterized by a morphology 
dominated by extensive, deeply incised tabu-
lar surfaces. Over 50% of the watershed’s area 
features very high altitudes, with rugged terrain 
and peaks reaching as high as 3800 to 4000 m in 
some places. 

Figure 2. Annual precipitation from 1969 to 2020 at the Aghbalou station
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The slopes

This is the most important parameter; the slope 
map is generated based on the digital elevation mod-
el (DEM) and reclassified into four slope categories. 
The weight assigned to the slope is the highest be-
cause it is the most critical factor in slope instability 
(Sarkar et al., 2008, Wachal, Hudack 2000).

In general, the slopes in the Ourika watershed 
are characterized by steep gradients. Indeed, over 
60% of its surface exhibits slopes exceeding 25 
degrees. The slope distribution map of the water-
shed highlights three distinct zones (Fig. 3d):
• Zone 1 – this area is characterized by moderate 

slopes in the valley bottoms and on the slopes 
of Amassine and Isk-n-Tanoumri. Gentle 
slopes are observed in the Tamzendirt basin.

• Zone 2 – it features gentle slopes in the val-
ley bottoms and on the plateaus of Timmen-
kar and Yagour. However, along the edges of 

these plateaus, the slopes are steep, exceeding 
45 degrees.

• Zone 3 – the slope distribution reflects an imma-
ture relief. Except for the Oukaïmdene region, 
where slopes are gentle, the entire zone has steep 
slopes ranging from 35 to 74 degrees. These steep 
slopes are more pronounced on the right bank of 
the Ourika river than on the left bank.

In the Ourika watershed, several erosion sur-
faces (or plateaus) are observed. They are located 
at various levels along the valley, but they are pri-
marily concentrated on the Triassic terrains in the 
Tougalkhir-Aït Lmchkour section. Most of these 
plateaus are discontinuous and are found at vary-
ing altitudes. The mapping shows the presence of 
several plateaus, which can be categorized into 
two main families: numerous plateaus located at 
approximately 1200 m elevation and plateaus at 
around 1700 m altitude. 

Figure 3. (a) Geological map (based on Proust., 1961), (b) rainfall map, (c) map of 
elevations in, and (d) distribution of slope angles in the Ourika watershed
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The vegetation index

Vegetation has always been a significant fac-
tor in slope stability. The vegetation cover map 
is categorized into four classes based on the veg-
etation index, which depends on its density (for-
ests, cultivated lands, etc.). The Normalized Dif-
ference Vegetation Index (NDVI) has been used 
to assess the density of the vegetation area and 
its correlation with occurrences of water erosion. 
NDVI provides a measure of vegetation distribu-
tion and facilitates the assessment of changes pro-
gressively (Liu 2005; 2019). In this case study, 
the NDVI map was obtained from Landsat 8 OLI 
images, and the components used to calculate the 
index are detailed in Equation 1.

NDVI = (BNIR - BR) / (BNIR + BR) (1)
Subsequently, the NDVI was reclassified into 

five different classes (Fig. 4a). The infrared band of 
the spectrum is represented by BNIR, and the red 
band by BR. The NDVI classes range from -1 to +1. 
Areas most susceptible to floods and water erosion 
are arid lands (sand and friable rock), which have 
values below 0.1. Low NDVI values correspond to 
grasslands (0.2–0.3), while high values indicate trop-
ical forests (0.6–0.8) (Campolo et al., 2003).

Distance to faults 

In a mountainous, actively uplifting context such 
as the study area, faults represent a significant fac-
tor that destabilizes the slopes they intersect. In the 

Figure 4. (a) NDVI map, (b) map of distances to faults, (c) map of distances 
to rivers, and (d) land use map of the Ourika watershed
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Ourika region, they play a crucial role in triggering 
landslides by increasing the slope along tectonic 
escarpments (as in the case of the Amlouggui land-
slide). Indices are assigned based on the distance 
from major faults in the watershed (Fig. 4b). 

Distance to rivers 

The distance from rivers and their tributaries 
(Fig. 4C) is a crucial element in assessing the risk 
of water erosion. In our study, the proximity to 
rivers was divided into five categories, ranging 
from 0–100 m, 100–200 m, 200–300 m, 300–400 
m, to 400–500 m.

Land use

The relationship between land use, land cover, 
and water erosion is significant. Areas with lower 
vegetation density experience more frequent ero-
sion than those with dense vegetation cover. The 
land use map was used to generate a thematic 
layer (Figure 4D), which was then divided into 
five categories: agricultural land, moderate forest, 
open forest, shrubland, and rocky areas.

