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INTRODUCTION

Drought is one of the natural disasters with 
a slow progression. Numerous industries are af-
fected, including agriculture, food security, tour-
ism, health, energy production, and water supply 
(Al-Kindi et al., 2023; Almouctar et al., 2024; 
Zeri et al., 2021). While droughts can repeatedly 
occur in certain regions, each event is unique in 
terms of its intensity and duration. Because of the 
geographical and temporal variability brought 
on by climate change, the relationship between 

climate and the frequency as well asrecurrence of 
droughts is still unclear (Abatzoglou et al., 2018; 
Ghebrezgabher et al., 2020; Wang et al., 2023). 

Monitoring drought conditions is an impor-
tant and timely effort that is necessary to lessen 
the effects of both unforeseen and recurring disas-
ters. Combining hydrological and meteorological 
data allows it to assess the severity, length, and 
geographic reach of a drought (Li et al., 2021; Liu 
et al., 2019). Drought duration is closely correlat-
ed with its intensity, which is determined by the 
lack of precipitation (Stanke et al., 2013). When 

Drought Monitoring Using Remote Sensing Data in Nusa Tenggara 
Timur Province, Indonesia in Between 2018 and 2023

Tati Budi Kusmiyarti1, I Wayan Sandi Adnyana1, I Wayan Nuarsa1,
I Made Sudarma1, I Made Oka Guna Antara2*

1	 Doctor Study Program of Environmental Science, Graduate Program, Universitas Udayana, Jalan P.B. 
Sudirman, Denpasar, Bali 80232, Indonesia 

2	 Research Center for Environmental (PPLH), The Institute of Research and Community Services (LPPM), 
Universitas Udayana, Jalan P.B. Sudirman, Denpasar, Bali 80234, Indonesia

*	 Corresponding author’s e-mail: oka@unud.ac.id

ABSTRACT
This study utilized remote sensing data to monitor the relationship between land cover and drought exposure in 
Nusa Tenggara Timur (NTT) Province. NTT is a province in Indonesia, located in the Nusa Tenggara archipelago, 
characterized by low to medium rainfall, which contributes to frequent drought events. In 2018 and 2019, the 
province was impacted by El Niño, resulting in approximately 865,900 and 1,154,714 affected and displaced in-
dividuals, respectively. Due to the limited availability of time-series data, observations from the Landsat-8 OLI/
TIRS mission, spanning from 2018 to 2023, were utilized. The normalized difference vegetation index (NDVI) 
was employed to assess land conditions, while the vegetation health index (VHI), calculated from the Temperature 
Condition Index (TCI) and vegetation condition index (VCI), was used to estimate drought severity. To validate 
the dry season period in the study area, ERA5 climate reanalysis data from 1990 to 2020 was used. This study 
provides new insights into drought monitoring in NTT Province, Indonesia, by analyzing temporal variations in 
vegetation. The results indicated that seasonal dynamics, climatic variability, seasonal farming practices, and land 
fires are major contributors to severe drought conditions in NTT. Notably, this research highlighted a finding ab-
sent from previous studies: seasonal farming and land fires are the primary drivers of elevated drought levels in the 
province. The study is significant, as it elucidated the impacts of drought on development, agriculture, and water 
resources. Through remote sensing data, it revealed spatial drought distribution patterns during the study period 
in NTT. This research could provide information about land-use and environmental planning in tropical regions.

Keywords: remote sensing, drought monitoring, Nusa Tenggara Timur, land cover, vegetation health index.

Received: 2024.08.14
Accepted: 2024.09.15
Published: 2024.10.01

Ecological Engineering & Environmental Technology 2024, 25(11), 134–145
https://doi.org/10.12912/27197050/192472
ISSN 2299–8993, License CC-BY 4.0

ECOLOGICAL ENGINEERING 
& ENVIRONMENTAL TECHNOLOGY



135

Ecological Engineering & Environmental Technology 2024, 25(11), 134–145

analyzing the spatial distribution of drought, it is 
crucial to keep in mind that micro-scale dryness 
is not always foreseeable and that drought events 
might occur in different places throughout time 
(Dai et al., 2018; Li et al., 2021; Liu et al., 2019).

