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INTRODUCTION

Nowadays, climatic changes can impact pest 
risk patterns in various direct and indirect ways, 
most notably where future climatic changes en-
able a pest to expand its range into the pest risk 
area (Szyniszewska et al., 2024). New insect pests 
from overseas cause annual problems in several 
nations. Field detection and local treatment could 
improve agricultural insect pest control. Early and 
accurate insect pest as well as infestation border 
field data are needed (Rano et al., 2022). A manual 
survey utilizing a variety of conventional traps is 
the most popular and traditional way to monitor 
insect pests in the field. In the event of larger areas 

and lower accuracy rates, these conventional tech-
niques of insect pest monitoring are quite time-
consuming (Ranjan and Vinayak, 2020). 

According to Andrewartha and Birch (1986), 
there is a wealth of scientific data available for 
analysis, and this information, along with the 
complex biological processes at play when pests 
and habitats interact, make it very challenging 
to reconcile the risk pests pose to environments. 
Nonetheless, multivariate regression analysis es-
timation of an event likelihood is helpful since 
these models can process enormous amounts of 
data and convert them into realistic, relevant, and 
scientifically supported predictions. Bradshaw 
et al. (2019) state that climate indices can assess 

Spatial Analysis of Environmental Factors for Modeling Plant Hopper 
Potential Risk Prediction

Vo Quang Minh1*, Truong Chi Quang1, Pham Thi Minh Hieu2

1	 Department of Land Resources, College of Environment and Natural Resources, Can Tho University, Can Tho, 
90000, Viet Nam

2	 Plant Cultivation and Protection Sub-Department of Can Tho City, Can Tho, 90000, Viet Nam
*	 Corresponding author’s email: vqminh@ctu.edu.vn

ABSTRACT
Agricultural insect pests reduce crop productivity, causing a gap between global food demand and production. 
Early detection and early response can improve pest control efficiency. The study aimed to investigate the spatial 
correlations between brown plant hopper (BPH) occurrence and affected factors using field data collection in Can 
Tho City, Vietnam. The data on cultivation practices and meteorological conditions at 120 weekly monitoring sites 
at Can Tho city during the rice cropping season of 2016–2017 were collected to find the correlation between the 
occurrence frequency and density of BPH. Besides, GIS and spatial interpolation were applied to assess the cur-
rent status of harmful situations, predict the impact trends of crop pests or diseases in space and time to serve a 
community’s needs, as well as forecast plant protection. As a result, in the 2nd rice cropping stage, the population 
of brown planthoppers was found to be highly significantly influenced by the following factors: (1) planthopper 
age, (2) natural enemy density, (3) air temperature, (4) field water level, and (5) number of leaves, which is highly 
positively correlated with brown hopper density. There is a lower correlation between leaf color code (6) and air 
humidity (7) and a negative correlation between pesticides used (8). The variables of rice leaf color code (6) and 
air humidity (7) correlate with the BPH population, although the field water level (4) and leaf count (5) do not cor-
relate for the whole crop. It can be used to predict the changing trend of BPH in rice fields. However, the factors 
influencing the brown planthopper would determine the accuracy of the prognosis.

Keywords: geographic information system, potential risk, geostatistic, interpolation, brown plant hopper. 

Received: 2024.08.05
Accepted: 2024.09.15
Published: 2024.10.01

Ecological Engineering & Environmental Technology 2024, 25(11), 110–117
https://doi.org/10.12912/27197050/192320
ISSN 2299–8993, License CC-BY 4.0

ECOLOGICAL ENGINEERING 
& ENVIRONMENTAL TECHNOLOGY



111

Ecological Engineering & Environmental Technology 2024, 25(11), 110–117

pest risks directly or indirectly via comparisons 
with areas where the pest has already been es-
tablished. Climate change can majorly affect the 
relationships between agricultural pests and their 
dispersal. If the control strategy is analytically of-
fered to a heavily contaminated region, it might 
not be essential to submit a realistic control ap-
proach to the remaining area. According to Deng-
masa et al. (2022), both human activities and cli-
mate change are impacted by natural processes. 
As their name suggests, climate-matching models 
match climates between one or more reference lo-
cations and the climate at one or more locations in 
the pest risk area (Liu et al., 2023). Risk managers 
now simulate possible pest establishment zones 
and places where the species can be present only 
part of the year and complete at least one genera-
tion (Akrivou et al., 2021; Weinberg et al., 2022).

