
353

INTRODUCTION

Studying fluid flow in channels is an essential 
aspect of fluid dynamics. These channels represent 
various natural and artificial systems and serve as 
crucial components in several domains such as 
water supply, wastewater treatment, industrial op-
erations, and flood control activities. Notably, re-
search on the flow of shallow waters in these chan-
nels is crucial for optimizing various practical ap-
plications. Understanding the dynamics of shallow 
flows allows for improved design and management 
in systems such as water supplies, industrial pro-
cesses, and flood control, highlighting the impor-
tance of research in this domain. In addition, much 
research has focused on transitions between flow 
regimes in channels, with practical and numerical 
studies concentrating on critical aspects of fluid 

dynamics within channels affected by the nature 
of the flow with significant practical implications 
(Hashemi et al., 2018; Liu et al., 2018; Pargal et al., 
2021). An investigation of these regime shifts, such 
as the shift from laminar to turbulent flow, is essen-
tial for designing and operating hydraulic systems 
and predicting changes affecting transport and fluid 
flow processes. Historically, efforts to simulate and 
study these flows have heavily depended on solv-
ing the Navier-Stokes equations. While these equa-
tions provide robust insights into fluid behavior, 
their computational intensity, especially for com-
plex flow scenarios, often poses challenges. This 
led to the search for alternative numerical methods 
to simulate fluid flow while maintaining accuracy 
efficiently. Among the emerging techniques, in re-
cent years, the lattice Boltzmann method (LBM) 
has gained significant prominence. 
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A computational method for simulating fluid 
dynamics is the lattice Boltzmann method (LBM) 
(Chen et al., 1998). The formulation is derived 
from the Boltzmann equation, which character-
izes the flow of a fluid at a microscopic scale by 
considering the dispersion of particle velocities. 
Originally derived from the lattice gas automata 
(Benzi et al., 1992), the LB technique was en-
hanced in terms of efficiency and simplicity by 
the incorporation of the Bhatnagar-Gross-Krook 
(BGK) scheme (Qian et al., 1992).

In LBM, the fluid is represented as a lattice of 
nodes, with each node holding information about 
the local fluid properties such as velocity and den-
sity. The method uses a set of simple collision and 
streaming rules to update the state of each node 
at discrete time steps. Although For solving shal-
low water equations, researchers prefer the frac-
tional boundary method (LBM) over the finite 
difference (Fennema et al., 1990), finite volume 
(Yoon et al., 2004), and finite element methods 
(Liang et al., 2008), because of its simplicity, ef-
ficiency, and capacity to handle boundary condi-
tions (Chen et al., 2021; Isabelle Cheylan, Julien 
Favier, 2021; Ningning Wang, Wanglai Ni, 2024).

The use of the lattice Boltzmann approach to 
several flow issues has shown its capacity, pre-
cision, and potential in accurate simulation of 
shallow water flows (Peng et al., 2011; Venturi 
et al., 2020; De Rosis, 2023). One of the semi-
nal investigations in this domain is the research 
undertaken by Zhou (Zhou, 2002). He devised 
Lattice Boltzmann models, (LABSWE and LAB-
SWE™), for shallow water equations, both with 
and without turbulence modeling. He exemplified 
the simplicity, efficacy, and precision of their so-
lutions to shallow water equations.

Although the mathematical modeling, simu-
lation methods, and domain discretization tech-
niques employed in this study are based on 

well-established methodologies like the Lattice 
Boltzmann Model (LABSWE) and the D2Q9 
lattice scheme, the innovation of this work lies 
in their novel application to the specific and un-
derexplored problem of flow regime transitions 
in straight channels under shallow water condi-
tions. This research focuses on understanding 
how small changes in key parameters, such as re-
laxation time, channel width, and external forces, 
can significantly impact the stability and behavior 
of flow, a topic that has not been thoroughly ex-
amined in this context.

The aim of this work is to carefully examine 
the impact of relaxation time, channel width, 
and external forces on the transition from lami-
nar to turbulent flow. By manipulating these 
parameters, we want to establish control over 
this transition. This control is crucial for opti-
mizing hydraulic systems, as it allows engineers 
to design channels that minimize turbulence-in-
duced erosion and ensure stable, efficient flow. 
Furthermore, controlling these parameters is vi-
tal in applications such as flood management, 
where maintaining a stable flow regime can pre-
vent the sudden onset of turbulence that could 
lead to infrastructure failure.

PHYSICAL MODEL DESCRIPTION

The current lattice Boltzmann model, specifi-
cally designed for shallow water flows, has been 
implemented on a linear channel, as depicted in 
Figure 1. In order to define the initial conditions 
of our investigation, we specify the discharge (Q) 
at the entrance of the channel and the water depth 
(h) at the downstream end. In order to accurately 
represent the interaction between the fluid and the 
lateral walls of the channel, we implement no-slip 
boundary conditions.

Figure. 1. Diagram showing flow in a straight channel
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Lattice Boltzmann shallow water 
equation model (LABSWE)

This section describes the Lattice Boltzmann 
Model for Shallow Water Equations (LABSWE). 
First, the 2D Shallow Water Equations (SWE) 
overview is presented. Then, the Lattice Boltzmann 
Equation (LBE) is formulated to solve the SWE 
numerically. After that, boundary conditions for a 
straight channel case are implemented. Finally, the 
solution process for the LABSWE method is eluci-
dated through a computational flowchart.

Shallow water equations

The shallow water equations are an ensemble 
of hyperbolic partial differential equations that 
characterize fluid dynamics in shallow aquatic 
environments. Their derivation from the Navier-
Stokes equations enables their application in the 
modeling of diverse geophysical flows, including 
tides, storm surges, river flows, and tsunamis. A 
defining feature of shallow water flows is their 
significantly larger horizontal length scale com-
pared to the vertical length scale. The shallow 
water equations in two dimensions expressed as:
 

 1 

𝜕𝜕ℎ
𝜕𝜕𝜕𝜕 +

𝜕𝜕(ℎ𝑢𝑢𝑖𝑖)
𝜕𝜕𝑥𝑥𝑖𝑖

= 0 (1) 
 

𝜕𝜕(ℎ𝑢𝑢𝑖𝑖)
𝜕𝜕𝜕𝜕 +

𝜕𝜕(ℎ𝑢𝑢𝑖𝑖𝑢𝑢𝑗𝑗)
𝜕𝜕𝑥𝑥𝑗𝑗

= 

= −𝑔𝑔 𝜕𝜕
𝜕𝜕𝑥𝑥𝑖𝑖
(ℎ

2

2 ) + 𝑣𝑣
𝜕𝜕2(ℎ𝑢𝑢𝑖𝑖)
𝜕𝜕𝑥𝑥𝑗𝑗𝜕𝜕𝑥𝑥𝑗𝑗

+ 𝐹𝐹𝑖𝑖 
(2) 

 
where: ℎ the water depth, 𝜕𝜕 the time, 𝑖𝑖 and 𝑗𝑗 space direction indices, 𝑢𝑢𝑖𝑖 the velocity, 𝐹𝐹𝑖𝑖 the force term, 
defined as 𝐹𝐹𝑖𝑖 = −𝑔𝑔ℎ

𝜕𝜕𝑧𝑧𝑏𝑏
𝜕𝜕𝑥𝑥𝑖𝑖

− 𝜏𝜏𝑏𝑏𝑖𝑖
𝜌𝜌 , 𝑧𝑧𝑏𝑏 the bed elevation, 𝑔𝑔 the gravitational acceleration, and 𝜏𝜏𝑏𝑏𝑖𝑖 the bed 

shear stress are determined by 𝜏𝜏𝑏𝑏𝑖𝑖 = 𝜌𝜌𝐶𝐶𝑏𝑏𝑢𝑢𝑖𝑖√𝑢𝑢𝑗𝑗𝑢𝑢𝑗𝑗, in which 𝐶𝐶𝑏𝑏 is the bed friction coefficient defined as 

𝐶𝐶𝑏𝑏 =  
𝑔𝑔𝑛𝑛𝑏𝑏2

ℎ
1
3

 , where 𝑛𝑛𝑏𝑏 is Manning's coefficient. 

 
𝑓𝑓𝛼𝛼(𝑥𝑥 + 𝑒𝑒𝛼𝛼∆𝜕𝜕, 𝜕𝜕 + ∆𝜕𝜕) − 𝑓𝑓𝛼𝛼(𝑥𝑥, 𝜕𝜕) = 

= −1
𝜏𝜏 [𝑓𝑓𝛼𝛼(𝑥𝑥, 𝜕𝜕) − 𝑓𝑓𝛼𝛼

𝑒𝑒𝑒𝑒(𝑥𝑥, 𝜕𝜕)] + ∆𝑡𝑡
6𝑒𝑒2 𝑒𝑒𝛼𝛼𝑖𝑖𝐹𝐹𝑖𝑖(𝑥𝑥, 𝜕𝜕) 

(3) 
where: 𝑓𝑓𝛼𝛼 is the distribution function of particles; 𝐹𝐹𝑖𝑖 Is the component of the force in 𝑖𝑖 direction; 𝜏𝜏 is the 
relaxation time; 𝑒𝑒 = ∆𝑥𝑥

∆𝑡𝑡 ; ∆𝑥𝑥 is the lattice size, and ∆𝜕𝜕 is the time step, 𝑒𝑒𝛼𝛼 is the particle velocity in link 
𝛼𝛼, which is defined by: 
 

𝑒𝑒𝛼𝛼 =

{
 
 

 
 (0,0),                                                             𝛼𝛼 = 0               

𝑒𝑒 [𝑐𝑐𝑐𝑐𝑐𝑐
(𝛼𝛼 − 1)𝜋𝜋

4 , 𝑐𝑐𝑖𝑖𝑛𝑛
(𝛼𝛼 − 1)𝜋𝜋

4 ] ,            𝛼𝛼 = 1, 3, 5, 7  

√2𝑒𝑒 [𝑐𝑐𝑐𝑐𝑐𝑐
(𝛼𝛼 − 1)𝜋𝜋

4 , 𝑐𝑐𝑖𝑖𝑛𝑛
(𝛼𝛼 − 1)𝜋𝜋

4 ] ,       𝛼𝛼 = 2, 4, 6, 8

   (4) 