The Republic of Indonesia, located in a tropi-
cal region, is significantly impacted by drought 
events, affecting various sectors across the coun-
try, especially in the NTT Province (Kennedy, 
2023; Zaki and Noda, 2022). In 2018 and 2019, 
drought had significant consequences in the 
province, leading to approximately 865,900 and 
1,154,714 people being affected and displaced, re-
spectively (BPS-Statistics Nusa Tenggara Timur 
Province, 2024a, 2024b; Karuniasa and Pambudi, 
2022). However, keeping track of droughts is 
difficult due to a lack of data. As a result, scien-
tists are now using satellite remote sensing tech-
nologies, which are essential for researching the 
drought-affected regions. These tools enable to 
track changes in land surfaces, vegetation health, 
soil moisture, and water availability by examin-
ing satellite imagery. Resource allocation, di-
saster response, and drought mitigation methods 
are determined by the knowledge gathered from 
remote sensing (Almouctar et al., 2024; Zeng et 
al., 2022, 2023). Therefore, the goal of this re-
search was to use remote sensing data to monitor 

the relationship between land cover and drought 
exposure in the NTT Province.

MATERIAL AND METHODOLOGY 

Study area 

The NTT Province (8.6574° S, 121.0794° E) 
located in the Republic of Indonesia’s Nusa Teng-
gara Archipelago, as shown in Figure 1. The NTT 
Province is home to about 4.3 million people and has 
an area of about 4.6 million hectares, of which 1.7 
million hectares are wooded. The area has shallow, 
rocky soil and is 72% steep and rough. Less than 2 
meters of precipitation fall in the arid regions of NTT 
each year (Putri et al., 2021). The temperature was 
15.8 °C (lowest) and 32.8 °C (highest) in 2023, while 
the average temperature was 27 to 28 °C (BPS-Sta-
tistics Nusa Tenggara Timur Province, 2024c).

Data and processing method

Drought monitoring in NTT Province was de-
temined using the data from satellite remote sens-
ing. The Landsat 8 OLI/TIRS on dry season in be-
tween 2018 to 2023. The dry season in NTT was 
determined using the ERA5 data from 1990 to 

Figure 1. Location of study in Nusa Tenggara Timur Province, Republic of Indonesia
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2020. Both of them was accessed and processed 
through Google Earth Engine plaform on URL: 
https://code.earthengine.google.com/ (Coperni-
cus Climate Change Service (C3S), 2017; Ermida 
et al., 2020; U.S. Geological Survey, 2020). The 
detail of dataset used shown in Table 1. On the 
other hand, the flowchart of this study is shown in 

Figure 2. Landsat 8 OLI/TIRS was used to gener-
ate NDVI using Band-4 (B4) for red and Band-
5 (B5) for near infrared (NIR) (U.S. Geological 
Survey, 2020), shown in Equation 1:
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Table 1. Detail of dataset used

No. Datasets Variable Cloud 
cover Resolution Sources

1 Landsat 8 OLI/TIRS
(LANDSAT/LC08/C02/T1_L2)

NDVI, LST, 
VCI, TCI, VHI 10%

10 m
median values of Jun to 

Oct in 2018 to 2023

U.S. Geological Survey 
downloaded via Google 

Earth Engine (U.S. 
Geological Survey, 2020)

2 ERA 5
(ECMWF/ERA5/DAILY) Precipitation 1990–2020

Copernicus Climate Change 
Service (C3S) downloaded 
via Google Earth Engine 

(Copernicus Climate 
Change Service (C3S), 

2017)

Figure 2. Flowchart estimation drought level
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NDVI has values ranging from -1.0 to +1.0, 
normally non-vegetation has values below -0.1, 
while dense vegetation has values closer to 
+1.0. The Land Surface Temperature (LST) was 
generated using a Band-10 (B10) Thermal In-
frared Sensor (TIRS) (U.S. Geological Survey, 
2020). In the Google Earth Engine platform, 
the LST value is needed for rescaling, and in 
conversion to degrees Celcius from Kelvin, as 
shown in Equation 2:
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The number of 0.00341802 was scaling val-
ues, 149 was offset values, and -273.15 was con-
version from Kelvin to degree Celsius. 

Precipitation characteristics in between 
1990 and 2020 based on the ERA5 data

The average of precipitation characteristics 
was used to obtain the information about the dry 
season in NTT by using ERA5 data. ERA5 is the 
fifth generation of ECMWF reanalysis for the 
past eight decades of global climate and weath-
er, available from 1940 (Copernicus Climate 
Change Service (C3S), 2017). The average was 
generated from 30 years (1990 to 2020), using 
the average in each month as shown in Figure 3 
with red dashed line. Thus, the NTT dry season 

was selected from June (5.94 m/month) to Octo-
ber (8.48 m/month).