Agro-ecosystem forecasting systems for in-
sect-plant disease enable farmers to be aware of 
possible outbreaks, which helps them promptly 
plan and apply bio-control agents, mechanical 
methods, and pesticides. It lowers production 
costs and is a valuable tool for precision farming 
(Ranjan and Vinayak, 2020). Pedersen and Lind 
(2017) noted that farmers can research the spatial-
temporal variability of important plant health and 
production traits owing to GIS and remote sens-
ing. Digital platforms aggregate sensor data to 
facilitate decision-making. Dobesberger (2002) 
states that the output can be easily shown in a GIS 
format. Even novice GIS users easily visualize 
the output maps with descriptive labels as well as 

diverse color and pattern groups (Paramasivam, 
2019). According to Acharya et al. (2018), GIS is 
a helpful tool for managing and manipulating data 
to estimate the hopper density of brown plants. 

The practical implications of this study are 
significant. Using GIS and geostatistical methods 
to find the regression and spatial correlations of 
the BPH population with the climate factors of 
the study area in Can Tho City, Vietnam, the oc-
currence of BPH can be predicted. This predic-
tion can be used as an early warning of rice pests 
and diseases, providing valuable information for 
plant protection and other majors.

MATERIALS AND METHODS

The data collection and study location 

The study was conducted in Can Tho City, 
Vietnam, a region known for its intensive rice 
cultivation as well as frequent pest and disease 
issues. This location was chosen to represent a 
typical rice-growing area, making the findings 
applicable to similar regions (Figure 1).

The data collection

At each of the 120 sites, the data on BPH den-
sity, rice growth stages, cultivation techniques, and 
meteorological conditions were collected by the 
Plant Protection Department of Can Tho City every 
ten days. This rigorous and systematic approach 
ensured a comprehensive dataset for analysis. 

Figure 1. Study sites in Can Tho, Viet Nam
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The Can Tho Department of Plant Protection 
classified the warning criteria for BPH in rice 
into 3 levels, from slight to strongly affected, cor-
responding from 750 to greater than 3000 BPH 
number/m2 and 250 to 1000 BPH eggs/m2

Five random quadrants in a rice field were se-
lected; the sample quadrate size was 0.25 m2, and 
the BPH density (per m2) was determined based 
on the average BPH density in the five quadrants, 
then multiplied by four quadrants. 
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The regression analysis 

The regression analysis and prediction mod-
els were created based on the parameters linked 
to agriculture methods, climate, and the density 
of BPH in rice.
	 Number of BPH/m2 = (ax1) + (bx2) +
	  + (cx3) + (dx4) +…+ (zxn)	 (2)
where: 	x1,..., and xn are factors affecting and a, b, 

c, d,.., and z are constants. 

The predicted and actual BPH densities as 
well as their relationship to the second period and 
current season were determined using observa-
tions and data collected at 120 sites at ten-day 
intervals throughout the rice cropping seasons. 
The expected and actual BPH densities for each 
monitored location during the second period and 
throughout the cropping season were compared.

Variogram and geostatistical 
(kriging) interpolation

According to Evan (2022), using the terms 
variogram and semi-variogram interchangeably 

is common. There is a distinction. After the 1/2 
component is subtracted, the word variogram is 
appropriate to enable a direct comparison be-
tween the variogram and covariance function; 
this 1/2 factor is used. According to Western and 
Blöschl (1999), variograms, a key concept in geo-
statistics, assess spatial variation of parameters. 
Nugget, sill, and decorrelation length make up the 
variogram structure. 

Figure 2 shows the schematization of the var-
iogram, with the points representing the measured 
data points and the curve representing the model 
function utilized. Range denotes the desired range, 
sill represents the plateau value at maximum range, 
and nugget denotes the nugget impact. As Li and 
Zhao (2014) suggested, the variograms, spatial 
variation of variables, and actual and anticipated 
BPH distribution were interpolated and compared 
using GIS and geospatial analysis tools. The var-
iogram represents the Z(x) variables regionalized 
at x, where x + h = half of the variance.

To determine the spatial distribution of the 
BPH density, a semi-variogram study of the sec-
ond phase, the predicted season as a whole, and 
the actual BPH density was used.