Data preparation

Mapping water erosion involves creating 
maps of various factors (Fig. 3 and 4) that control 
this natural risk. Subsequently, a general hazard 
map is generated by combining the different maps 
and inventory using scripts in R-studio. The initi-
ation of water erosion depends on several factors, 
including topography, vegetation, precipitation, 
and agricultural practices, among others. Other 
factors may come into play, but with a relatively 
lesser impact, such as human activity and ero-
sion at the base of slopes. These parameters do 
not govern the hazard in the same way. Among 
them, there are static parameters (non-variable 
over time), changing parameters (variables over 
time), and triggering parameters. The combina-
tion of the primary parameters for each hazard 
determines its degree of susceptibility.  The ma-
chine learning models used in this study are based 
on eight (8) essential factors (Fig. 3 and 4): slope, 
lithology, precipitation, distance to faults, and 
distance to rivers, altitudes, NDVI, and land use.

Inventory map

Locations of water erosion have been iden-
tified based on areas previously susceptible to 
erosion, and historical flood events have been 

collected from satellite imagery and field data. 
Information layers representing the conditioning 
factors have an impact on the reliability of sus-
ceptibility mapping.

It is widely recognized and accepted that fu-
ture erosion events and landslides tend to occur 
under similar conditions to previous erosions. 
The inventory map (Fig. 5) is crucial for suscep-
tibility modeling as it establishes the relationship 
between high-risk areas and contributing factors 
to the hazard. 

The distribution of previous erosion areas 
(inventory map) was created using various data 
sources, including historical record, satellite image 
analysis, and field surveys, showing where events 
occurred in the watershed region. The table below 
lists the data sources used to generate the water 
erosion inventory map (Table 1). These occurrenc-
es were selected as inventory and used with unique 
conditioning elements for susceptibility modeling. 
The inventory was conducted by identifying ap-
proximately 100 water erosion areas. 

In general, according to (Tehrany et al., 2014), 
there are no strict rules for choosing the percent-
ages of training and test data sets. The resulting 
list was randomly divided into 70 random loca-
tions to run the model, and the last 30 points were 
used to validate the model’s sensitivity. Historical 
data on water erosion were assessed and inter-
preted using medium-resolution images (Landsat 
images acquired on the dates: 2010, 2015, and 

Figure 5. The inventory data of water erosion 
used to test and validate the models
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2020). Risk areas were identified by comparing 
satellite data and field surveys. Using R scripts, 
the location points were randomly divided into 
two groups. Naimi and Araújo (2016) explain 
that the random partitioning method involves ran-
domly dividing inventory points into training and 
validation data sets.

The literature suggests that a commonly used 
ratio for data set partitioning is 70% for training 
and 30% for validation.

Data processing

Studies focused on modeling susceptibil-
ity to erosion involve a combination of data and 
methodologies. This includes the use of remote 

sensing data, GIS tools, and hydrological anal-
yses. The goal is to improve our understanding 
of water erosion and its effects on the environ-
ment in the Ourika watershed. The integration of 
various techniques and tools allows for a more 
comprehensive assessment of event behavior 
and enables the development of effective erosion 
management strategies. 

The methodology, as illustrated in Figure 6, 
adopted in this research comprises four steps: (1) 
Identification of historical erosion locations in the 
study area. (2) Selection and classification of rele-
vant factors with an associated map for each vari-
able based entirely on available data sources. (3) 
Production of sensitivity maps by applying four 
models, including RF, naive-bayes (NB), extreme 

Table 1. Overview of data collected and used in the present study
Data type Data source   Spatial data or map Resolution

Monthly rainfall Tensift agency data Rainfull distribution of different 
return periods Daily data

Historical spatial flood Google earth images/ field 
survey Flood inventory 15 m 

Digital elevation model SRTM-DEM Slope, elevations, and river 
network   30 m

Geological data
Marrakech geological

Geological units  1/200.000
Map

Satellite images Landsat 8 Oli Tirs  

Mapping of geomorphological 
units, NDVI

30 m and 15 mLanduse 
Verify the erosion locations 
after the occurred events

Field investigations
Water erosion inventory                                   

and damaged areas. Satellite 
images

Eroded and damaged areas of 
previous events -

Figure 6. Framework of the data and modeling steps leading to the mapping 
of susceptibility to water erosion in the Ourika watershed
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gradient boosting (XGB), and K-nearest neighbor 
(KNN). (4) Validation of results using the receiv-
er operating characteristic (ROC) curve method 
to compare different models and field surveys.