Vegetation health index based 
on Landsat 8 OLI/TIRS

VCI is a percentage that indicates the current 
values position in relation to the lowest and great-
est values recorded in prior years. On a scale of 
0 to 100, VCI falls between 0 (very unfavorable) 
and 100 (great). The values that are closer to zero 
represent ideal growing circumstances for plants, 
whilst the values that are closer to one represent 
the opposite. The formulation of VCI is based 
on the NDVI values in the present observation, 
NDVImin from minimum, and NDVImax from max-
imum values of NDVI, shown as Equation 3:
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Table 2. Drought level based on VHI
No. Drought level VHI values

1 Extreme <10

2 Severe 10-20

3 Moderate 20-30

4 Mild 30-40

5 No >40

Figure 3. Precipitation characteristic in between 1990 and 2020 in 
Nusa Tenggara Timur Province, Republic of Indonesia
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Temperature condition index 
based on Landsat 8 OLI/TIRS 

TCI is generated from LST values, with values 
ranging from 0 (very unfavorable) to 100 (great). The 
TCI formulation is based on LST values in the pres-
ent observation, LSTmin from minimum, and LSTmax 
from maximum values of LST, shown as Equation 4:
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Vegetation health index

Health of plants is measured by VHI. It is widely 
used to search for signs of drought using data from 
satellite remote sensing. VHI was computed using 
VCI and TCI, with values from 0 to 100%, same as 
TCI and VC. The extreme drought is indicated by 
the values close to 0%, and no drought is indicated 
by the values close to 100% (Table 4). Because it 
produced good findings using both the TCI and VCI, 
this index was more comprehensive. The VHI for-
mula, which has a constant (α) of 0.5, combines the 
TCI and VCI formulas, shown as Equation 5:
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Land cover classes based on NDVI

To determine the exposure to drought in the 
NTT Province region, a land classification was 

made based on NDVI values, the classification 
is shown in Table 3. The value range adopts the 
range created by (Akbar et al., 2019), consisting 
of 6 classes, namely water, built-up, barren land, 
shrub and grassland, sparse, and dense vegetation.

RESULTS AND DISCUSSION 

Temperature analysis

VHI was computed by using LST and NDVI, 
the time series of LST observation is shown in 
Figure 4. However, the LST observation lacks 
data in some regions on Sumba and Timor Island, 
this problem occurs only on TIRS/Band-10. The 
LST value ranged from 11 to 59 °C in 2018, 16 
to 61 °C in 2019, 16 to 57 °C in 2020, 5 to 57 °C 
in 2021, 13 to 62 °C in 2022, and 13 to 62 °C in 
2023, based on LST observations.

The high temperature was the effect of El 
Nino and IOD positive events, except from 2020 
to 2022 (Bureau of Meteorology Australia, 2024; 
NOAA, 2024). There was a land fire in NTT in 
2022 and 2023, particularly in Sikka Regency, 
during Indonesia’s La Nina 2022 (Welianto, 2022, 
2023). Therefore, in 2022 LST reached the same 
value as in 2023. Moreover, zinc predominates on 
residential roofs in NTT Province. Built-up and 
barren areas make up the majority of Sumba Is-
land’s land cover. According to (Ogashawara and 
Bastos, 2012), high temperature has a positive 
link with that, which leads to the high LST in the 
NTT province.

The TCI time series findings for NTT Prov-
ince are displayed in Figure 5. TCI was calculated 
using the current, minimum, and maximum LST 
values. As it can be seen in Figure 4, land cover 
also contributed to TCI. TCI is heavily impacted 
by land cover changes, which primarily occur in 
places where there is frequent change, like rice 

Table 3. Land cover classes on NDVI
No. Class NDVI values

1 Water <0.015

2 Built-up 0.015–0.14

3 Barren land 0.14–0.18

4 Shrub and grassland 0.18–0.27

5 Sparse vegetation 0.27–0.36

6 Dense vegetation >0.36

Table 4. Land cover class based on NDVI 
No Class 2018 (ha) 2019 (ha) 2020 (ha) 2021 (ha) 2022 (ha) 2023 (ha)