Interpolating using a geostatistical (Kriging) 
method requires semi-variogram modeling (Long 
et al., 2018). The factors affect how each obser-
vation affects the kriging prediction of the three 
main factors that determine data configuration in-
clude: 1) the spatial arrangement of observations 
(e.g., clustering in over-sampled areas); 2) their 
geographic closeness to the unsampled zone; and 
3) the geographical association of data with one 
another. The development of kriging models is 
appropriate for spatially linked data. (BioMed-
ware, Inc. & Goovaerts, 2019). Combining five 

Figure 2. Illustration of semi-variogram parameter (Biswas et al., 2013)
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data in a straightforward linear manner yields the 
kriging estimate, z*(u0).
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RESULTS AND DISCUSSION

In the study, the correlation analysis between 
the second period and the entire season was made 
from the data collected at ten-day intervals at six 
periods. The regression and linear correlation of 
rice BPH density, climate, and farming methods 
were investigated. After estimating the density us-
ing the regression equation, the estimated popula-
tion of BPH was interpolated and utilized to draw 
geographic boundaries. Furthermore, a compari-
son between the expected and actual BPH density 
was performed. Among those selected for result 
interpretation and delineation were the second 
period and the cropping season. The results and 
discussion of the study are presented below.

The relationship between BPH 
and related effect factors

From the survey results in 120 fields, in the 
2nd rice cropping stage, five factors that affect the 
population of brown planthoppers with a high 
level of significance were found, including the 
factors of (1) planthopper age, (2) natural enemy 
density, (3) air temperature, (4) field water lev-
el, (5) number of leaves and are high positively 

correlated with the BPH density, while (6) leaf 
color (7) air humidity are lower correlation, and 
pesticide used (8) has negative correlation. How-
ever, for the whole rice crop, the field water level 
(4) and the number of leaves (5) do not correlate 
with the BPH population, while the factors of rice 
leaf color code (6) and air humidity (7) correlate 
with the BPH population (Table 1). It implies that 
the BPH density decreases with more targeted 
pesticide treatment intervals. Unfortunately, the 
failure of the applied broad-spectrum insecticides 
to lower BPH density may be ascribed to hopper 
burn, the development of insecticide resistance in 
BPH, and farmer application practices (Matsuka-
wa-Nakata et al., 2019).

Generally, there were different factors influ-
encing the BPH density at every period. The de-
velopmental stage and cultural practices of rice 
crops at different times determined the crop resis-
tance to pests or pest control attacks.

Regression of BPH with affected factors

According to the multivariable analysis, the 
regression of BPH with affected factors was de-
veloped and shown in Table 2. It shows that the 
determination factor for BPH for the entire crop-
ping season (R2 = 0.41) was lower than the BPH 
density expected by the regression equation for 
the 2nd period. 

The regression analysis of the predicted BPH 
regression for the 2nd period and the entire season 
in Table 2 shows that the reduced R2 of the crop-
ping season may result from the factors affecting 
its density or multiple causes acting in concert. 

Table 1. Linear relationships between the impacted variables and the BPH density in the 2nd phase and the winter-
spring season

Factors BPH age Enemy Air temp Field water 
level

Leaf number 
/m2 Leaf color Air humidity Pesticide 

used
Density/m2 0C cm Number Color code % Times

2nd period 0.80** 0.60** 0.42** 0.31** 0.21* - - -

Season 0.39** 0.45** 0.36** - - 0.24** 0.22** - 0.32**

Note: ** significant at 1%, * significant at 5%.

Table 2. The predicted BPH regression for the 2nd period and the entire season 
Predicted BPH
(number/m2) Regression formula

2nd phase a + (b × BPH age) + (c × enemy density) + (d × air temperature) – 
(e × level of field water) + (f × leaf number/m2)

Season a + (b × enemy density) + (c × BPH age) + (d × air temperature) + (e × leaf color code)
 – (f × air humidity) - (g × number of times of pesticide used)

Note: a, b, c, d, e, f, g – constants.
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Several variables, such as climate, cultural cus-
toms, diversity, etc., frequently influence BPH. 
Knowing the problematic aspects and how they 
relate to one another allows it to forecast the in-
cidence and density. As a result, warning farm-
ers and the local government about hopper oc-
currences is essential for plant protection efforts; 
nonetheless, the main limitation is prediction 
accuracy. However, rather than being accurate, 
the overall pattern of its frequency helps farm-
ers or local governments in the form of an early 
warning. From this angle, features and regression 
equations affected by BPH density can be antici-
pated and applied to early warning systems. 