 
𝑓𝑓𝛼𝛼𝑒𝑒𝑒𝑒 is the local equilibrium distribution function is officially defined as: 
 

𝑓𝑓𝛼𝛼𝑒𝑒𝑒𝑒 =

{
  
 

  
 ℎ − 5𝑔𝑔ℎ

2
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ℎ
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𝑔𝑔ℎ2
24𝑒𝑒2 +

ℎ
12𝑒𝑒2 𝑒𝑒𝛼𝛼𝑖𝑖𝑢𝑢𝑖𝑖 +

ℎ
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ℎ
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    (5) 
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 (6) 
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1
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 (7) 

 
𝑓𝑓𝛼𝛼(1, 𝑗𝑗) = 𝑓𝑓𝛼𝛼(2, 𝑗𝑗), 𝛼𝛼 = 1, 2, 8 (8) 

 
𝑓𝑓𝛼𝛼(𝑁𝑁𝑥𝑥, 𝑗𝑗) = 𝑓𝑓𝛼𝛼(𝑁𝑁𝑥𝑥 − 1, 𝑗𝑗), 𝛼𝛼 = 4, 5, 6 (9) 
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where: ℎ the water depth, 𝜕𝜕 the time, 𝑖𝑖 and 𝑗𝑗 space direction indices, 𝑢𝑢𝑖𝑖 the velocity, 𝐹𝐹𝑖𝑖 the force term, 
defined as 𝐹𝐹𝑖𝑖 = −𝑔𝑔ℎ

𝜕𝜕𝑧𝑧𝑏𝑏
𝜕𝜕𝑥𝑥𝑖𝑖

− 𝜏𝜏𝑏𝑏𝑖𝑖
𝜌𝜌 , 𝑧𝑧𝑏𝑏 the bed elevation, 𝑔𝑔 the gravitational acceleration, and 𝜏𝜏𝑏𝑏𝑖𝑖 the bed 

shear stress are determined by 𝜏𝜏𝑏𝑏𝑖𝑖 = 𝜌𝜌𝐶𝐶𝑏𝑏𝑢𝑢𝑖𝑖√𝑢𝑢𝑗𝑗𝑢𝑢𝑗𝑗, in which 𝐶𝐶𝑏𝑏 is the bed friction coefficient defined as 

𝐶𝐶𝑏𝑏 =  
𝑔𝑔𝑛𝑛𝑏𝑏2

ℎ
1
3

 , where 𝑛𝑛𝑏𝑏 is Manning's coefficient. 

 
𝑓𝑓𝛼𝛼(𝑥𝑥 + 𝑒𝑒𝛼𝛼∆𝜕𝜕, 𝜕𝜕 + ∆𝜕𝜕) − 𝑓𝑓𝛼𝛼(𝑥𝑥, 𝜕𝜕) = 

= −1
𝜏𝜏 [𝑓𝑓𝛼𝛼(𝑥𝑥, 𝜕𝜕) − 𝑓𝑓𝛼𝛼

𝑒𝑒𝑒𝑒(𝑥𝑥, 𝜕𝜕)] + ∆𝑡𝑡
6𝑒𝑒2 𝑒𝑒𝛼𝛼𝑖𝑖𝐹𝐹𝑖𝑖(𝑥𝑥, 𝜕𝜕) 

(3) 
where: 𝑓𝑓𝛼𝛼 is the distribution function of particles; 𝐹𝐹𝑖𝑖 Is the component of the force in 𝑖𝑖 direction; 𝜏𝜏 is the 
relaxation time; 𝑒𝑒 = ∆𝑥𝑥

∆𝑡𝑡 ; ∆𝑥𝑥 is the lattice size, and ∆𝜕𝜕 is the time step, 𝑒𝑒𝛼𝛼 is the particle velocity in link 
𝛼𝛼, which is defined by: 
 

𝑒𝑒𝛼𝛼 =

{
 
 

 
 (0,0),                                                             𝛼𝛼 = 0               

𝑒𝑒 [𝑐𝑐𝑐𝑐𝑐𝑐
(𝛼𝛼 − 1)𝜋𝜋

4 , 𝑐𝑐𝑖𝑖𝑛𝑛
(𝛼𝛼 − 1)𝜋𝜋

4 ] ,            𝛼𝛼 = 1, 3, 5, 7  

√2𝑒𝑒 [𝑐𝑐𝑐𝑐𝑐𝑐
(𝛼𝛼 − 1)𝜋𝜋

4 , 𝑐𝑐𝑖𝑖𝑛𝑛
(𝛼𝛼 − 1)𝜋𝜋

4 ] ,       𝛼𝛼 = 2, 4, 6, 8

   (4) 

 
𝑓𝑓𝛼𝛼𝑒𝑒𝑒𝑒 is the local equilibrium distribution function is officially defined as: 
 

𝑓𝑓𝛼𝛼𝑒𝑒𝑒𝑒 =

{
  
 

  
 ℎ − 5𝑔𝑔ℎ

2

6𝑒𝑒2 − 2ℎ
3𝑒𝑒2 𝑢𝑢𝑖𝑖𝑢𝑢𝑖𝑖,                                                        𝛼𝛼 = 0                                       

𝑔𝑔ℎ2
6𝑒𝑒2 +

ℎ
3𝑒𝑒2 𝑒𝑒𝛼𝛼𝑖𝑖𝑢𝑢𝑖𝑖 +

ℎ
2𝑒𝑒4 𝑒𝑒𝛼𝛼𝑖𝑖𝑒𝑒𝛼𝛼𝑗𝑗𝑢𝑢𝑖𝑖𝑢𝑢𝑗𝑗 −

ℎ
6𝑒𝑒2 𝑢𝑢𝑖𝑖𝑢𝑢𝑖𝑖,          𝛼𝛼 = 1, 3, 5, 7

𝑔𝑔ℎ2
24𝑒𝑒2 +

ℎ
12𝑒𝑒2 𝑒𝑒𝛼𝛼𝑖𝑖𝑢𝑢𝑖𝑖 +

ℎ
8𝑒𝑒4 𝑒𝑒𝛼𝛼𝑖𝑖𝑒𝑒𝛼𝛼𝑗𝑗𝑢𝑢𝑖𝑖𝑢𝑢𝑗𝑗 −

ℎ
24𝑒𝑒2 𝑢𝑢𝑖𝑖𝑢𝑢𝑖𝑖,    𝛼𝛼 = 2, 4, 6, 8

    (5) 

 
ℎ =∑𝑓𝑓𝛼𝛼

𝛼𝛼
 (6) 

𝑢𝑢𝑖𝑖 =
1
ℎ∑𝑒𝑒𝛼𝛼𝑖𝑖𝑓𝑓𝛼𝛼

𝛼𝛼
 (7) 

 
𝑓𝑓𝛼𝛼(1, 𝑗𝑗) = 𝑓𝑓𝛼𝛼(2, 𝑗𝑗), 𝛼𝛼 = 1, 2, 8 (8) 

 
𝑓𝑓𝛼𝛼(𝑁𝑁𝑥𝑥, 𝑗𝑗) = 𝑓𝑓𝛼𝛼(𝑁𝑁𝑥𝑥 − 1, 𝑗𝑗), 𝛼𝛼 = 4, 5, 6 (9) 

 

𝑓𝑓1 = 𝑓𝑓5 +
2ℎ𝑢𝑢
3𝑒𝑒  (10) 

 

 (3)

where: zb the bed elevation, g the gravitational ac-
celeration, and τbi the bed shear stress are 
determined by

 

 1 

𝜕𝜕ℎ
𝜕𝜕𝜕𝜕 +

𝜕𝜕(ℎ𝑢𝑢𝑖𝑖)
𝜕𝜕𝑥𝑥𝑖𝑖

= 0 (1) 
 

𝜕𝜕(ℎ𝑢𝑢𝑖𝑖)
𝜕𝜕𝜕𝜕 +

𝜕𝜕(ℎ𝑢𝑢𝑖𝑖𝑢𝑢𝑗𝑗)
𝜕𝜕𝑥𝑥𝑗𝑗

= 

= −𝑔𝑔 𝜕𝜕
𝜕𝜕𝑥𝑥𝑖𝑖
(ℎ

2

2 ) + 𝑣𝑣
𝜕𝜕2(ℎ𝑢𝑢𝑖𝑖)
𝜕𝜕𝑥𝑥𝑗𝑗𝜕𝜕𝑥𝑥𝑗𝑗

+ 𝐹𝐹𝑖𝑖 
(2) 

 
where: ℎ the water depth, 𝜕𝜕 the time, 𝑖𝑖 and 𝑗𝑗 space direction indices, 𝑢𝑢𝑖𝑖 the velocity, 𝐹𝐹𝑖𝑖 the force term, 
defined as 𝐹𝐹𝑖𝑖 = −𝑔𝑔ℎ

𝜕𝜕𝑧𝑧𝑏𝑏
𝜕𝜕𝑥𝑥𝑖𝑖

− 𝜏𝜏𝑏𝑏𝑖𝑖
𝜌𝜌 , 𝑧𝑧𝑏𝑏 the bed elevation, 𝑔𝑔 the gravitational acceleration, and 𝜏𝜏𝑏𝑏𝑖𝑖 the bed 

shear stress are determined by 𝜏𝜏𝑏𝑏𝑖𝑖 = 𝜌𝜌𝐶𝐶𝑏𝑏𝑢𝑢𝑖𝑖√𝑢𝑢𝑗𝑗𝑢𝑢𝑗𝑗, in which 𝐶𝐶𝑏𝑏 is the bed friction coefficient defined as 

𝐶𝐶𝑏𝑏 =  
𝑔𝑔𝑛𝑛𝑏𝑏2

ℎ
1
3

 , where 𝑛𝑛𝑏𝑏 is Manning's coefficient. 