1 Water 11,950.16 10,927.08 10,966.50 10,879.51 117,82.57 11,059.78

2 Built-up 425,171.20 374,771.61 253,719.59 326,637.77 203,374.66 253,681.46

3 Barren land 620,716.34 584,905.7 520,823.48 455,479.28 345,642.33 481,215.34

4 Shrub and 
Grassland 1,716,576.85 1,783,715.39 1,644,434.76 1,531,611.06 1,393,028.71 1,603,974.35

5 Sparse 
vegetation 1,313,611.54 1,348,837.83 1,436,725.12 1,481,329.02 1,664,876.11 1,549,915.21

6 Dense 
vegetation 564,590.06 549,458.54 785,946.70 846,679.49 1,033,911.77 752,769.98
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fields or other areas used for seasonal farming, as 
well as impacted by ENSO and IOD.

Land cover analysis

Land cover was analyzed based on NDVI val-
ues following (Akbar et al., 2019), the results of 
its temporal changes are shown in Figure 6. The 
figure shows changes in vegetation cover from 
2018 to 2023. Table 4 shows the area in hectares 
for each year and land cover class, while Figure 
7 shows a graph of changes in land cover area 
with reference to the previous year, respectively. 
In the figure, positive values denote a rise, where-
as negative ones denote a drop. Generally, there 

is a decrease in the sparse vegetation and dense 
vegetation classes under the El Nino-affected con-
ditions, while there is an increase under the La 
Nina-affected conditions. This is inversely pro-
portional to the barren land, shrub and grassland 
classes. Of course, this is closely related to higher 
rainfall under the La Nina conditions, so that trees 
receive more water and also grow better (Diem 
et al., 2018). Naturally, there is a strong correla-
tion between rainfall and the water class. Conse-
quently, the water rises during La Nina in the NTT 
province. Eventually, there is a fluctuation in the 
built-up class; this is brought about by the range of 
values that are employed as well as additional land 
cover characteristics that are similar to the class.

Figure 4. The LST timeseries in NTT Province, Republic of Indonesia in between 2018 and 2023

Figure 5. The TCI timeseries in NTT Province, Republic of Indonesia in between 2018 and 2023
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The VCI time series in NTT was shown in 
Figure 8. Because the observations were set dur-
ing Indonesia’s dry season, VCI often has a value 
of zero. Recurring periods of low VCI readings 
signify the persistence of drought conditions 
(Pouyan et al., 2023). While much of the low-
topography vegetation has been enduring low 
circumstances, high-topography vegetation has 
endured a moderate to severe drought during the 
research period.

Areas exposed by drought

The drought indicator for this research was 
computed by VHI, indicating the regional distri-
bution of drought fluctuations between 2018 and 
2023. Table 5 shows the level of drought levels: 
extreme (< 10%), severe (10–20%), moderate 
(20–30%), mild (30–40%), and no (> 40%). Fig-
ure 7 illustrates the temporal and regional trends 
of the drought in the NTT Province. It indicates 

Figure 6. Land cover timeseries in NTT Province, Republic of Indonesia in between 2018 and 2023

Figure 7. Land cover time series change in NTT Province, Republic of Indonesia in between 2018 and 2023
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that a significant portion of the research area ex-
perienced no to extreme drought between 2018 
and 2023. More than 79% of areas in each pe-
riod year observed had no drought, less than 0.5% 
had extreme drought, less than 1.60% had severe 
drought, less than 6% had moderate drought, and 
15% had mild drought, as shown in Table 5.

The graph of increase and decrease of the 
drought-exposed area is shown in Figure 10. The 
negative value is decrease and positive value is in-
crease of the drought-exposed area, with reference 
to the previous year, respectively. Spatially, drought 
occurs more in the areas with higher population 
density and agricultural areas, this is caused by land 
cover change process. Because the analysis process 
is based on the VHI value, it is related to existing 
land cover especially vegetation change (Almouctar 
t al., 2024; Pouyan et al., 2023)(Figure 9).

In contrast to ENSO and IOD, the drought ar-
eas during an El Nino event are typically smaller 
than those during a La Nina event, particularly in 
the areas with no drought, as shown in Figure 10. 

However, in 2022, the largest area experi-
enced extreme drought, which was 17,003.24 ha. 
That is a rather strange finding, even though at 
that time the NTT Province experienced the ef-
fects of La Nina, as well as being the year with 
the widest extreme drought area. Most likely, this 
happened due to land fires in the NTT Province 
(Welianto, 2022). Then, there was a decline in 
2020–2021 for the severe and moderate levels, 
but an increase in 2022 for the severe level. Ulti-
mately, during periods of mild drought, there was 
a decline in the exposure to drought until 2022. 
Regrettably, it climbed again in 2023, almost 
reaching the level observed in 2018. 