Software such as ArcGIS, QGIS, and RStudio is 
used to process the data, generate thematic maps of 
sub-factors, and produce the final sensitivity maps. 
Statistical measures are performed using Excel.

Predictive capacities

In this study, four models were used to deter-
mine the importance of variables impacting water 
erosion in the Oued Ourika watershed. The re-
sults, presented in Figure 7, which shows 8 caus-
ative factors and their average values in order of 
importance, are as follows: slopes with an average 
value of 0.78, vegetation index with an average 
value of 0.31, altitudes with 0.24, precipitation 
with 0.20, lithological units with 0.19, distance 
from rivers with a value of 0.17, land use with 
0.16, distance from faults with 0.13. The higher 
the value, the more significant the factor is in im-
pacting erosion in the Oued Ourika watershed. 

The most significant factors affecting the oc-
currence of risk are slopes, NDVI, altitudes, and 
precipitation, in that order. The remaining factors, 
in order of importance, are lithology, distance 
from rivers, land use, and distance from faults. 
Therefore, the analysis of average values sug-
gests that all of these factors positively contribute 
and can be integrated into the modeling of water 
erosion in the High Atlas of Marrakech. 

The models used in this study

1. Random forest (RF) – the random forest al-
gorithm, initially introduced by (Avand et al., 
2019), is a machine learning technique that 
uses an ensemble of decision trees to classify 
input datasets. Random Forest has gained sig-
nificant attention due to its ability to achieve 
excellent classification results while maintain-
ing fast processing speeds. In the Random For-
est, a random subset of features is selected at 
each step of the output prediction, and the out-
puts are weighted based on the votes obtained. 
The final classification is determined by a ma-
jority vote among the outputs of individual de-
cision trees (Ghorbanzadeh et al., 2019; Liu et 
al., 2019). This ensemble approach improves 
prediction accuracy and overcomes the uncer-
tainty issues associated with using a single de-
cision tree (Valdez et al., 2017). In the context 

of susceptibility mapping, the Random Forest 
is considered a leading non-parametric ensem-
ble learning method. Training the Random For-
est model involves determining the maximum 
number of trees, the number of variables used 
in the splitting search, and the variant of the 
sampling process (Chen et al., 2016). In this 
analysis, the maximum number of trees was set 
to 500. The Random Forest model incorporates 
both the first and second training options for 
the splitting search. The use of a large number 
of trees and a diverse set of variables contrib-
utes to obtaining high variability and improves 
the accuracy of susceptibility mapping using 
Random Forest. 

2. Naive bayes – a naive bayes classifier is a clas-
sification system based on Bayes’ theorem, 
which assumes that all attributes are com-
pletely independent given the output class, 
a concept known as the conditional indepen-
dence assumption (Talei et al., 2010). The 
main advantage of the NB classifier is that it 
is straightforward to construct without requir-
ing complicated iterative parameter estimation 
procedures (Froude et al., 2018). Additionally, 
the NB classifier is robust to noise and irrel-
evant attributes. This method has been suc-
cessfully applied in many fields (Beven et al., 
1979). In a given context, where an observa-
tion is composed of k attributes xi, i = 1, 2,..., 
k, where xi represents the factors conditioning 
landslides, and yi, j = landslide or no landslide 
is the output class, the Naive Bayes classifier 
estimates the probability Pyj/xi for all possible 
output classes. 

Figure 7. Predictive capabilities of 
the 8 conditioning factors
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3. Extreme gradient boosting (XGBoost) – XG-
Boost, a popular gradient boosting framework, 
is a machine learning model that incorporates 
tree pruning techniques and effectively handles 
missing values. It aims to minimize a regular-
ized objective function that includes a penalty 
term for model complexity. In XGBoost, trees 
are fit to residual probabilities, as mentioned 
in the work of (Wu et al., 2019). To do this, 
examples are grouped based on the similarity 
of their residuals, and the branching process 
proceeds accordingly. The equation defines a 
similarity score for each threshold, providing a 
measure of similarity between examples based 
on the chosen threshold. 

4. K-Nearest neighbor (KNN) – the K-Nearest 
neighbor is a well-established and commonly 
used classifier in the field of artificial intelli-
gence (AI), as mentioned by (Sun et al., 2022). 
It is a simple and non-parametric method of 

classification. KNN operates by comparing a 
given test dataset with a similar training data-
set, allowing categorization based on similarity 
(Avand et al., 2019). One of the main advan-
tages of the KNN classification system is its 
simplicity. The user has the option to choose 
the number of neighbors, denoted as k, and the 
distance measure to use. More detailed infor-
mation about the KNN algorithm can be found 
in the works of (Abraham et al., 2021).

