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INTRODUCTION

Rainfall is an essential climatic variable that 
rakes a significant role in the management and 
planning of water resources (Amer et al., 2021; 
Chen and Rao, 2002). Recently, there has been 
rising interest in studying the trends and vari-
ability of rainfall patterns, particularly in regions 
subject to climate change. The middle Euphrates 
region of Iraq, which covers five governorates, 
is one such area that has subjected to important 
changes in rainfall patterns.

Although previous investigations have stud-
ied the statistical analysis of rainfall time series 
in Iraq (FAO, 2003; Dawood, 2009; Osman et al., 
2014; and Jaafar and Al-Lami, 2019) the litera-
ture lacks a comprehensive analysis of the trends 
and features of rainfall in the middle Euphrates 
region. For example from the Arabgeographic 
region and regional countries, a recent study by 

Amer et al., (2021) examined the variability of 
climate and the trends of rainfall and tempera-
ture in Algeria, but did not address the particular 
features of the middle Euphrates region in Iraq. 
Likewise, a study by Khan et al., (2023) focused 
on distribution of the rainfall in Pakistan, but did 
not provide insights into the rainfall trends and 
patterns in the middle Euphrates region of Iraq. In 
addition, the study by Alam et al., (2021) investi-
gated rainfall trend analysis and weather forecast 
accuracy in selected parts of Khyber Pakhtunkh-
wa, but the findings may not be directly applicable 
to the middle Euphrates region due to differences 
in geographical and climatic conditions.

The time series analysis has a significant scope 
in hydrological modeling, researchers investigated 
the fundamental assumptions, and many studies 
have focused on the statistical tests that are mostly 
used to measure stationary, homogeneity, trends, 
no trends, and non-periodic statistics for time series 
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(Gao et al., 2020). Baahmed et al., (2015) analyzed 
the trends and change points for the hydro-climatic 
time series, as well, to express the role of climate 
on the observed trends for the time series of the an-
nual flow in the Macta basin, in Algeria.

The study area of this research has not been the 
focus of a similar in-depth analysis for the same 
period 1980–2018. The expected findings from 
the research will provide enhanced insight into the 
climatic impacts on the region, and the changing 
patterns and trends of rainfall. This research ad-
dresses the critical issue of understanding rainfall 
variability in the region. Hence, to determine these 
research gaps, a comprehensive statistical analy-
sis of rainfall time series in the middle Euphra-
tes region of Iraq will be conducted in the present 
research. The research will inspect the stationary, 
homogeneity, and trends of rainfall time series, 
as well as the cross-correlation between meteoro-
logical stations in the study area. The results of 
this research will contribute to understanding the 
rainfall patterns and trends in the middle Euphra-
tes region and probably update the management of 
water resources and planning policies in the area.

STUDY AREA AND RESEARCH 
METHODOLOGY 

Study area

The Middle Euphrates region was selected as a 
study area that is located in the central part of Iraq, 
and covers five governorates, which are Babylon, 

Al-Najaf, Karbala, Al-Diwaniya, and Al-Muthan-
na as shown in Figure 1. The study region area is 
about 98870 square kilometer, which constitutes 
about 22.7% of the total area of Iraq. It is distrib-
uted between two natural regions, the western pla-
teau and the alluvial plain in semiarid regions.

The climate of the study area varies con-
siderably from dry, hot to extremely hot dur-
ing summer, cold and wet during winter. The 
middle Euphrates region has a continental, sub-
tropical semi-arid climate, with average tem-
peratures greater than 32 °C in summer and less 
than 10 °C in winter, as well as significant daily 
variations. The rainfall season starts in October 
and ends in April. 

According to FAO, (2003), the middle Eu-
phrates region lies within the agro-ecological 
zone and stated that the irrigated area which 
extends between the Tigris and Euphrates riv-
ers from the north of Baghdad to Basra in the 
south. Serious hazards for this area are poor 
drainage and salinity. The geographic informa-
tion for the five meteorological stations that 
were located in different locations in the study 
area is given in Table 1.