 
𝑓𝑓𝛼𝛼(𝑥𝑥 + 𝑒𝑒𝛼𝛼∆𝜕𝜕, 𝜕𝜕 + ∆𝜕𝜕) − 𝑓𝑓𝛼𝛼(𝑥𝑥, 𝜕𝜕) = 

= −1
𝜏𝜏 [𝑓𝑓𝛼𝛼(𝑥𝑥, 𝜕𝜕) − 𝑓𝑓𝛼𝛼

𝑒𝑒𝑒𝑒(𝑥𝑥, 𝜕𝜕)] + ∆𝑡𝑡
6𝑒𝑒2 𝑒𝑒𝛼𝛼𝑖𝑖𝐹𝐹𝑖𝑖(𝑥𝑥, 𝜕𝜕) 

(3) 
where: 𝑓𝑓𝛼𝛼 is the distribution function of particles; 𝐹𝐹𝑖𝑖 Is the component of the force in 𝑖𝑖 direction; 𝜏𝜏 is the 
relaxation time; 𝑒𝑒 = ∆𝑥𝑥

∆𝑡𝑡 ; ∆𝑥𝑥 is the lattice size, and ∆𝜕𝜕 is the time step, 𝑒𝑒𝛼𝛼 is the particle velocity in link 
𝛼𝛼, which is defined by: 
 

𝑒𝑒𝛼𝛼 =

{
 
 

 
 (0,0),                                                             𝛼𝛼 = 0               

𝑒𝑒 [𝑐𝑐𝑐𝑐𝑐𝑐
(𝛼𝛼 − 1)𝜋𝜋

4 , 𝑐𝑐𝑖𝑖𝑛𝑛
(𝛼𝛼 − 1)𝜋𝜋

4 ] ,            𝛼𝛼 = 1, 3, 5, 7  

√2𝑒𝑒 [𝑐𝑐𝑐𝑐𝑐𝑐
(𝛼𝛼 − 1)𝜋𝜋

4 , 𝑐𝑐𝑖𝑖𝑛𝑛
(𝛼𝛼 − 1)𝜋𝜋

4 ] ,       𝛼𝛼 = 2, 4, 6, 8

   (4) 

 
𝑓𝑓𝛼𝛼𝑒𝑒𝑒𝑒 is the local equilibrium distribution function is officially defined as: 
 

𝑓𝑓𝛼𝛼𝑒𝑒𝑒𝑒 =

{
  
 

  
 ℎ − 5𝑔𝑔ℎ

2

6𝑒𝑒2 − 2ℎ
3𝑒𝑒2 𝑢𝑢𝑖𝑖𝑢𝑢𝑖𝑖,                                                        𝛼𝛼 = 0                                       

𝑔𝑔ℎ2
6𝑒𝑒2 +

ℎ
3𝑒𝑒2 𝑒𝑒𝛼𝛼𝑖𝑖𝑢𝑢𝑖𝑖 +

ℎ
2𝑒𝑒4 𝑒𝑒𝛼𝛼𝑖𝑖𝑒𝑒𝛼𝛼𝑗𝑗𝑢𝑢𝑖𝑖𝑢𝑢𝑗𝑗 −

ℎ
6𝑒𝑒2 𝑢𝑢𝑖𝑖𝑢𝑢𝑖𝑖,          𝛼𝛼 = 1, 3, 5, 7

𝑔𝑔ℎ2
24𝑒𝑒2 +

ℎ
12𝑒𝑒2 𝑒𝑒𝛼𝛼𝑖𝑖𝑢𝑢𝑖𝑖 +

ℎ
8𝑒𝑒4 𝑒𝑒𝛼𝛼𝑖𝑖𝑒𝑒𝛼𝛼𝑗𝑗𝑢𝑢𝑖𝑖𝑢𝑢𝑗𝑗 −

ℎ
24𝑒𝑒2 𝑢𝑢𝑖𝑖𝑢𝑢𝑖𝑖,    𝛼𝛼 = 2, 4, 6, 8

    (5) 

 
ℎ =∑𝑓𝑓𝛼𝛼

𝛼𝛼
 (6) 

𝑢𝑢𝑖𝑖 =
1
ℎ∑𝑒𝑒𝛼𝛼𝑖𝑖𝑓𝑓𝛼𝛼

𝛼𝛼
 (7) 

 
𝑓𝑓𝛼𝛼(1, 𝑗𝑗) = 𝑓𝑓𝛼𝛼(2, 𝑗𝑗), 𝛼𝛼 = 1, 2, 8 (8) 

 
𝑓𝑓𝛼𝛼(𝑁𝑁𝑥𝑥, 𝑗𝑗) = 𝑓𝑓𝛼𝛼(𝑁𝑁𝑥𝑥 − 1, 𝑗𝑗), 𝛼𝛼 = 4, 5, 6 (9) 

 

𝑓𝑓1 = 𝑓𝑓5 +
2ℎ𝑢𝑢
3𝑒𝑒  (10) 

 

 (4)
where: Cb is the bed friction coefficient defined as

 

 1 

𝜕𝜕ℎ
𝜕𝜕𝜕𝜕 +

𝜕𝜕(ℎ𝑢𝑢𝑖𝑖)
𝜕𝜕𝑥𝑥𝑖𝑖

= 0 (1) 
 

𝜕𝜕(ℎ𝑢𝑢𝑖𝑖)
𝜕𝜕𝜕𝜕 +

𝜕𝜕(ℎ𝑢𝑢𝑖𝑖𝑢𝑢𝑗𝑗)
𝜕𝜕𝑥𝑥𝑗𝑗

= 

= −𝑔𝑔 𝜕𝜕
𝜕𝜕𝑥𝑥𝑖𝑖
(ℎ

2

2 ) + 𝑣𝑣
𝜕𝜕2(ℎ𝑢𝑢𝑖𝑖)
𝜕𝜕𝑥𝑥𝑗𝑗𝜕𝜕𝑥𝑥𝑗𝑗

+ 𝐹𝐹𝑖𝑖 
(2) 

 
where: ℎ the water depth, 𝜕𝜕 the time, 𝑖𝑖 and 𝑗𝑗 space direction indices, 𝑢𝑢𝑖𝑖 the velocity, 𝐹𝐹𝑖𝑖 the force term, 
defined as 𝐹𝐹𝑖𝑖 = −𝑔𝑔ℎ

𝜕𝜕𝑧𝑧𝑏𝑏
𝜕𝜕𝑥𝑥𝑖𝑖

− 𝜏𝜏𝑏𝑏𝑖𝑖
𝜌𝜌 , 𝑧𝑧𝑏𝑏 the bed elevation, 𝑔𝑔 the gravitational acceleration, and 𝜏𝜏𝑏𝑏𝑖𝑖 the bed 

shear stress are determined by 𝜏𝜏𝑏𝑏𝑖𝑖 = 𝜌𝜌𝐶𝐶𝑏𝑏𝑢𝑢𝑖𝑖√𝑢𝑢𝑗𝑗𝑢𝑢𝑗𝑗, in which 𝐶𝐶𝑏𝑏 is the bed friction coefficient defined as 

𝐶𝐶𝑏𝑏 =  
𝑔𝑔𝑛𝑛𝑏𝑏2

ℎ
1
3

 , where 𝑛𝑛𝑏𝑏 is Manning's coefficient. 

 
𝑓𝑓𝛼𝛼(𝑥𝑥 + 𝑒𝑒𝛼𝛼∆𝜕𝜕, 𝜕𝜕 + ∆𝜕𝜕) − 𝑓𝑓𝛼𝛼(𝑥𝑥, 𝜕𝜕) = 

= −1
𝜏𝜏 [𝑓𝑓𝛼𝛼(𝑥𝑥, 𝜕𝜕) − 𝑓𝑓𝛼𝛼

𝑒𝑒𝑒𝑒(𝑥𝑥, 𝜕𝜕)] + ∆𝑡𝑡
6𝑒𝑒2 𝑒𝑒𝛼𝛼𝑖𝑖𝐹𝐹𝑖𝑖(𝑥𝑥, 𝜕𝜕) 

(3) 
where: 𝑓𝑓𝛼𝛼 is the distribution function of particles; 𝐹𝐹𝑖𝑖 Is the component of the force in 𝑖𝑖 direction; 𝜏𝜏 is the 
relaxation time; 𝑒𝑒 = ∆𝑥𝑥

∆𝑡𝑡 ; ∆𝑥𝑥 is the lattice size, and ∆𝜕𝜕 is the time step, 𝑒𝑒𝛼𝛼 is the particle velocity in link 
𝛼𝛼, which is defined by: 
 

𝑒𝑒𝛼𝛼 =

{
 
 

 
 (0,0),                                                             𝛼𝛼 = 0               

𝑒𝑒 [𝑐𝑐𝑐𝑐𝑐𝑐
(𝛼𝛼 − 1)𝜋𝜋

4 , 𝑐𝑐𝑖𝑖𝑛𝑛
(𝛼𝛼 − 1)𝜋𝜋

4 ] ,            𝛼𝛼 = 1, 3, 5, 7  

√2𝑒𝑒 [𝑐𝑐𝑐𝑐𝑐𝑐
(𝛼𝛼 − 1)𝜋𝜋

4 , 𝑐𝑐𝑖𝑖𝑛𝑛
(𝛼𝛼 − 1)𝜋𝜋

4 ] ,       𝛼𝛼 = 2, 4, 6, 8

   (4) 

 
𝑓𝑓𝛼𝛼𝑒𝑒𝑒𝑒 is the local equilibrium distribution function is officially defined as: 
 

𝑓𝑓𝛼𝛼𝑒𝑒𝑒𝑒 =

{
  
 

  
 ℎ − 5𝑔𝑔ℎ

2

6𝑒𝑒2 − 2ℎ
3𝑒𝑒2 𝑢𝑢𝑖𝑖𝑢𝑢𝑖𝑖,                                                        𝛼𝛼 = 0                                       

𝑔𝑔ℎ2
6𝑒𝑒2 +

ℎ
3𝑒𝑒2 𝑒𝑒𝛼𝛼𝑖𝑖𝑢𝑢𝑖𝑖 +

ℎ
2𝑒𝑒4 𝑒𝑒𝛼𝛼𝑖𝑖𝑒𝑒𝛼𝛼𝑗𝑗𝑢𝑢𝑖𝑖𝑢𝑢𝑗𝑗 −

ℎ
6𝑒𝑒2 𝑢𝑢𝑖𝑖𝑢𝑢𝑖𝑖,          𝛼𝛼 = 1, 3, 5, 7

𝑔𝑔ℎ2
24𝑒𝑒2 +

ℎ
12𝑒𝑒2 𝑒𝑒𝛼𝛼𝑖𝑖𝑢𝑢𝑖𝑖 +

ℎ
8𝑒𝑒4 𝑒𝑒𝛼𝛼𝑖𝑖𝑒𝑒𝛼𝛼𝑗𝑗𝑢𝑢𝑖𝑖𝑢𝑢𝑗𝑗 −

ℎ
24𝑒𝑒2 𝑢𝑢𝑖𝑖𝑢𝑢𝑖𝑖,    𝛼𝛼 = 2, 4, 6, 8

    (5) 

 
ℎ =∑𝑓𝑓𝛼𝛼

𝛼𝛼
 (6) 

𝑢𝑢𝑖𝑖 =
1
ℎ∑𝑒𝑒𝛼𝛼𝑖𝑖𝑓𝑓𝛼𝛼

𝛼𝛼
 (7) 

 
𝑓𝑓𝛼𝛼(1, 𝑗𝑗) = 𝑓𝑓𝛼𝛼(2, 𝑗𝑗), 𝛼𝛼 = 1, 2, 8 (8) 

 
𝑓𝑓𝛼𝛼(𝑁𝑁𝑥𝑥, 𝑗𝑗) = 𝑓𝑓𝛼𝛼(𝑁𝑁𝑥𝑥 − 1, 𝑗𝑗), 𝛼𝛼 = 4, 5, 6 (9) 

 

𝑓𝑓1 = 𝑓𝑓5 +
2ℎ𝑢𝑢
3𝑒𝑒  (10) 

 

 (5)

where: nb is Manning’s coefficient.