RESULTS AND DISCUSSION

The results showed that the susceptibility 
maps generated by the models used exhibited dif-
ferent overall patterns (Fig. 8), with the highest 
susceptibility levels observed in the southern part 
of the watershed. However, the KNN model dis-
played a highly detailed pattern, indicating high 

Figure 8. Susceptibility maps to water erosion derived from XGB (a); RF 
(b); NB (c); and KNN (d) models of the Ourika watershed



333

Ecological Engineering & Environmental Technology 2024, 25(10), 324–338

susceptibility in the high-altitude regions of the 
watershed. These variations in the mapping re-
sults can be attributed to differences in modeling 
structures and parameters. 

This study provides valuable insights for di-
saster management, enabling resource prioriti-
zation and the development of effective disaster 
response plans. Furthermore, the susceptibility 
maps for water erosion serve as essential tools for 
policymakers in land-use planning, including ur-
ban development, infrastructure construction, and 
land conservation. Additionally, these maps can 
serve as educational resources for communities, 
further raising awareness about water erosion 
risks, promoting preparedness, and reducing vul-
nerability. The results emphasize the importance 
of using and comparing multiple models and ap-
proaches when creating such maps. 

According to the results from the susceptibil-
ity maps, the XGB, RF, and NB models reveal 
that erosion is particularly pronounced in the 
southern tributaries of the Oued Ourika basin, 
with a focus on the central part of the region. This 

area is characterized by a combination of factors 
contributing to erosion, including the presence 
of various geological formations such as Triassic 
conglomerates, sandstones, and clays, as well as 
Precambrian mica schists and granites. 

Furthermore, this area is characterized by 
moderate vegetation, sinuous river courses, slopes 
exceeding 35 degrees, altitudes exceeding 2191 
meters, precipitation exceeding 600 mm, and a 
concentration of major faults. The KNN model, 
on the other hand, reveals a concentration of ero-
sion at the southern end of the study area. This 
disparity in results can be explained by the differ-
ences in the parameters used in each algorithm. 
Specifically, the emphasis on the concentration of 
erosion in this area is attributed to several factors, 
including very high altitudes, frequent snowfall, 
heavy precipitation, and steep slopes.

Overall, the analysis of water erosion reveals 
that approximately 43% of the total area of the 
Oued Ourika watershed is exposed to a high to 
very high risk of erosion, as illustrated in Figures 
8 and 9. This high to very high threat is mainly 

Figure 9. Percentage distribution of water erosion susceptibility in the Ourika watershed: 
(a) distribution of degrees of risk for each model; (b) Soil loss histogram
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concentrated in the central part of the watershed, 
in the high plateau area, as well as in the south-
eastern end of the axial zone. However, moder-
ate to low-level risks cover approximately 57% 
of the total area of the watershed, observed in the 
sub-altas zone, on the tops of the high plateaus, as 
well as in the northern and northwestern parts of 
the watershed. 

In summary, these results highlight a concen-
tration of water erosion in the Oued Ourika wa-
tershed, with a predominance of high-risk areas at 
the core of the region, while moderate to low-risk 
areas are found in other parts of the watershed. 
These observations have significant implications 
for the management and preservation of this geo-
graphical area, emphasizing the areas that require 
particular attention in terms of soil conservation 
and erosion prevention.

The evaluation of the effectiveness of differ-
ent models in predicting erosion-prone locations 
was carried out using success rate curves and pre-
diction rate curves. The validation of these tech-
niques is considered crucial to ensure the qual-
ity of the applied approaches, as it provides the 
model with scientific credibility (Chung., 2003).

The validation process involves using a re-
ceiver operating characteristic (ROC) curve, 
which measures the model’s fit based on the area 

under the curve (Arabameri et al., 2019; Traoré 
et al., 2019; Basu et Pal., 2018). There are five 
categories of AUC values, ranging from excellent 
(0.90–1.00) to poor (0.50–0.60), to determine the 
accuracy of the models. The ROC curves of the 
four models used to produce erosion maps of the 
Oued Ourika are presented in Figure 10.

The AUC values for the prediction models, 
including KNN, XGB, NB, and RF, were found 
to be 0.81, 0.91, 0.87, and 0.82, respectively for 
prediction rates, and 0.84, 0.96, 0.98, and 0.87 for 
success rates. These results reveal that machine 
learning algorithms, especially NB and XG-
Boost, demonstrate a higher degree of accuracy 
compared to other models. Therefore, these ma-
chine learning models can be considered reliable 
for further research and studies. Additionally, the 
achieved accuracy levels are deemed acceptable, 
and either of the models can be used for disas-
ter preparedness. The erosion susceptibility maps 
can provide valuable information to engineers 
and planners for making informed decisions re-
garding land use and disaster planning. 