Data and statistical methods

The meteorological stations in the study 
area are administered by the Iraqi metrologi-
cal organization and seismology. The historical 
metrological data used in this research covers 
the period between 1980 and 2018. The statis-
tical analysis methods utilized in this research 

Figure 1. Location of middle Euphrates region in Iraq
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is shown in Figure 2. Water resources planning 
requires a long duration of good-quality datas-
ets on relevant hydro-meteorological variables 
e.g., rainfall. Adequacy of the length of histori-
cal rainfall records can help researchers define 
long-run behaviors and the periodicity of vari-
ables. In hydrological models, an appropriate 
duration is essentially required for performing 
temporal variability, trends, and long-term ho-
mogeneous time series analysis (Habibagahi, 
and Pratschke, 1972).

Many researchers studied and discussed the 
adequacy of record length; they reported that the 
length of records strongly affects the results of 
frequency analysis. The variation of the recorded 
metrological time series can determine the mini-
mum required length for satisfactory estimates. 
According to Subramanya, (2017), 30 – yr logged 
data is required, and less than, 10 – yr data is in-
significant in frequency analysis. In the present 
research, a 38 – yr length of rainfall records was 
considered sufficient to carry out this analysis.

For the acquired raw rainfall datasets, the 
rainfall season in the study area started at the 

beginning of October and extended along the end 
of May. Number of recorded and missing data per 
each ground station logged is given in Table 2. 

In this research, a replace-by-the-mean impu-
tation method has been used in this research to 
estimate the missing data in rainfall time series 
(Walker et al., 2016).

Based on the fact that a time series is station-
ary if the mean, variance and auto-covariance are 
constant, so that, for stochastic variables Xt where 
the series X1, X2, ….., Xt is a stochastic time series 
(is defined as a first-order autoregressive process 
AR (1)):
	

 
𝑋𝑋𝑡𝑡 = 𝜑𝜑𝜑𝜑𝑡𝑡−1 + 𝜖𝜖𝑡𝑡 (1) 

 
 

𝜏𝜏 =́
(𝜑́𝜑 − 1)
√𝑠𝑠12𝑐𝑐1

 (2a) 

 

𝜏́𝜏𝜇𝜇 =
(𝜑𝜑𝜇́𝜇 − 1)
√𝑠𝑠22𝑐𝑐2

 (2b) 

 
 

𝜏́𝜏𝜇𝜇 =
(𝜑𝜑𝜏́𝜏 − 1)
√𝑠𝑠32𝑐𝑐3

 (2c) 

 
 

𝜚𝜚 =
∑ (𝑋𝑋𝑡𝑡+1 − 𝑋𝑋𝑡𝑡)2

(𝑁𝑁 − 1)⁄𝑁𝑁−1
𝑡𝑡=1

∑ (𝑋𝑋𝑡𝑡 − 𝑋̅𝑋𝑡𝑡)2 𝑁𝑁⁄
𝑁𝑁
𝑡𝑡=1

 (3) 

 

𝜍𝜍 = ∑ ∑ {
−1 𝑖𝑖𝑖𝑖(𝑥𝑥𝑗𝑗 − 𝑥𝑥𝑡𝑡) < 0
 0 𝑖𝑖𝑖𝑖(𝑥𝑥𝑗𝑗 − 𝑥𝑥𝑡𝑡) = 0
+1 𝑖𝑖𝑖𝑖(𝑥𝑥𝑗𝑗 − 𝑥𝑥𝑡𝑡) > 0

𝑁𝑁
𝑗𝑗=𝑡𝑡+1

𝑁𝑁−1
𝑡𝑡=1   (4) 

 
 

𝜎𝜎2(𝜍𝜍) = 1
18 [

𝑁𝑁(𝑁𝑁 − 1)(2𝑁𝑁 + 5) −
−∑𝑓𝑓𝑘𝑘(𝑓𝑓𝑘𝑘 − 1)(2𝑓𝑓𝑘𝑘 + 5)

𝑘𝑘

] (5) 

  

𝑍𝑍 =

{
 
 

 
 
𝜍𝜍 − 1
√𝜎𝜎2(𝜍𝜍)

 𝜍𝜍 > 0

0 𝜍𝜍 = 0
𝜍𝜍 + 1
√𝜎𝜎2(𝜍𝜍)

 𝜍𝜍 < 0
 

(6) 
 
 

 
 
|𝑍𝑍| > 𝑍𝑍(1−𝛼𝛼2)

, then null hypothesis (H0) is rejected, otherwise, the H0 is accepted.  