The conventional version of the lattice 
Boltzmann equation on the 9-speed square lattice 
depicted in Figure 2 is:

 

 1 

𝜕𝜕ℎ
𝜕𝜕𝜕𝜕 +

𝜕𝜕(ℎ𝑢𝑢𝑖𝑖)
𝜕𝜕𝑥𝑥𝑖𝑖

= 0 (1) 
 

𝜕𝜕(ℎ𝑢𝑢𝑖𝑖)
𝜕𝜕𝜕𝜕 +

𝜕𝜕(ℎ𝑢𝑢𝑖𝑖𝑢𝑢𝑗𝑗)
𝜕𝜕𝑥𝑥𝑗𝑗

= 

= −𝑔𝑔 𝜕𝜕
𝜕𝜕𝑥𝑥𝑖𝑖
(ℎ

2

2 ) + 𝑣𝑣
𝜕𝜕2(ℎ𝑢𝑢𝑖𝑖)
𝜕𝜕𝑥𝑥𝑗𝑗𝜕𝜕𝑥𝑥𝑗𝑗

+ 𝐹𝐹𝑖𝑖 
(2) 

 
where: ℎ the water depth, 𝜕𝜕 the time, 𝑖𝑖 and 𝑗𝑗 space direction indices, 𝑢𝑢𝑖𝑖 the velocity, 𝐹𝐹𝑖𝑖 the force term, 
defined as 𝐹𝐹𝑖𝑖 = −𝑔𝑔ℎ

𝜕𝜕𝑧𝑧𝑏𝑏
𝜕𝜕𝑥𝑥𝑖𝑖

− 𝜏𝜏𝑏𝑏𝑖𝑖
𝜌𝜌 , 𝑧𝑧𝑏𝑏 the bed elevation, 𝑔𝑔 the gravitational acceleration, and 𝜏𝜏𝑏𝑏𝑖𝑖 the bed 

shear stress are determined by 𝜏𝜏𝑏𝑏𝑖𝑖 = 𝜌𝜌𝐶𝐶𝑏𝑏𝑢𝑢𝑖𝑖√𝑢𝑢𝑗𝑗𝑢𝑢𝑗𝑗, in which 𝐶𝐶𝑏𝑏 is the bed friction coefficient defined as 

𝐶𝐶𝑏𝑏 =  
𝑔𝑔𝑛𝑛𝑏𝑏2

ℎ
1
3

 , where 𝑛𝑛𝑏𝑏 is Manning's coefficient. 

 
𝑓𝑓𝛼𝛼(𝑥𝑥 + 𝑒𝑒𝛼𝛼∆𝜕𝜕, 𝜕𝜕 + ∆𝜕𝜕) − 𝑓𝑓𝛼𝛼(𝑥𝑥, 𝜕𝜕) = 

= −1
𝜏𝜏 [𝑓𝑓𝛼𝛼(𝑥𝑥, 𝜕𝜕) − 𝑓𝑓𝛼𝛼

𝑒𝑒𝑒𝑒(𝑥𝑥, 𝜕𝜕)] + ∆𝑡𝑡
6𝑒𝑒2 𝑒𝑒𝛼𝛼𝑖𝑖𝐹𝐹𝑖𝑖(𝑥𝑥, 𝜕𝜕) 

(3) 
where: 𝑓𝑓𝛼𝛼 is the distribution function of particles; 𝐹𝐹𝑖𝑖 Is the component of the force in 𝑖𝑖 direction; 𝜏𝜏 is the 
relaxation time; 𝑒𝑒 = ∆𝑥𝑥

∆𝑡𝑡 ; ∆𝑥𝑥 is the lattice size, and ∆𝜕𝜕 is the time step, 𝑒𝑒𝛼𝛼 is the particle velocity in link 
𝛼𝛼, which is defined by: 
 

𝑒𝑒𝛼𝛼 =

{
 
 

 
 (0,0),                                                             𝛼𝛼 = 0               

𝑒𝑒 [𝑐𝑐𝑐𝑐𝑐𝑐
(𝛼𝛼 − 1)𝜋𝜋

4 , 𝑐𝑐𝑖𝑖𝑛𝑛
(𝛼𝛼 − 1)𝜋𝜋

4 ] ,            𝛼𝛼 = 1, 3, 5, 7  

√2𝑒𝑒 [𝑐𝑐𝑐𝑐𝑐𝑐
(𝛼𝛼 − 1)𝜋𝜋

4 , 𝑐𝑐𝑖𝑖𝑛𝑛
(𝛼𝛼 − 1)𝜋𝜋

4 ] ,       𝛼𝛼 = 2, 4, 6, 8

   (4) 

 
𝑓𝑓𝛼𝛼𝑒𝑒𝑒𝑒 is the local equilibrium distribution function is officially defined as: 
 

𝑓𝑓𝛼𝛼𝑒𝑒𝑒𝑒 =

{
  
 

  
 ℎ − 5𝑔𝑔ℎ

2

6𝑒𝑒2 − 2ℎ
3𝑒𝑒2 𝑢𝑢𝑖𝑖𝑢𝑢𝑖𝑖,                                                        𝛼𝛼 = 0                                       

𝑔𝑔ℎ2
6𝑒𝑒2 +

ℎ
3𝑒𝑒2 𝑒𝑒𝛼𝛼𝑖𝑖𝑢𝑢𝑖𝑖 +

ℎ
2𝑒𝑒4 𝑒𝑒𝛼𝛼𝑖𝑖𝑒𝑒𝛼𝛼𝑗𝑗𝑢𝑢𝑖𝑖𝑢𝑢𝑗𝑗 −

ℎ
6𝑒𝑒2 𝑢𝑢𝑖𝑖𝑢𝑢𝑖𝑖,          𝛼𝛼 = 1, 3, 5, 7

𝑔𝑔ℎ2
24𝑒𝑒2 +

ℎ
12𝑒𝑒2 𝑒𝑒𝛼𝛼𝑖𝑖𝑢𝑢𝑖𝑖 +

ℎ
8𝑒𝑒4 𝑒𝑒𝛼𝛼𝑖𝑖𝑒𝑒𝛼𝛼𝑗𝑗𝑢𝑢𝑖𝑖𝑢𝑢𝑗𝑗 −

ℎ
24𝑒𝑒2 𝑢𝑢𝑖𝑖𝑢𝑢𝑖𝑖,    𝛼𝛼 = 2, 4, 6, 8

    (5) 

 
ℎ =∑𝑓𝑓𝛼𝛼

𝛼𝛼
 (6) 

𝑢𝑢𝑖𝑖 =
1
ℎ∑𝑒𝑒𝛼𝛼𝑖𝑖𝑓𝑓𝛼𝛼

𝛼𝛼
 (7) 

 
𝑓𝑓𝛼𝛼(1, 𝑗𝑗) = 𝑓𝑓𝛼𝛼(2, 𝑗𝑗), 𝛼𝛼 = 1, 2, 8 (8) 

 
𝑓𝑓𝛼𝛼(𝑁𝑁𝑥𝑥, 𝑗𝑗) = 𝑓𝑓𝛼𝛼(𝑁𝑁𝑥𝑥 − 1, 𝑗𝑗), 𝛼𝛼 = 4, 5, 6 (9) 

 

𝑓𝑓1 = 𝑓𝑓5 +
2ℎ𝑢𝑢
3𝑒𝑒  (10) 

 

 (6)

where: fα is the distribution function of particles; 
Fi is the component of the force in i direc-
tion; τ is the relaxation time; 

 1 

𝜕𝜕ℎ
𝜕𝜕𝜕𝜕 +

𝜕𝜕(ℎ𝑢𝑢𝑖𝑖)
𝜕𝜕𝑥𝑥𝑖𝑖

= 0 (1) 
 

𝜕𝜕(ℎ𝑢𝑢𝑖𝑖)
𝜕𝜕𝜕𝜕 +

𝜕𝜕(ℎ𝑢𝑢𝑖𝑖𝑢𝑢𝑗𝑗)
𝜕𝜕𝑥𝑥𝑗𝑗

= 

= −𝑔𝑔 𝜕𝜕
𝜕𝜕𝑥𝑥𝑖𝑖
(ℎ

2

2 ) + 𝑣𝑣
𝜕𝜕2(ℎ𝑢𝑢𝑖𝑖)
𝜕𝜕𝑥𝑥𝑗𝑗𝜕𝜕𝑥𝑥𝑗𝑗

+ 𝐹𝐹𝑖𝑖 
(2) 

 
where: ℎ the water depth, 𝜕𝜕 the time, 𝑖𝑖 and 𝑗𝑗 space direction indices, 𝑢𝑢𝑖𝑖 the velocity, 𝐹𝐹𝑖𝑖 the force term, 
defined as 𝐹𝐹𝑖𝑖 = −𝑔𝑔ℎ

𝜕𝜕𝑧𝑧𝑏𝑏
𝜕𝜕𝑥𝑥𝑖𝑖

− 𝜏𝜏𝑏𝑏𝑖𝑖
𝜌𝜌 , 𝑧𝑧𝑏𝑏 the bed elevation, 𝑔𝑔 the gravitational acceleration, and 𝜏𝜏𝑏𝑏𝑖𝑖 the bed 

shear stress are determined by 𝜏𝜏𝑏𝑏𝑖𝑖 = 𝜌𝜌𝐶𝐶𝑏𝑏𝑢𝑢𝑖𝑖√𝑢𝑢𝑗𝑗𝑢𝑢𝑗𝑗, in which 𝐶𝐶𝑏𝑏 is the bed friction coefficient defined as 

𝐶𝐶𝑏𝑏 =  
𝑔𝑔𝑛𝑛𝑏𝑏2

ℎ
1
3

 , where 𝑛𝑛𝑏𝑏 is Manning's coefficient. 