Different models can also be applied in differ-
ent regions, depending on the specific needs and 
circumstances. (Stefanidis, Stathis, 2013) and 
(Tehrany et al., 2015) conducted separate stud-
ies using different models, with Pradhan (2013) 

Figure 10. Validation of water erosion susceptibility maps using the area under the curve 
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Figure 11. Photos showing the phenomenon of water erosion in the study area: (a) Tarzaza 
micro-basin, (b) Tikhferte micro-basin, and (c) and (d) Oussane micro-basin

using support vector machine (SVM) for flood 
mapping in the Terengganu basin in Malaysia and 
Stefanidis and Stathis using analytic hierarchy 
process (AHP) in Kassandra, Greece.

Therefore, it is necessary to conduct compara-
tive research to validate the performance of these 
models under similar conditions and compare 
their effectiveness (Goetz et al., 2015). Previous 
research on susceptibility mapping based on ma-
chine learning has mainly focused on determining 
the most suitable model to predict this natural risk 
(Pradhan, 2013; Chen, 2018).

This study emphasizes that the choice of sus-
ceptibility method can influence the outcome of 
erosion susceptibility mapping, even when using 
similar inventory data. This highlights the inher-
ent uncertainty in predictions of natural risks by 
many techniques, despite their good accuracy in 
terms of AUC values. 

Field study

The field investigations have revealed a 
positive correlation with the results obtained 
through Machine Learning models. Within the 
Tarzaza, Tikhferte, and Oussane micro-water-
sheds (Fig 11), we identified signs of water 
erosion, manifesting as deeply incised gullies. 
These gullies are characterized by moderate di-
mensions, with widths and depths around two 
meters, extending up to a hundred meters in 
length at times.By analyzing these features, one 
can grasp the considerable extent of eroded soil 
in this region, potentially reaching several tons 
annually. The formation of these gullies is pri-
marily influenced by soil lithological properties 
(especially the prevalence of clays), vegetation 
deficiency, steep topography, and the variable 
of precipitation. 
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CONCLUSIONS

In this article, we have presented an in-depth 
analysis of soil erosion utilizing Machine Learn-
ing techniques. The Ourika watershed stands out 
as a geographical area prone to erosion phenom-
ena due to its hydro-geomorphological features.

The findings of this study reveal that all four 
models have effectively identified erosion-prone 
areas in the Oued Ourika watershed. The suscep-
tibility maps created by these models have accu-
rately depicted the spatial diversity of potentially 
vulnerable areas. The analysis of water erosion 
reveals that more than 43% of the total area of 
the Oued Ourika watershed is exposed to a high 
to very high risk of erosion with a predominance 
of high-risk areas at the core of the region, while 
moderate to low-risk areas are found in other 
parts of the watershed.

The results suggest that machine learning al-
gorithms offer excellent performance in mapping 
soil erosion potential and natural risks. This ad-
vantage is due to these algorithms’ ability to cap-
ture the relationships between relevant factors and 
manage the inherent uncertainties in statistical 
models (such as frequency ratio and logistic re-
gression) that rely on historical inventory maps of 
the phenomenon. While all models employed in 
this study exhibited good to very good accuracy, 
it’s essential to recognize that variations exist in 
the data quality and type needed for each model. 
The Naive bayes model consistently performed 
well, demonstrating a high level of accuracy that 
effectively addressed the study’s limitations. De-
spite the intricacy and data transformation de-
mands associated with machine learning models 
like XGBoost and KNN, they come highly rec-
ommended for assessing susceptibility to floods, 
erosion, and landslides due to their superior ac-
curacy compared to bivariate statistical models. 
Furthermore, it’s crucial to underscore that the 
quality of the results is primarily contingent on 
data availability and quality.

However, while complete elimination of 
natural or human-induced erosion factors is rare, 
if not impossible, measures and recommenda-
tions can be implemented to minimize soil ero-
sion risks to the greatest extent possible. In the 
context of the Ourika watershed, it would be wise 
to prioritize erosion prevention measures, acting 
upstream to reduce the consequences of soil loss. 
It is also essential to promote sustainable agricul-
tural practices aimed at protecting soil resources, 

infrastructure, and the Ourika watershed com-
munity. Finally, a comprehensive and integrated 
assessment of erosion risk, considering environ-
mental vulnerability and the pressures on it, is 
highly recommended.
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