 
𝑅𝑅(𝑡𝑡) = 𝑚𝑚 ×  𝑡𝑡 +  𝐵𝐵 (7) 

 
𝑚𝑚𝑖𝑖 =

𝑥𝑥𝑡𝑡 − 𝑥𝑥𝑇𝑇
𝑡𝑡 − 𝑇𝑇 ; 𝑡𝑡 > 𝑇𝑇 (8) 

 

𝑚𝑚𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 = {
𝑚𝑚[𝑛𝑛+12] 

 𝑖𝑖𝑖𝑖 𝑛𝑛 𝑖𝑖𝑖𝑖 𝑜𝑜𝑜𝑜𝑜𝑜
1
2 [𝑚𝑚(𝑛𝑛 2⁄ ) + 𝑚𝑚(𝑛𝑛+2 2⁄ )]  𝑖𝑖𝑖𝑖 𝑛𝑛 𝑖𝑖𝑖𝑖 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒

 (9) 

 

𝜌𝜌𝑘𝑘 =
𝜎𝜎𝑘𝑘2
𝜎𝜎2 (10) 

	 (1)
where:	 ϵt – is the white noise component. 

For |φ| = 1, the time series is not stationary 
and is known as a unit root. Otherwise, if |φ| < 
1, the time series is stationary, while if

 
|φ| > 1, 

the time series increases with time and is known 
explosive. The stationary test was carried out by 
a unit root or Dickey-Fuller test. In this test, the 
statistics are defined based on the linear regres-
sion model and calculated t-test statistics:

Table 1. Meteorological stations in the study area

Governorate Meteorological 
station

Ref.
No.

Longitude
( E )

Latitude
(N)

Elevation
(m.a.s.l)

Al-Muthana Samawa 674 45.16 31.16 11.4

Al-Qadisiya Diwaniya 672 44.57 31.57 20.0

Al-Najaf Al-Najaf 670 44.19 31.57 53.0

Babylon Hillah 657 44.27 32.27 27.0

Karbala Karbala 656 44.03 32.34 29.0

Figure 2. Flow chart for the procedure of statistical analysis
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For a first-order autoregressive process model 
AR (1):

	

 
𝑋𝑋𝑡𝑡 = 𝜑𝜑𝜑𝜑𝑡𝑡−1 + 𝜖𝜖𝑡𝑡 (1) 

 
 

𝜏𝜏 =́
(𝜑́𝜑 − 1)
√𝑠𝑠12𝑐𝑐1

 (2a) 

 

𝜏́𝜏𝜇𝜇 =
(𝜑𝜑𝜇́𝜇 − 1)
√𝑠𝑠22𝑐𝑐2

 (2b) 

 
 

𝜏́𝜏𝜇𝜇 =
(𝜑𝜑𝜏́𝜏 − 1)
√𝑠𝑠32𝑐𝑐3

 (2c) 

 
 

𝜚𝜚 =
∑ (𝑋𝑋𝑡𝑡+1 − 𝑋𝑋𝑡𝑡)2

(𝑁𝑁 − 1)⁄𝑁𝑁−1
𝑡𝑡=1

∑ (𝑋𝑋𝑡𝑡 − 𝑋̅𝑋𝑡𝑡)2 𝑁𝑁⁄
𝑁𝑁
𝑡𝑡=1

 (3) 

 

𝜍𝜍 = ∑ ∑ {
−1 𝑖𝑖𝑖𝑖(𝑥𝑥𝑗𝑗 − 𝑥𝑥𝑡𝑡) < 0
 0 𝑖𝑖𝑖𝑖(𝑥𝑥𝑗𝑗 − 𝑥𝑥𝑡𝑡) = 0
+1 𝑖𝑖𝑖𝑖(𝑥𝑥𝑗𝑗 − 𝑥𝑥𝑡𝑡) > 0

𝑁𝑁
𝑗𝑗=𝑡𝑡+1

𝑁𝑁−1
𝑡𝑡=1   (4) 

 
 

𝜎𝜎2(𝜍𝜍) = 1
18 [

𝑁𝑁(𝑁𝑁 − 1)(2𝑁𝑁 + 5) −
−∑𝑓𝑓𝑘𝑘(𝑓𝑓𝑘𝑘 − 1)(2𝑓𝑓𝑘𝑘 + 5)

𝑘𝑘

] (5) 

  

𝑍𝑍 =

{
 
 

 
 
𝜍𝜍 − 1
√𝜎𝜎2(𝜍𝜍)

 𝜍𝜍 > 0

0 𝜍𝜍 = 0
𝜍𝜍 + 1
√𝜎𝜎2(𝜍𝜍)

 𝜍𝜍 < 0
 

(6) 
 
 

 
 
|𝑍𝑍| > 𝑍𝑍(1−𝛼𝛼2)

, then null hypothesis (H0) is rejected, otherwise, the H0 is accepted.  