 
𝑓𝑓𝛼𝛼(𝑥𝑥 + 𝑒𝑒𝛼𝛼∆𝜕𝜕, 𝜕𝜕 + ∆𝜕𝜕) − 𝑓𝑓𝛼𝛼(𝑥𝑥, 𝜕𝜕) = 

= −1
𝜏𝜏 [𝑓𝑓𝛼𝛼(𝑥𝑥, 𝜕𝜕) − 𝑓𝑓𝛼𝛼

𝑒𝑒𝑒𝑒(𝑥𝑥, 𝜕𝜕)] + ∆𝑡𝑡
6𝑒𝑒2 𝑒𝑒𝛼𝛼𝑖𝑖𝐹𝐹𝑖𝑖(𝑥𝑥, 𝜕𝜕) 

(3) 
where: 𝑓𝑓𝛼𝛼 is the distribution function of particles; 𝐹𝐹𝑖𝑖 Is the component of the force in 𝑖𝑖 direction; 𝜏𝜏 is the 
relaxation time; 𝑒𝑒 = ∆𝑥𝑥

∆𝑡𝑡 ; ∆𝑥𝑥 is the lattice size, and ∆𝜕𝜕 is the time step, 𝑒𝑒𝛼𝛼 is the particle velocity in link 
𝛼𝛼, which is defined by: 
 

𝑒𝑒𝛼𝛼 =

{
 
 

 
 (0,0),                                                             𝛼𝛼 = 0               

𝑒𝑒 [𝑐𝑐𝑐𝑐𝑐𝑐
(𝛼𝛼 − 1)𝜋𝜋

4 , 𝑐𝑐𝑖𝑖𝑛𝑛
(𝛼𝛼 − 1)𝜋𝜋

4 ] ,            𝛼𝛼 = 1, 3, 5, 7  

√2𝑒𝑒 [𝑐𝑐𝑐𝑐𝑐𝑐
(𝛼𝛼 − 1)𝜋𝜋

4 , 𝑐𝑐𝑖𝑖𝑛𝑛
(𝛼𝛼 − 1)𝜋𝜋

4 ] ,       𝛼𝛼 = 2, 4, 6, 8

   (4) 

 
𝑓𝑓𝛼𝛼𝑒𝑒𝑒𝑒 is the local equilibrium distribution function is officially defined as: 
 

𝑓𝑓𝛼𝛼𝑒𝑒𝑒𝑒 =

{
  
 

  
 ℎ − 5𝑔𝑔ℎ

2

6𝑒𝑒2 − 2ℎ
3𝑒𝑒2 𝑢𝑢𝑖𝑖𝑢𝑢𝑖𝑖,                                                        𝛼𝛼 = 0                                       

𝑔𝑔ℎ2
6𝑒𝑒2 +

ℎ
3𝑒𝑒2 𝑒𝑒𝛼𝛼𝑖𝑖𝑢𝑢𝑖𝑖 +

ℎ
2𝑒𝑒4 𝑒𝑒𝛼𝛼𝑖𝑖𝑒𝑒𝛼𝛼𝑗𝑗𝑢𝑢𝑖𝑖𝑢𝑢𝑗𝑗 −

ℎ
6𝑒𝑒2 𝑢𝑢𝑖𝑖𝑢𝑢𝑖𝑖,          𝛼𝛼 = 1, 3, 5, 7

𝑔𝑔ℎ2
24𝑒𝑒2 +

ℎ
12𝑒𝑒2 𝑒𝑒𝛼𝛼𝑖𝑖𝑢𝑢𝑖𝑖 +

ℎ
8𝑒𝑒4 𝑒𝑒𝛼𝛼𝑖𝑖𝑒𝑒𝛼𝛼𝑗𝑗𝑢𝑢𝑖𝑖𝑢𝑢𝑗𝑗 −

ℎ
24𝑒𝑒2 𝑢𝑢𝑖𝑖𝑢𝑢𝑖𝑖,    𝛼𝛼 = 2, 4, 6, 8

    (5) 

 
ℎ =∑𝑓𝑓𝛼𝛼

𝛼𝛼
 (6) 

𝑢𝑢𝑖𝑖 =
1
ℎ∑𝑒𝑒𝛼𝛼𝑖𝑖𝑓𝑓𝛼𝛼

𝛼𝛼
 (7) 

 
𝑓𝑓𝛼𝛼(1, 𝑗𝑗) = 𝑓𝑓𝛼𝛼(2, 𝑗𝑗), 𝛼𝛼 = 1, 2, 8 (8) 

 
𝑓𝑓𝛼𝛼(𝑁𝑁𝑥𝑥, 𝑗𝑗) = 𝑓𝑓𝛼𝛼(𝑁𝑁𝑥𝑥 − 1, 𝑗𝑗), 𝛼𝛼 = 4, 5, 6 (9) 

 

𝑓𝑓1 = 𝑓𝑓5 +
2ℎ𝑢𝑢
3𝑒𝑒  (10) 

 

; Δx is 
the lattice size, and Δt is the time step, eα 
is the particle velocity in link 𝛼, which is 
defined by: 

 

 1 

𝜕𝜕ℎ
𝜕𝜕𝜕𝜕 +

𝜕𝜕(ℎ𝑢𝑢𝑖𝑖)
𝜕𝜕𝑥𝑥𝑖𝑖

= 0 (1) 
 

𝜕𝜕(ℎ𝑢𝑢𝑖𝑖)
𝜕𝜕𝜕𝜕 +

𝜕𝜕(ℎ𝑢𝑢𝑖𝑖𝑢𝑢𝑗𝑗)
𝜕𝜕𝑥𝑥𝑗𝑗

= 

= −𝑔𝑔 𝜕𝜕
𝜕𝜕𝑥𝑥𝑖𝑖
(ℎ

2

2 ) + 𝑣𝑣
𝜕𝜕2(ℎ𝑢𝑢𝑖𝑖)
𝜕𝜕𝑥𝑥𝑗𝑗𝜕𝜕𝑥𝑥𝑗𝑗

+ 𝐹𝐹𝑖𝑖 
(2) 

 
where: ℎ the water depth, 𝜕𝜕 the time, 𝑖𝑖 and 𝑗𝑗 space direction indices, 𝑢𝑢𝑖𝑖 the velocity, 𝐹𝐹𝑖𝑖 the force term, 
defined as 𝐹𝐹𝑖𝑖 = −𝑔𝑔ℎ

𝜕𝜕𝑧𝑧𝑏𝑏
𝜕𝜕𝑥𝑥𝑖𝑖

− 𝜏𝜏𝑏𝑏𝑖𝑖
𝜌𝜌 , 𝑧𝑧𝑏𝑏 the bed elevation, 𝑔𝑔 the gravitational acceleration, and 𝜏𝜏𝑏𝑏𝑖𝑖 the bed 

shear stress are determined by 𝜏𝜏𝑏𝑏𝑖𝑖 = 𝜌𝜌𝐶𝐶𝑏𝑏𝑢𝑢𝑖𝑖√𝑢𝑢𝑗𝑗𝑢𝑢𝑗𝑗, in which 𝐶𝐶𝑏𝑏 is the bed friction coefficient defined as 

𝐶𝐶𝑏𝑏 =  
𝑔𝑔𝑛𝑛𝑏𝑏2

ℎ
1
3

 , where 𝑛𝑛𝑏𝑏 is Manning's coefficient. 

 
𝑓𝑓𝛼𝛼(𝑥𝑥 + 𝑒𝑒𝛼𝛼∆𝜕𝜕, 𝜕𝜕 + ∆𝜕𝜕) − 𝑓𝑓𝛼𝛼(𝑥𝑥, 𝜕𝜕) = 

= −1
𝜏𝜏 [𝑓𝑓𝛼𝛼(𝑥𝑥, 𝜕𝜕) − 𝑓𝑓𝛼𝛼

𝑒𝑒𝑒𝑒(𝑥𝑥, 𝜕𝜕)] + ∆𝑡𝑡
6𝑒𝑒2 𝑒𝑒𝛼𝛼𝑖𝑖𝐹𝐹𝑖𝑖(𝑥𝑥, 𝜕𝜕) 

(3) 
where: 𝑓𝑓𝛼𝛼 is the distribution function of particles; 𝐹𝐹𝑖𝑖 Is the component of the force in 𝑖𝑖 direction; 𝜏𝜏 is the 
relaxation time; 𝑒𝑒 = ∆𝑥𝑥

∆𝑡𝑡 ; ∆𝑥𝑥 is the lattice size, and ∆𝜕𝜕 is the time step, 𝑒𝑒𝛼𝛼 is the particle velocity in link 
𝛼𝛼, which is defined by: 
 

𝑒𝑒𝛼𝛼 =

{
 
 

 
 (0,0),                                                             𝛼𝛼 = 0               

𝑒𝑒 [𝑐𝑐𝑐𝑐𝑐𝑐
(𝛼𝛼 − 1)𝜋𝜋

4 , 𝑐𝑐𝑖𝑖𝑛𝑛
(𝛼𝛼 − 1)𝜋𝜋

4 ] ,            𝛼𝛼 = 1, 3, 5, 7  

√2𝑒𝑒 [𝑐𝑐𝑐𝑐𝑐𝑐
(𝛼𝛼 − 1)𝜋𝜋

4 , 𝑐𝑐𝑖𝑖𝑛𝑛
(𝛼𝛼 − 1)𝜋𝜋

4 ] ,       𝛼𝛼 = 2, 4, 6, 8

   (4) 