Prediction of BPH density

On the basis of observations and data gathered 
at 120 places throughout seasons at ten-day inter-
vals, the results of correlation analysis show that 
the estimated actual BPH density and its relation-
ship to the second period and current season are 
computed. The expected and actual densities of 
BPH for each observed location during the second 

period (a) and the entire cropping season (b) are 
closely correlated (Figure 3). However, the R2 
(0.666) of predicted BPH in the second phase was 
higher than the whole season (0.404). It can be due 
to several factors affecting the occurrence of BPH. 

The data collection results show that every 
observation site had a distinct BPH density. There 
was a relationship between the BPH density and 
several influencing elements, like the climate and 
cultivation techniques, which can be used to fore-
cast the region’s density. The pattern of its occur-
rence is also provided (Figure 3), even though the 
projected accuracy cannot be approximated. As a 
result, it can help the government create crop pro-
tection plans and establish early warning systems. 

The variogram of BPH density

The results of the analysis of the BPH density 
show that the spatial distribution of BPH density 
can be certified using a semi-variogram analysis 
of the second phase, the anticipated entire season, 
and the actual BPH density (Table 3). It dem-
onstrates that the distribution of the actual BPH 

Figure 3. The correlation of predicted and observed densities of BPH during 
the second period (a) and the entire cropping season (b)

Table 3. Semi-variogram of the 2nd period and whole season predicted and actual BPH density (Winter-Spring, 
2016–2017)

BPH density
(Hopper number/m2)

2nd period Whole cropping season

(Exponential model) (Gaussian model)

Expected Actual Expected Actual

Co 13.900 43.800 1.970 9.870

Co + C 70.800 96.400 18.840 34.330

R2 0.814 0.438 0.94 0.74

C/C + Co 0.804 0.546 0.895 0.712

Ao (m) 1.257 1.129 1.747 889

A (m) 3.771 3.387 3.025 1.539

Note: R2 – determination factor; A – range (effective range); Ao – range parameter; Co – nugget; C+Co – sillC/
C+Co – proportion.



115

Ecological Engineering & Environmental Technology 2024, 25(11), 110–117

density is comparatively consistent with the ex-
pected BPH density of phase 2 and the entire sea-
son based on influencing factors. During the 2nd 
period, the predicted R2 was 0.814, and the actual 
R2 was 0.438. During the entire season, the ac-
tual R2 was 0.740, and the predicted R2 was 0.940. 
The semi-variogram model for the 2nd period is 
exponential, and for the whole season, it is Gauss-
ian. The density was then interpolated using the 
kriging method. Figures 4 and 5 show the results 
of the interpolation of predicted BPH density 

distribution based on the correlation of factors af-
fecting it, as well as the results of the spatial inter-
polation of the actual BPH density of the second 
phase and the whole crop season. In which the 
predicted BPH population is lower than the actual 
population, possibly because many factors influ-
ence the actual population to cause outbreaks. 
Besides climatic factors and farming techniques, 
there are also influencing factors that cannot be 
controlled, such as the influence of wind, rice 
thunderstorms, care techniques, etc.

Figure 4. Spatial distribution of actual and predicted BPH density of 2nd period

Figure 5. Spatial distribution of actual and predicted BPH density of the whole Winter-Spring season
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CONCLUSIONS

This study discovered that the regression 
equation significantly corresponds with the BPH 
population and affects factors at specific growth 
stages and culture seasons using GIS and geosta-
tistics techniques. In the 2nd rice cropping season, 
the following variables were found to have a high-
ly significant impact on the population of brown 
planthoppers: (1) planthopper age; (2) natural en-
emy density; (3) air temperature; (4) field water 
level; and (5) number of leaves, which is highly 
positively correlated with brown hopper density. 
Additionally, there is a negative correlation be-
tween leaf color code (6), air humidity (7), and 
pesticide use (8). Although the field water level 
(4) and leaf count (5) do not include the whole 
rice crop season, the variables of rice leaf color 
code (6) and air humidity (7) correspond with 
the BPH population. This correlation can serve 
as an early warning system and predict how BPH 
changes over time in rice fields. Every rice grow-
ing stage and cultivation season can have a differ-
ent impact on the factors and levels of influence. 
The prediction accuracy depends on the variables 
that affect the occurrence of BPH, such as crop-
ping stages, crop kinds, and cultivation seasons. 
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