 
𝑅𝑅(𝑡𝑡) = 𝑚𝑚 ×  𝑡𝑡 +  𝐵𝐵 (7) 

 
𝑚𝑚𝑖𝑖 =

𝑥𝑥𝑡𝑡 − 𝑥𝑥𝑇𝑇
𝑡𝑡 − 𝑇𝑇 ; 𝑡𝑡 > 𝑇𝑇 (8) 

 

𝑚𝑚𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 = {
𝑚𝑚[𝑛𝑛+12] 

 𝑖𝑖𝑖𝑖 𝑛𝑛 𝑖𝑖𝑖𝑖 𝑜𝑜𝑜𝑜𝑜𝑜
1
2 [𝑚𝑚(𝑛𝑛 2⁄ ) + 𝑚𝑚(𝑛𝑛+2 2⁄ )]  𝑖𝑖𝑖𝑖 𝑛𝑛 𝑖𝑖𝑖𝑖 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒

 (9) 

 

𝜌𝜌𝑘𝑘 =
𝜎𝜎𝑘𝑘2
𝜎𝜎2 (10) 

	 (2)

For a first-order autoregressive process model 
AR (1) with constant m:

	

 
𝑋𝑋𝑡𝑡 = 𝜑𝜑𝜑𝜑𝑡𝑡−1 + 𝜖𝜖𝑡𝑡 (1) 

 
 

𝜏𝜏 =́
(𝜑́𝜑 − 1)
√𝑠𝑠12𝑐𝑐1

 (2a) 

 

𝜏́𝜏𝜇𝜇 =
(𝜑𝜑𝜇́𝜇 − 1)
√𝑠𝑠22𝑐𝑐2

 (2b) 

 
 

𝜏́𝜏𝜇𝜇 =
(𝜑𝜑𝜏́𝜏 − 1)
√𝑠𝑠32𝑐𝑐3

 (2c) 

 
 

𝜚𝜚 =
∑ (𝑋𝑋𝑡𝑡+1 − 𝑋𝑋𝑡𝑡)2

(𝑁𝑁 − 1)⁄𝑁𝑁−1
𝑡𝑡=1

∑ (𝑋𝑋𝑡𝑡 − 𝑋̅𝑋𝑡𝑡)2 𝑁𝑁⁄
𝑁𝑁
𝑡𝑡=1

 (3) 

 

𝜍𝜍 = ∑ ∑ {
−1 𝑖𝑖𝑖𝑖(𝑥𝑥𝑗𝑗 − 𝑥𝑥𝑡𝑡) < 0
 0 𝑖𝑖𝑖𝑖(𝑥𝑥𝑗𝑗 − 𝑥𝑥𝑡𝑡) = 0
+1 𝑖𝑖𝑖𝑖(𝑥𝑥𝑗𝑗 − 𝑥𝑥𝑡𝑡) > 0

𝑁𝑁
𝑗𝑗=𝑡𝑡+1

𝑁𝑁−1
𝑡𝑡=1   (4) 

 
 

𝜎𝜎2(𝜍𝜍) = 1
18 [

𝑁𝑁(𝑁𝑁 − 1)(2𝑁𝑁 + 5) −
−∑𝑓𝑓𝑘𝑘(𝑓𝑓𝑘𝑘 − 1)(2𝑓𝑓𝑘𝑘 + 5)

𝑘𝑘

] (5) 

  

𝑍𝑍 =

{
 
 

 
 
𝜍𝜍 − 1
√𝜎𝜎2(𝜍𝜍)

 𝜍𝜍 > 0

0 𝜍𝜍 = 0
𝜍𝜍 + 1
√𝜎𝜎2(𝜍𝜍)

 𝜍𝜍 < 0
 

(6) 
 
 

 
 
|𝑍𝑍| > 𝑍𝑍(1−𝛼𝛼2)

, then null hypothesis (H0) is rejected, otherwise, the H0 is accepted.  