 
𝑓𝑓𝛼𝛼𝑒𝑒𝑒𝑒 is the local equilibrium distribution function is officially defined as: 
 

𝑓𝑓𝛼𝛼𝑒𝑒𝑒𝑒 =

{
  
 

  
 ℎ − 5𝑔𝑔ℎ

2

6𝑒𝑒2 − 2ℎ
3𝑒𝑒2 𝑢𝑢𝑖𝑖𝑢𝑢𝑖𝑖,                                                        𝛼𝛼 = 0                                       

𝑔𝑔ℎ2
6𝑒𝑒2 +

ℎ
3𝑒𝑒2 𝑒𝑒𝛼𝛼𝑖𝑖𝑢𝑢𝑖𝑖 +

ℎ
2𝑒𝑒4 𝑒𝑒𝛼𝛼𝑖𝑖𝑒𝑒𝛼𝛼𝑗𝑗𝑢𝑢𝑖𝑖𝑢𝑢𝑗𝑗 −

ℎ
6𝑒𝑒2 𝑢𝑢𝑖𝑖𝑢𝑢𝑖𝑖,          𝛼𝛼 = 1, 3, 5, 7

𝑔𝑔ℎ2
24𝑒𝑒2 +

ℎ
12𝑒𝑒2 𝑒𝑒𝛼𝛼𝑖𝑖𝑢𝑢𝑖𝑖 +

ℎ
8𝑒𝑒4 𝑒𝑒𝛼𝛼𝑖𝑖𝑒𝑒𝛼𝛼𝑗𝑗𝑢𝑢𝑖𝑖𝑢𝑢𝑗𝑗 −

ℎ
24𝑒𝑒2 𝑢𝑢𝑖𝑖𝑢𝑢𝑖𝑖,    𝛼𝛼 = 2, 4, 6, 8

    (5) 

 
ℎ =∑𝑓𝑓𝛼𝛼

𝛼𝛼
 (6) 

𝑢𝑢𝑖𝑖 =
1
ℎ∑𝑒𝑒𝛼𝛼𝑖𝑖𝑓𝑓𝛼𝛼

𝛼𝛼
 (7) 

 
𝑓𝑓𝛼𝛼(1, 𝑗𝑗) = 𝑓𝑓𝛼𝛼(2, 𝑗𝑗), 𝛼𝛼 = 1, 2, 8 (8) 

 
𝑓𝑓𝛼𝛼(𝑁𝑁𝑥𝑥, 𝑗𝑗) = 𝑓𝑓𝛼𝛼(𝑁𝑁𝑥𝑥 − 1, 𝑗𝑗), 𝛼𝛼 = 4, 5, 6 (9) 

 

𝑓𝑓1 = 𝑓𝑓5 +
2ℎ𝑢𝑢
3𝑒𝑒  (10) 

 

 (7)

 1 

𝜕𝜕ℎ
𝜕𝜕𝜕𝜕 +

𝜕𝜕(ℎ𝑢𝑢𝑖𝑖)
𝜕𝜕𝑥𝑥𝑖𝑖

= 0 (1) 
 

𝜕𝜕(ℎ𝑢𝑢𝑖𝑖)
𝜕𝜕𝜕𝜕 +

𝜕𝜕(ℎ𝑢𝑢𝑖𝑖𝑢𝑢𝑗𝑗)
𝜕𝜕𝑥𝑥𝑗𝑗

= 

= −𝑔𝑔 𝜕𝜕
𝜕𝜕𝑥𝑥𝑖𝑖
(ℎ

2

2 ) + 𝑣𝑣
𝜕𝜕2(ℎ𝑢𝑢𝑖𝑖)
𝜕𝜕𝑥𝑥𝑗𝑗𝜕𝜕𝑥𝑥𝑗𝑗

+ 𝐹𝐹𝑖𝑖 
(2) 

 
where: ℎ the water depth, 𝜕𝜕 the time, 𝑖𝑖 and 𝑗𝑗 space direction indices, 𝑢𝑢𝑖𝑖 the velocity, 𝐹𝐹𝑖𝑖 the force term, 
defined as 𝐹𝐹𝑖𝑖 = −𝑔𝑔ℎ

𝜕𝜕𝑧𝑧𝑏𝑏
𝜕𝜕𝑥𝑥𝑖𝑖

− 𝜏𝜏𝑏𝑏𝑖𝑖
𝜌𝜌 , 𝑧𝑧𝑏𝑏 the bed elevation, 𝑔𝑔 the gravitational acceleration, and 𝜏𝜏𝑏𝑏𝑖𝑖 the bed 

shear stress are determined by 𝜏𝜏𝑏𝑏𝑖𝑖 = 𝜌𝜌𝐶𝐶𝑏𝑏𝑢𝑢𝑖𝑖√𝑢𝑢𝑗𝑗𝑢𝑢𝑗𝑗, in which 𝐶𝐶𝑏𝑏 is the bed friction coefficient defined as 

𝐶𝐶𝑏𝑏 =  
𝑔𝑔𝑛𝑛𝑏𝑏2

ℎ
1
3

 , where 𝑛𝑛𝑏𝑏 is Manning's coefficient. 

 
𝑓𝑓𝛼𝛼(𝑥𝑥 + 𝑒𝑒𝛼𝛼∆𝜕𝜕, 𝜕𝜕 + ∆𝜕𝜕) − 𝑓𝑓𝛼𝛼(𝑥𝑥, 𝜕𝜕) = 

= −1
𝜏𝜏 [𝑓𝑓𝛼𝛼(𝑥𝑥, 𝜕𝜕) − 𝑓𝑓𝛼𝛼

𝑒𝑒𝑒𝑒(𝑥𝑥, 𝜕𝜕)] + ∆𝑡𝑡
6𝑒𝑒2 𝑒𝑒𝛼𝛼𝑖𝑖𝐹𝐹𝑖𝑖(𝑥𝑥, 𝜕𝜕) 

(3) 
where: 𝑓𝑓𝛼𝛼 is the distribution function of particles; 𝐹𝐹𝑖𝑖 Is the component of the force in 𝑖𝑖 direction; 𝜏𝜏 is the 
relaxation time; 𝑒𝑒 = ∆𝑥𝑥

∆𝑡𝑡 ; ∆𝑥𝑥 is the lattice size, and ∆𝜕𝜕 is the time step, 𝑒𝑒𝛼𝛼 is the particle velocity in link 
𝛼𝛼, which is defined by: 
 

𝑒𝑒𝛼𝛼 =

{
 
 

 
 (0,0),                                                             𝛼𝛼 = 0               

𝑒𝑒 [𝑐𝑐𝑐𝑐𝑐𝑐
(𝛼𝛼 − 1)𝜋𝜋

4 , 𝑐𝑐𝑖𝑖𝑛𝑛
(𝛼𝛼 − 1)𝜋𝜋

4 ] ,            𝛼𝛼 = 1, 3, 5, 7  

√2𝑒𝑒 [𝑐𝑐𝑐𝑐𝑐𝑐
(𝛼𝛼 − 1)𝜋𝜋

4 , 𝑐𝑐𝑖𝑖𝑛𝑛
(𝛼𝛼 − 1)𝜋𝜋

4 ] ,       𝛼𝛼 = 2, 4, 6, 8

   (4) 

 
𝑓𝑓𝛼𝛼𝑒𝑒𝑒𝑒 is the local equilibrium distribution function is officially defined as: 
 

𝑓𝑓𝛼𝛼𝑒𝑒𝑒𝑒 =

{
  
 

  
 ℎ − 5𝑔𝑔ℎ

2

6𝑒𝑒2 − 2ℎ
3𝑒𝑒2 𝑢𝑢𝑖𝑖𝑢𝑢𝑖𝑖,                                                        𝛼𝛼 = 0                                       

𝑔𝑔ℎ2
6𝑒𝑒2 +

ℎ
3𝑒𝑒2 𝑒𝑒𝛼𝛼𝑖𝑖𝑢𝑢𝑖𝑖 +

ℎ
2𝑒𝑒4 𝑒𝑒𝛼𝛼𝑖𝑖𝑒𝑒𝛼𝛼𝑗𝑗𝑢𝑢𝑖𝑖𝑢𝑢𝑗𝑗 −

ℎ
6𝑒𝑒2 𝑢𝑢𝑖𝑖𝑢𝑢𝑖𝑖,          𝛼𝛼 = 1, 3, 5, 7

𝑔𝑔ℎ2
24𝑒𝑒2 +

ℎ
12𝑒𝑒2 𝑒𝑒𝛼𝛼𝑖𝑖𝑢𝑢𝑖𝑖 +

ℎ
8𝑒𝑒4 𝑒𝑒𝛼𝛼𝑖𝑖𝑒𝑒𝛼𝛼𝑗𝑗𝑢𝑢𝑖𝑖𝑢𝑢𝑗𝑗 −

ℎ
24𝑒𝑒2 𝑢𝑢𝑖𝑖𝑢𝑢𝑖𝑖,    𝛼𝛼 = 2, 4, 6, 8

    (5) 

 
ℎ =∑𝑓𝑓𝛼𝛼

𝛼𝛼
 (6) 

𝑢𝑢𝑖𝑖 =
1
ℎ∑𝑒𝑒𝛼𝛼𝑖𝑖𝑓𝑓𝛼𝛼

𝛼𝛼
 (7) 

 
𝑓𝑓𝛼𝛼(1, 𝑗𝑗) = 𝑓𝑓𝛼𝛼(2, 𝑗𝑗), 𝛼𝛼 = 1, 2, 8 (8) 

 
𝑓𝑓𝛼𝛼(𝑁𝑁𝑥𝑥, 𝑗𝑗) = 𝑓𝑓𝛼𝛼(𝑁𝑁𝑥𝑥 − 1, 𝑗𝑗), 𝛼𝛼 = 4, 5, 6 (9) 

 

𝑓𝑓1 = 𝑓𝑓5 +
2ℎ𝑢𝑢
3𝑒𝑒  (10) 

 

 is the local equilibrium distribution func-
tion is officially defined as:

 