The analysis of land cover class exposed by 
drought level is shown in Figure 11. In 2022, there 
was an increase in extreme drought exposure in all 
land cover classes, except water, but it decreased 
again in 2023. At the severe drought level, barren 
land, shrub and grassland followed the pattern of 
the impact of ENSO, where there was an increase 
in 2019 then decreased and increased from 2021 

Table 5. Drought level based on VHI
No Drought level 2018 (ha) 2019 (ha) 2020 (ha) 2021 (ha) 2022 (ha) 2023 (ha)

1 Extreme 3,589.35
(0.09%)

1,354.97
(0.03%)

2,074.92
(0.05%)

1,172.85
(0.03%)

17,003.24
(0.44%)

2,198.84
(0.06%)

2 Severe 34,676.36
(0.90%)

48,520.95
(1.25%)

22,557.80
(0.58%)

18,685.52
(0.48%)

59,753.96
(1.54%)

53,088.67
(1.37%)

3 Moderate 162,888.22
(4.20%)

221,498.89
(5.72%)

106,270.90
(2.74%)

111,332.22
(2.88%)

120,644.55
(3.11%)

202,307.57
(5.22%)

4 Mild 559,277.56
(14.44%)

515,944.99
(13.32%)

542,351.85
(14.00%)

495,757.36
(12.80%)

395,819.72
(10.22%)

549,653.76
(14.19%)

5 No 3,113,383.31
(80.37%)

3,086,112.75
(79.67%)

3,200,125.50
(82.62%)

3,245,404.78
(83.81%)

3,280,786.12
(84.69%)

3,066,870.53
(79.16%)

Figure 8. The VCI time series in NTT Province, Republic of Indonesia in between 2018 and 2023



142

Ecological Engineering & Environmental Technology 2024, 25(11), 134–145

to 2023. Meanwhile, sparse and dense vegeta-
tion only experienced an increase in drought ex-
posure in 2022, this also happened in the mod-
erate drought class. Finally, at the mild drought 
level, it was found to be inversely proportional to 
the severe and moderate classes. When the mild 
drought level decreased, they increased. Thus, 
the analysis found that the drought in the NTT 

Province was greatly affected by the climate vari-
ability of ENSO and IOD, but there was also a 
relationship with the fire incidents that occurred. 
Last but not least, the pattern of seasonal plants 
and their growth related to seasonal variability 
cannot be excluded in the VHI-based drought 
analysis process (Almouctar et al., 2024; Nopia et 
al., 2023; Zeng et al., 2023).

Figure 9. The VHI timeseries in NTT Province, Republic of Indonesia in between 2018 and 2023

Figure 10. Drought level time series based on VHI in NTT Province, 
Republic of Indonesia in between 2018 and 2023
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CONCLUSIONS 

The study was successfully conducted in the 
NTT Province based on the data from satellite re-
mote sensing sourced from the Landsat-8 OLI/TIRS 
mission observed in 2018 to 2023. This study pro-
vided new insights into drought monitoring based on 
temporal changes in plants, especially in tropical re-
gions. Three indices were created to see the drought 
exposure each year, namely TCI, VCI and VHI, 
where VHI was used as the main indicator for mak-
ing drought classes. Then, the drought class was pro-
cessed through analyzing the relationship between 
drought exposure and the temporal dynamic of land 
class obtained from NDVI classification. 

Furthermore, the findings indicated high 
drought in the NTT Province due to seasonal dy-
namics, climate variability, seasonal farming, and 
fires, particularly in 2022 when there were land 
fires. This study found that seasonal farming and 
land fires were the factors causing high levels of 
drought in the NTT Province, which was not 

revealed in previous studies. It is also important to 
remember that kind of land cover in the NTT Prov-
ince has a great impact on drought. Field investiga-
tions was required to increase its accuracy and vali-
dation. As a result, this research can be utilized as a 
suitable reference for land and environmental plan-
ning in tropical regions, as well as for managing 
and reducing vulnerability from actual droughts. 
Last but not least, this research can be used as an 
evidence-based policy effort for the development of 
water resilience facilities by building dams in the 
areas in need, such as Sikka and Timor Tengah Se-
latan Sub-district, to meet community needs.
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