 
𝑅𝑅(𝑡𝑡) = 𝑚𝑚 ×  𝑡𝑡 +  𝐵𝐵 (7) 

 
𝑚𝑚𝑖𝑖 =

𝑥𝑥𝑡𝑡 − 𝑥𝑥𝑇𝑇
𝑡𝑡 − 𝑇𝑇 ; 𝑡𝑡 > 𝑇𝑇 (8) 

 

𝑚𝑚𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 = {
𝑚𝑚[𝑛𝑛+12] 

 𝑖𝑖𝑖𝑖 𝑛𝑛 𝑖𝑖𝑖𝑖 𝑜𝑜𝑜𝑜𝑜𝑜
1
2 [𝑚𝑚(𝑛𝑛 2⁄ ) + 𝑚𝑚(𝑛𝑛+2 2⁄ )]  𝑖𝑖𝑖𝑖 𝑛𝑛 𝑖𝑖𝑖𝑖 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒

 (9) 

 

𝜌𝜌𝑘𝑘 =
𝜎𝜎𝑘𝑘2
𝜎𝜎2 (10) 

	 (3)

For a first-order autoregressive process model 
AR (1) with constant m and a linear trend function 
of time (t):

	

 
𝑋𝑋𝑡𝑡 = 𝜑𝜑𝜑𝜑𝑡𝑡−1 + 𝜖𝜖𝑡𝑡 (1) 

 
 

𝜏𝜏 =́
(𝜑́𝜑 − 1)
√𝑠𝑠12𝑐𝑐1

 (2a) 

 

𝜏́𝜏𝜇𝜇 =
(𝜑𝜑𝜇́𝜇 − 1)
√𝑠𝑠22𝑐𝑐2

 (2b) 

 
 

𝜏́𝜏𝜇𝜇 =
(𝜑𝜑𝜏́𝜏 − 1)
√𝑠𝑠32𝑐𝑐3

 (2c) 

 
 

𝜚𝜚 =
∑ (𝑋𝑋𝑡𝑡+1 − 𝑋𝑋𝑡𝑡)2

(𝑁𝑁 − 1)⁄𝑁𝑁−1
𝑡𝑡=1

∑ (𝑋𝑋𝑡𝑡 − 𝑋̅𝑋𝑡𝑡)2 𝑁𝑁⁄
𝑁𝑁
𝑡𝑡=1

 (3) 

 

𝜍𝜍 = ∑ ∑ {
−1 𝑖𝑖𝑖𝑖(𝑥𝑥𝑗𝑗 − 𝑥𝑥𝑡𝑡) < 0
 0 𝑖𝑖𝑖𝑖(𝑥𝑥𝑗𝑗 − 𝑥𝑥𝑡𝑡) = 0
+1 𝑖𝑖𝑖𝑖(𝑥𝑥𝑗𝑗 − 𝑥𝑥𝑡𝑡) > 0

𝑁𝑁
𝑗𝑗=𝑡𝑡+1

𝑁𝑁−1
𝑡𝑡=1   (4) 

 
 

𝜎𝜎2(𝜍𝜍) = 1
18 [

𝑁𝑁(𝑁𝑁 − 1)(2𝑁𝑁 + 5) −
−∑𝑓𝑓𝑘𝑘(𝑓𝑓𝑘𝑘 − 1)(2𝑓𝑓𝑘𝑘 + 5)

𝑘𝑘

] (5) 

  

𝑍𝑍 =

{
 
 

 
 
𝜍𝜍 − 1
√𝜎𝜎2(𝜍𝜍)

 𝜍𝜍 > 0

0 𝜍𝜍 = 0
𝜍𝜍 + 1
√𝜎𝜎2(𝜍𝜍)

 𝜍𝜍 < 0
 

(6) 
 
 

 
 
|𝑍𝑍| > 𝑍𝑍(1−𝛼𝛼2)
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The detection of a trend can be determined ac-
cording to the Z values, that is, the positive value 
of Z referred to upward trend while the negative 

Table 2. Datasets of rainfall time series in the study area
Meteorological station No. of recorded raw data No. of missing data % of missing data

Samawa 284 28 8.97

Diwaniya 303 9 2.88

Al-Najaf 304 8 2.56

Hillah 287 25 8.01

Karbala 309 3 0.96
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Z referred to downward trends. For a significance 
level of (a = 0.05), the following hypothesis were 
assumed: A null hypothesis, H0, of no detected trend 
in the time series, whereas the alternative hypothesis, 
H1, is that an increasing or decreasing trend is detect-
ed. For a significance level of (a = 0.05), the hypoth-
eses tested according to achieve one of the following 
conditions: If |Z| > Z(1 - α/2), then null hypothesis (H0) 
is rejected, otherwise, the H0 is accepted. 