 1 

𝜕𝜕ℎ
𝜕𝜕𝜕𝜕 +

𝜕𝜕(ℎ𝑢𝑢𝑖𝑖)
𝜕𝜕𝑥𝑥𝑖𝑖

= 0 (1) 
 

𝜕𝜕(ℎ𝑢𝑢𝑖𝑖)
𝜕𝜕𝜕𝜕 +

𝜕𝜕(ℎ𝑢𝑢𝑖𝑖𝑢𝑢𝑗𝑗)
𝜕𝜕𝑥𝑥𝑗𝑗

= 

= −𝑔𝑔 𝜕𝜕
𝜕𝜕𝑥𝑥𝑖𝑖
(ℎ

2

2 ) + 𝑣𝑣
𝜕𝜕2(ℎ𝑢𝑢𝑖𝑖)
𝜕𝜕𝑥𝑥𝑗𝑗𝜕𝜕𝑥𝑥𝑗𝑗

+ 𝐹𝐹𝑖𝑖 
(2) 

 
where: ℎ the water depth, 𝜕𝜕 the time, 𝑖𝑖 and 𝑗𝑗 space direction indices, 𝑢𝑢𝑖𝑖 the velocity, 𝐹𝐹𝑖𝑖 the force term, 
defined as 𝐹𝐹𝑖𝑖 = −𝑔𝑔ℎ

𝜕𝜕𝑧𝑧𝑏𝑏
𝜕𝜕𝑥𝑥𝑖𝑖

− 𝜏𝜏𝑏𝑏𝑖𝑖
𝜌𝜌 , 𝑧𝑧𝑏𝑏 the bed elevation, 𝑔𝑔 the gravitational acceleration, and 𝜏𝜏𝑏𝑏𝑖𝑖 the bed 

shear stress are determined by 𝜏𝜏𝑏𝑏𝑖𝑖 = 𝜌𝜌𝐶𝐶𝑏𝑏𝑢𝑢𝑖𝑖√𝑢𝑢𝑗𝑗𝑢𝑢𝑗𝑗, in which 𝐶𝐶𝑏𝑏 is the bed friction coefficient defined as 

𝐶𝐶𝑏𝑏 =  
𝑔𝑔𝑛𝑛𝑏𝑏2

ℎ
1
3

 , where 𝑛𝑛𝑏𝑏 is Manning's coefficient. 

 
𝑓𝑓𝛼𝛼(𝑥𝑥 + 𝑒𝑒𝛼𝛼∆𝜕𝜕, 𝜕𝜕 + ∆𝜕𝜕) − 𝑓𝑓𝛼𝛼(𝑥𝑥, 𝜕𝜕) = 

= −1
𝜏𝜏 [𝑓𝑓𝛼𝛼(𝑥𝑥, 𝜕𝜕) − 𝑓𝑓𝛼𝛼

𝑒𝑒𝑒𝑒(𝑥𝑥, 𝜕𝜕)] + ∆𝑡𝑡
6𝑒𝑒2 𝑒𝑒𝛼𝛼𝑖𝑖𝐹𝐹𝑖𝑖(𝑥𝑥, 𝜕𝜕) 

(3) 
where: 𝑓𝑓𝛼𝛼 is the distribution function of particles; 𝐹𝐹𝑖𝑖 Is the component of the force in 𝑖𝑖 direction; 𝜏𝜏 is the 
relaxation time; 𝑒𝑒 = ∆𝑥𝑥

∆𝑡𝑡 ; ∆𝑥𝑥 is the lattice size, and ∆𝜕𝜕 is the time step, 𝑒𝑒𝛼𝛼 is the particle velocity in link 
𝛼𝛼, which is defined by: 
 

𝑒𝑒𝛼𝛼 =

{
 
 

 
 (0,0),                                                             𝛼𝛼 = 0               

𝑒𝑒 [𝑐𝑐𝑐𝑐𝑐𝑐
(𝛼𝛼 − 1)𝜋𝜋

4 , 𝑐𝑐𝑖𝑖𝑛𝑛
(𝛼𝛼 − 1)𝜋𝜋

4 ] ,            𝛼𝛼 = 1, 3, 5, 7  

√2𝑒𝑒 [𝑐𝑐𝑐𝑐𝑐𝑐
(𝛼𝛼 − 1)𝜋𝜋

4 , 𝑐𝑐𝑖𝑖𝑛𝑛
(𝛼𝛼 − 1)𝜋𝜋

4 ] ,       𝛼𝛼 = 2, 4, 6, 8

   (4) 

 
𝑓𝑓𝛼𝛼𝑒𝑒𝑒𝑒 is the local equilibrium distribution function is officially defined as: 
 

𝑓𝑓𝛼𝛼𝑒𝑒𝑒𝑒 =

{
  
 

  
 ℎ − 5𝑔𝑔ℎ

2

6𝑒𝑒2 − 2ℎ
3𝑒𝑒2 𝑢𝑢𝑖𝑖𝑢𝑢𝑖𝑖,                                                        𝛼𝛼 = 0                                       

𝑔𝑔ℎ2
6𝑒𝑒2 +

ℎ
3𝑒𝑒2 𝑒𝑒𝛼𝛼𝑖𝑖𝑢𝑢𝑖𝑖 +

ℎ
2𝑒𝑒4 𝑒𝑒𝛼𝛼𝑖𝑖𝑒𝑒𝛼𝛼𝑗𝑗𝑢𝑢𝑖𝑖𝑢𝑢𝑗𝑗 −

ℎ
6𝑒𝑒2 𝑢𝑢𝑖𝑖𝑢𝑢𝑖𝑖,          𝛼𝛼 = 1, 3, 5, 7

𝑔𝑔ℎ2
24𝑒𝑒2 +

ℎ
12𝑒𝑒2 𝑒𝑒𝛼𝛼𝑖𝑖𝑢𝑢𝑖𝑖 +

ℎ
8𝑒𝑒4 𝑒𝑒𝛼𝛼𝑖𝑖𝑒𝑒𝛼𝛼𝑗𝑗𝑢𝑢𝑖𝑖𝑢𝑢𝑗𝑗 −

ℎ
24𝑒𝑒2 𝑢𝑢𝑖𝑖𝑢𝑢𝑖𝑖,    𝛼𝛼 = 2, 4, 6, 8

    (5) 

 
ℎ =∑𝑓𝑓𝛼𝛼

𝛼𝛼
 (6) 

𝑢𝑢𝑖𝑖 =
1
ℎ∑𝑒𝑒𝛼𝛼𝑖𝑖𝑓𝑓𝛼𝛼

𝛼𝛼
 (7) 

 
𝑓𝑓𝛼𝛼(1, 𝑗𝑗) = 𝑓𝑓𝛼𝛼(2, 𝑗𝑗), 𝛼𝛼 = 1, 2, 8 (8) 

 
𝑓𝑓𝛼𝛼(𝑁𝑁𝑥𝑥, 𝑗𝑗) = 𝑓𝑓𝛼𝛼(𝑁𝑁𝑥𝑥 − 1, 𝑗𝑗), 𝛼𝛼 = 4, 5, 6 (9) 

 

𝑓𝑓1 = 𝑓𝑓5 +
2ℎ𝑢𝑢
3𝑒𝑒  (10) 

 

 (8)

A combination of the lattice Boltzmann Equa-
tion 3 and the local equilibrium function (5) is 
employed to solve Equations 1 and 2 relevant to 
shallow water. These components together pro-
vide a lattice Boltzmann model for shallow water 
flows (LABSWE) on square lattices, as defined 
by Zhou (Zhou, 2002).

The solutions to Equations 1 and 2, yielding 
the physical constants water depth h and velocity 
ui, can be computed using Equations 9 and 10, 
respectively (Zhou, 2004).

 

 1 

𝜕𝜕ℎ
𝜕𝜕𝜕𝜕 +

𝜕𝜕(ℎ𝑢𝑢𝑖𝑖)
𝜕𝜕𝑥𝑥𝑖𝑖

= 0 (1) 
 

𝜕𝜕(ℎ𝑢𝑢𝑖𝑖)
𝜕𝜕𝜕𝜕 +

𝜕𝜕(ℎ𝑢𝑢𝑖𝑖𝑢𝑢𝑗𝑗)
𝜕𝜕𝑥𝑥𝑗𝑗

= 

= −𝑔𝑔 𝜕𝜕
𝜕𝜕𝑥𝑥𝑖𝑖
(ℎ

2

2 ) + 𝑣𝑣
𝜕𝜕2(ℎ𝑢𝑢𝑖𝑖)
𝜕𝜕𝑥𝑥𝑗𝑗𝜕𝜕𝑥𝑥𝑗𝑗

+ 𝐹𝐹𝑖𝑖 
(2) 

 
where: ℎ the water depth, 𝜕𝜕 the time, 𝑖𝑖 and 𝑗𝑗 space direction indices, 𝑢𝑢𝑖𝑖 the velocity, 𝐹𝐹𝑖𝑖 the force term, 
defined as 𝐹𝐹𝑖𝑖 = −𝑔𝑔ℎ

𝜕𝜕𝑧𝑧𝑏𝑏
𝜕𝜕𝑥𝑥𝑖𝑖

− 𝜏𝜏𝑏𝑏𝑖𝑖
𝜌𝜌 , 𝑧𝑧𝑏𝑏 the bed elevation, 𝑔𝑔 the gravitational acceleration, and 𝜏𝜏𝑏𝑏𝑖𝑖 the bed 

shear stress are determined by 𝜏𝜏𝑏𝑏𝑖𝑖 = 𝜌𝜌𝐶𝐶𝑏𝑏𝑢𝑢𝑖𝑖√𝑢𝑢𝑗𝑗𝑢𝑢𝑗𝑗, in which 𝐶𝐶𝑏𝑏 is the bed friction coefficient defined as 

𝐶𝐶𝑏𝑏 =  
𝑔𝑔𝑛𝑛𝑏𝑏2

ℎ
1
3

 , where 𝑛𝑛𝑏𝑏 is Manning's coefficient. 