The magnitude of the slope of the trend line 
can be predicted by using a robust, nonparametric 
estimator known as "Sen’s Slope". For the set of 
driver variable xt with N in which is the number 
of time series data pairs, the slope is expressed 
according to Sen’s as (Gao et al., 2020):
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where:	ρk is the lag-k autocorrelation function, 
σk

2 is the covariance at lag-k and σ2 is the 
variance of a time series x1, x2, …. xN. In 
which;
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For the auto-correlation functions (ACFs) at 
lag-k of a stationary time dataset, the confidence 
intervals are:
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where:	CI's are the confidence intervals at a signifi-
cance level a (for the present study is 5%), 
and SE(k) is the standard error of ACF. 

It is useful to examine the correlation as a 
major index between one time series and anoth-
er with a time lag. This can be carried out using 
cross-correlation analysis, which is performed by 
measuring performed by measuring correlation 
between sets of time series related to one another 
with a time lag. The cross-autocorrelation func-
tion at lag-k is defined as (Boyd, 2001):
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where:	CCF (k) is the lag-k cross-correlation 
measure, γx,y – the covariance, and σx

2 and 
σy

2 – the variance of a time series x1, x2, 
….xN, and y1, y2, ….yN, respectively.
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RESULTS AND DISCUSSION 

Rainfall, potential evaporation, and mean 
temperature are the major involved parameters 
in the analysis of any hydrological model. In this 
research, the averages of monthly values of the 
recorded rainfall season over the period (1980–
2018) were collected. The periods of these stations 
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were slightly different from one to another; two of 
them have a high percentage of missing data (Sa-
mawa and Hillah). Table 3 gives the general statis-
tics about the data extracted from the five stations.

The averages of annual rainfall (for rain sea-
son) over 38 years for each of the five stations are 
shown in Figure 3.

From Figure 3, seasonal patterns are revealed, 
and temporal varieties, as well as spatial variabil-
ity, were highlighted; such situations are preva-
lent for datasets in the Winter season. The rainfall 
historical records set the fact that the rainy season 
often begins in October and reaches its highest 
value at the end of January of each year. On the 
other hand, decreases from the beginning of May 
to the end of September of each year.

The result of stationary for rainfall time se-
ries is performed by the Dickey-Fuller test. The 
Lag (1) difference of annual averages time series 

(during a rainy season) for each ground station is 
shown in Figure 4.

The result in Figure 4 appears to be a random 
pattern, revealing a stationary time series. Table 4 
shows the results of a unit root or Dickey-Fuller 
test to check whether the time series is stationary 
or non-stationary. 

Results of Table 3 approved the stationary na-
ture of the rainfall time series in all meteorologi-
cal stations within the study area. The homogene-
ity of the time series can be checked by involving 
the von Neumann test, for which the null hypoth-
esis is that a time series is homogenous between 
two given times of a single shift. Table 5 shows 
the results of the homogeneity tests of the rainfall 
time series in the stations of the study area.

From the results of Table 5 it is revealed, that 
the computed p-value is less than the tabulated 
value at the significance level of (0.05), the null 
hypothesis H0 was rejected, and accept the alter-
native hypothesis Ha that confirms the non-homo-
geneity of rainfall time series for Samawa station. 
While, all other stations in the study area pro-
duced computed p-values that were greater than 
0.05, thus; the null hypothesis H0 is accepted. 

The results of the Mann-Kendall test outlined 
the behavioral trend in the time series datasets. 
Table 6 presents the Mann-Kendall trend statistic 
of the two-tailed test of significant values at the 
5% level for all stations in the study area.

The results of Table 6 indicated that all sta-
tions in the study had no trend (negative slopes). 
The trend shape, magnitude, and statistics by 
mean of Sen’s slope for rainfall time series were 
presented in Table 7 and Figure 5, respectively.

As shown in Table 7, the Sen’s slope values 
approach zero, the smaller the trends. Also, the 
negative signs of the slope for trends of rainfall 
time series were observed for the stations, Al-
Najaf, Karbala, and Diwaniya, which shows a 
decrease in trends. For Samawa and Hillah sta-
tions, a little increasing trend was detected that 

Table 3. Summary for general statistics of the rainfall datasets
Meteorological 

station Observations Observations with 
missing data

Minimum
(mm)

Maximum
(mm)

Mean
(mm)

Std. deviation
(mm)

Samawa 39 0 3.28 30.99 12.777 6.678

Al-Najaf 39 0 3.79 23.84 11.96 5.497

Karbala 39 0 3.84 23.19 12.163 4.83

Hillah 39 0 5.13 26.47 13.339 5.224

Diwaniya 39 0 3.71 27.90 13.0 5.738

Figure 3. Time series for rainfall session 
over period in the study area
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was shown as a reverse trend to that prevailing in 
the study area.

Figure 6 shows the auto-correlation functions 
(ACFs) of the time series for the stations in the 
study area. The results show that for all stations 
except Samawa, a slight fluctuation with abrupt 

damping as the lag time increases, and a reduc-
tion of correlation after a few lags. These findings 
are consistent with the results of trend analysis, 
which attributed to the expected pattern of rain-
fall at most stations in the study area that does not 
indicate the robust trend evident.

Figure 4. Lag (1) differences for each station in the study area

Table 4. Results of Dickey-Fuller test

Station
Stationary test statistics base on significance level a = 0.05

𝜏́𝜏 calculated 𝜏́𝜏 critical P-value (one-tailed) Interpretation*

Samawa -2.846 -0.619 0.179 Stationary

Al-Najaf -3.182 -0.619 0.095 Stationary

Karbala -2.286 -0.619 0.415 Stationary

Hillah -2.567 -0.619 0.281 Stationary

Diwaniya -2.623 -0.619 0.258 Stationary

Note: *based on comparison between computed p-value and the significance level, one should accept or reject 
one of the following hypotheses: Null hypothesis (H0): There is a unit root for the series, the series is stationary, 
Alternative hypothesis (Ha): There is no unit root for the series.

Table 5. Results of von Neumann test

Station
Homogeneity test statistics base on significance level a=0.05

P-value (two-tailed) ϱ Interpretation*

Samawa 0.016 1.302 There is a change in the data

Al-Najaf 0.388 1.908 Homogeneous

Karbala 0.310 1.841 Homogeneous

Hillah 0.275 1.804 Homogeneous

Diwaniya 0.151 1.670 Homogeneous

Note: *based on comparison between computed p-value and the significance level (a = 0.05), one should accept or 
reject one of the following hypotheses: Null hypothesis (H0): no change of the time series, Alternative hypothesis 
(Ha): There is a date at which there is a change in the data.
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Table 6. Results of Mann–Kendall test for rainfall time series of meteorological stations in the study area
Station Mann-Kendall (ϛ) Variance σ2 (ς) P-value (two-tailed) Interpretation*

Samawa 37.00 6831.667 0.663 No trend

Al-Najaf -114.00 6832.667 0.172 No trend

Karbala -59.00 6833.667 0.486 No trend

Hillah 20.00 6832.667 0.818 No trend

Diwaniya -35.00 6833.667 0.683 No trend

Note: * H0 (null hypothesis) – there is no trend in the time series, Ha (alternative hypothesis) – there is a trend in 
the time series.

Figure 5. The Sen’s slope for rainfall time series at station in the study area, (a) Samawa 
station, (b) Al-Najaf station, (c) Karbala station, (d) Hillah station, (e) Diwniya ststaion

Table 7. The Sen’s slopes for rainfall time series at confidence interval of (95%)

Sen’s slope statistics
Slope value

Confidence interval

Lower Upper
Station

Samawa 0.025 -3.38 4.0275

Al-Najaf -0.1 -4.5038 4.4833

Karbala -0.05 -3.1283 3.0625

Hillah 0.017 -3.3362 3.7616

Diwaniya -0.035 -3.561 3.5516
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The cross-correlation matrix specified for 
different lags and mutual influence of studied 
metrological stations in the study area is pre-
sented in Tables 8. From the results of Table 
8, the reference cross-correlation functions for 
Karbala /Hilla stations produced a stronger 
positive correlation than for other stations. In 
comparison, the prediction for other stations 

produced either lower or negative values. It 
is beneficial to visualize the cross-correlation 
functions predicted for the temporally annual 
rainfalls that correspond to an optimum number 
of lags as shown in Figure 7.

The results in Figure 7 as for the correlation 
between the time series of rainfall, and the spa-
tial distribution of the stations in the study area, 

Figure 6. Auto correlation function at different lags for the rainfall time series for the station in the study 
area, (a) Samawa station, (b) Al-Najaf station, (c) Karbala station, (d) Hillah station, (e) Diwniya ststaion

Table 8. Cross-correlation functions against lags to show the mutual effect between the meteorological stations
Stations* Cross-correlation function CCF(k)

Lag-k a/b a/c a/d a/e b/c b/d b/e c/d c/e d/e

0 0.4271 0.3608 0.4185 0.5346 0.7109 0.7433 0.5021 0.7693 0.4078 0.5606

1 -0.0016** -0.1664 -0.0098 0.2927 -0.0949 -0.0153 -0.1820 0.0418 -0.1970 -0.1644

2 0.0320 -0.0665 -0.0852 0.2033 0.0718 -0.0563 -0.0856 0.3007 0.1644 -0.0063

3 -0.2435 -0.0984 -0.1124 0.0894 -0.0032 -0.1395 -0.0909 0.0488 0.0085 -0.1154

4 -0.4642 -0.2636 -0.2431 -0.1855 0.0284 -0.1762 -0.0489 -0.1754 -0.0144 -0.0035

5 -0.1437 -0.0663 -0.0218 0.2444 0.1629 0.1789 0.3645 0.1830 0.4871 0.2515

6 -0.2108 -0.3617 -0.1216 0.0604 -0.2565 0.0180 0.2590 -0.0613 0.1441 0.1979

Note: * For abbreviation purposes, the stations were denoted as follows: a = Samawa station, b = Al-Najaf station, 
c = Karbala station, d = Hilla station, and e = Diwaniya station. ** Negative sign of the correlation function is 
interpreted that when one variable increases, the other decreases, and vice versa.
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Figure 7. Mutual correlation for time series between metological station in the study area, 
(a) correlation of time series for Samawa/Al-Najaf, (b) correlation of time for Samawa/Karbala, 

(c) correlation of time series for Samawa/Hilla, (d) correlation of time series for Samawa/Diwaniya, 
(e) correlation of time series for Al-Najaf/Karbala, (f) correlation of time series for Al-Najaf/Hilla, 
(g) correlation of time series for Al-Najaf/Diwaniya, (h) correlation of tme series for Karbala/Hilla, 
(i) correlation of time series for Karbala/Diwaniya, (j) correlation of time series for Hilla/Diwaniya
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showed a minor effect on the cross-correlation 
functions. On the other hand, converged behavior 
during 38 years produced a high positive cross-
correlation function of optimum value (0.7693) 
at lag (0) for Karbala/Hilla stations. While the 
cross-correlation functions over the same period 
have diverged across all other stations and for dif-
ferent lags.

CONCLUSIONS

The coverage of 38 – yr was found adequate 
period to perform such type of trend analysis car-
ried out in this research. The maximum percent-
age of missing data was about 9.0%, which was 
acceptable. All stations were found stationary 
time series according to results of Dickey-Fuller 
test. The homogeneity in accordance with von 
Neumann test, shows that all rainfall time series 
in the metrological station were homogeneous 
except that for Samawa station, which may be at-
tributed to non-climatic factors. These two tests 
could thereby support a reliability of the analysis.

The classic Mann-Kendall test for auto-cor-
related rainfall time series during the winter sea-
son detected no trend for time series in the met-
rological stations. Sen’s slope estimator detected 
slight steepness (negative and positive) implicitly 
in some cases, thus, both negative and positive 
Sen’s slopes have resulted in the low natural vari-
ance of the rainfall data that probably depends 
on the spatial distribution of the station and is af-
fected significantly by the characteristics of the 
time series.

The autocorrelation analysis at different lags 
was analyzed. The results show the significance 
of the first-lag correlation at the confidence level 
(a = 0.05) for all stations, from the results of oth-
er different lags, the effect of the negative ACFs 
reflects the descending probability of trend detec-
tion per each time series.

The cross-correlation functions reveal that the 
mutual responses between metrological stations 
for the optimum lag (k = 0) was in the following 
order: Karbala/Hillah, Al-Najaf/Hillah, and Al-
Najaf/Karbala as fair-correlated stations, while 
Hilla/Diwaniya, and Samawa/Diwaniya as poorly 
correlated stations. This indicates that the cross-
correlations functions in the trend study could 
product-leading inferences between the mutual 
correlations of stations as confirmed by the re-
search findings.
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