 
𝑓𝑓𝛼𝛼(𝑥𝑥 + 𝑒𝑒𝛼𝛼∆𝜕𝜕, 𝜕𝜕 + ∆𝜕𝜕) − 𝑓𝑓𝛼𝛼(𝑥𝑥, 𝜕𝜕) = 

= −1
𝜏𝜏 [𝑓𝑓𝛼𝛼(𝑥𝑥, 𝜕𝜕) − 𝑓𝑓𝛼𝛼

𝑒𝑒𝑒𝑒(𝑥𝑥, 𝜕𝜕)] + ∆𝑡𝑡
6𝑒𝑒2 𝑒𝑒𝛼𝛼𝑖𝑖𝐹𝐹𝑖𝑖(𝑥𝑥, 𝜕𝜕) 

(3) 
where: 𝑓𝑓𝛼𝛼 is the distribution function of particles; 𝐹𝐹𝑖𝑖 Is the component of the force in 𝑖𝑖 direction; 𝜏𝜏 is the 
relaxation time; 𝑒𝑒 = ∆𝑥𝑥

∆𝑡𝑡 ; ∆𝑥𝑥 is the lattice size, and ∆𝜕𝜕 is the time step, 𝑒𝑒𝛼𝛼 is the particle velocity in link 
𝛼𝛼, which is defined by: 
 

𝑒𝑒𝛼𝛼 =

{
 
 

 
 (0,0),                                                             𝛼𝛼 = 0               

𝑒𝑒 [𝑐𝑐𝑐𝑐𝑐𝑐
(𝛼𝛼 − 1)𝜋𝜋

4 , 𝑐𝑐𝑖𝑖𝑛𝑛
(𝛼𝛼 − 1)𝜋𝜋

4 ] ,            𝛼𝛼 = 1, 3, 5, 7  

√2𝑒𝑒 [𝑐𝑐𝑐𝑐𝑐𝑐
(𝛼𝛼 − 1)𝜋𝜋

4 , 𝑐𝑐𝑖𝑖𝑛𝑛
(𝛼𝛼 − 1)𝜋𝜋

4 ] ,       𝛼𝛼 = 2, 4, 6, 8

   (4) 

 
𝑓𝑓𝛼𝛼𝑒𝑒𝑒𝑒 is the local equilibrium distribution function is officially defined as: 
 

𝑓𝑓𝛼𝛼𝑒𝑒𝑒𝑒 =

{
  
 

  
 ℎ − 5𝑔𝑔ℎ

2

6𝑒𝑒2 − 2ℎ
3𝑒𝑒2 𝑢𝑢𝑖𝑖𝑢𝑢𝑖𝑖,                                                        𝛼𝛼 = 0                                       

𝑔𝑔ℎ2
6𝑒𝑒2 +

ℎ
3𝑒𝑒2 𝑒𝑒𝛼𝛼𝑖𝑖𝑢𝑢𝑖𝑖 +

ℎ
2𝑒𝑒4 𝑒𝑒𝛼𝛼𝑖𝑖𝑒𝑒𝛼𝛼𝑗𝑗𝑢𝑢𝑖𝑖𝑢𝑢𝑗𝑗 −

ℎ
6𝑒𝑒2 𝑢𝑢𝑖𝑖𝑢𝑢𝑖𝑖,          𝛼𝛼 = 1, 3, 5, 7

𝑔𝑔ℎ2
24𝑒𝑒2 +

ℎ
12𝑒𝑒2 𝑒𝑒𝛼𝛼𝑖𝑖𝑢𝑢𝑖𝑖 +

ℎ
8𝑒𝑒4 𝑒𝑒𝛼𝛼𝑖𝑖𝑒𝑒𝛼𝛼𝑗𝑗𝑢𝑢𝑖𝑖𝑢𝑢𝑗𝑗 −

ℎ
24𝑒𝑒2 𝑢𝑢𝑖𝑖𝑢𝑢𝑖𝑖,    𝛼𝛼 = 2, 4, 6, 8

    (5) 

 
ℎ =∑𝑓𝑓𝛼𝛼

𝛼𝛼
 (6) 

𝑢𝑢𝑖𝑖 =
1
ℎ∑𝑒𝑒𝛼𝛼𝑖𝑖𝑓𝑓𝛼𝛼

𝛼𝛼
 (7) 

 
𝑓𝑓𝛼𝛼(1, 𝑗𝑗) = 𝑓𝑓𝛼𝛼(2, 𝑗𝑗), 𝛼𝛼 = 1, 2, 8 (8) 

 
𝑓𝑓𝛼𝛼(𝑁𝑁𝑥𝑥, 𝑗𝑗) = 𝑓𝑓𝛼𝛼(𝑁𝑁𝑥𝑥 − 1, 𝑗𝑗), 𝛼𝛼 = 4, 5, 6 (9) 

 

𝑓𝑓1 = 𝑓𝑓5 +
2ℎ𝑢𝑢
3𝑒𝑒  (10) 

 

 (9)

 

 1 

𝜕𝜕ℎ
𝜕𝜕𝜕𝜕 +

𝜕𝜕(ℎ𝑢𝑢𝑖𝑖)
𝜕𝜕𝑥𝑥𝑖𝑖

= 0 (1) 
 

𝜕𝜕(ℎ𝑢𝑢𝑖𝑖)
𝜕𝜕𝜕𝜕 +

𝜕𝜕(ℎ𝑢𝑢𝑖𝑖𝑢𝑢𝑗𝑗)
𝜕𝜕𝑥𝑥𝑗𝑗

= 

= −𝑔𝑔 𝜕𝜕
𝜕𝜕𝑥𝑥𝑖𝑖
(ℎ

2

2 ) + 𝑣𝑣
𝜕𝜕2(ℎ𝑢𝑢𝑖𝑖)
𝜕𝜕𝑥𝑥𝑗𝑗𝜕𝜕𝑥𝑥𝑗𝑗

+ 𝐹𝐹𝑖𝑖 
(2) 

 
where: ℎ the water depth, 𝜕𝜕 the time, 𝑖𝑖 and 𝑗𝑗 space direction indices, 𝑢𝑢𝑖𝑖 the velocity, 𝐹𝐹𝑖𝑖 the force term, 
defined as 𝐹𝐹𝑖𝑖 = −𝑔𝑔ℎ

𝜕𝜕𝑧𝑧𝑏𝑏
𝜕𝜕𝑥𝑥𝑖𝑖

− 𝜏𝜏𝑏𝑏𝑖𝑖
𝜌𝜌 , 𝑧𝑧𝑏𝑏 the bed elevation, 𝑔𝑔 the gravitational acceleration, and 𝜏𝜏𝑏𝑏𝑖𝑖 the bed 

shear stress are determined by 𝜏𝜏𝑏𝑏𝑖𝑖 = 𝜌𝜌𝐶𝐶𝑏𝑏𝑢𝑢𝑖𝑖√𝑢𝑢𝑗𝑗𝑢𝑢𝑗𝑗, in which 𝐶𝐶𝑏𝑏 is the bed friction coefficient defined as 

𝐶𝐶𝑏𝑏 =  
𝑔𝑔𝑛𝑛𝑏𝑏2

ℎ
1
3

 , where 𝑛𝑛𝑏𝑏 is Manning's coefficient. 

 
𝑓𝑓𝛼𝛼(𝑥𝑥 + 𝑒𝑒𝛼𝛼∆𝜕𝜕, 𝜕𝜕 + ∆𝜕𝜕) − 𝑓𝑓𝛼𝛼(𝑥𝑥, 𝜕𝜕) = 

= −1
𝜏𝜏 [𝑓𝑓𝛼𝛼(𝑥𝑥, 𝜕𝜕) − 𝑓𝑓𝛼𝛼

𝑒𝑒𝑒𝑒(𝑥𝑥, 𝜕𝜕)] + ∆𝑡𝑡
6𝑒𝑒2 𝑒𝑒𝛼𝛼𝑖𝑖𝐹𝐹𝑖𝑖(𝑥𝑥, 𝜕𝜕) 

(3) 
where: 𝑓𝑓𝛼𝛼 is the distribution function of particles; 𝐹𝐹𝑖𝑖 Is the component of the force in 𝑖𝑖 direction; 𝜏𝜏 is the 
relaxation time; 𝑒𝑒 = ∆𝑥𝑥

∆𝑡𝑡 ; ∆𝑥𝑥 is the lattice size, and ∆𝜕𝜕 is the time step, 𝑒𝑒𝛼𝛼 is the particle velocity in link 
𝛼𝛼, which is defined by: 
 

𝑒𝑒𝛼𝛼 =

{
 
 

 
 (0,0),                                                             𝛼𝛼 = 0               

𝑒𝑒 [𝑐𝑐𝑐𝑐𝑐𝑐
(𝛼𝛼 − 1)𝜋𝜋

4 , 𝑐𝑐𝑖𝑖𝑛𝑛
(𝛼𝛼 − 1)𝜋𝜋

4 ] ,            𝛼𝛼 = 1, 3, 5, 7  

√2𝑒𝑒 [𝑐𝑐𝑐𝑐𝑐𝑐
(𝛼𝛼 − 1)𝜋𝜋

4 , 𝑐𝑐𝑖𝑖𝑛𝑛
(𝛼𝛼 − 1)𝜋𝜋

4 ] ,       𝛼𝛼 = 2, 4, 6, 8

   (4) 

 
𝑓𝑓𝛼𝛼𝑒𝑒𝑒𝑒 is the local equilibrium distribution function is officially defined as: 
 

𝑓𝑓𝛼𝛼𝑒𝑒𝑒𝑒 =

{
  
 

  
 ℎ − 5𝑔𝑔ℎ

2

6𝑒𝑒2 − 2ℎ
3𝑒𝑒2 𝑢𝑢𝑖𝑖𝑢𝑢𝑖𝑖,                                                        𝛼𝛼 = 0                                       

𝑔𝑔ℎ2
6𝑒𝑒2 +

ℎ
3𝑒𝑒2 𝑒𝑒𝛼𝛼𝑖𝑖𝑢𝑢𝑖𝑖 +

ℎ
2𝑒𝑒4 𝑒𝑒𝛼𝛼𝑖𝑖𝑒𝑒𝛼𝛼𝑗𝑗𝑢𝑢𝑖𝑖𝑢𝑢𝑗𝑗 −

ℎ
6𝑒𝑒2 𝑢𝑢𝑖𝑖𝑢𝑢𝑖𝑖,          𝛼𝛼 = 1, 3, 5, 7

𝑔𝑔ℎ2
24𝑒𝑒2 +

ℎ
12𝑒𝑒2 𝑒𝑒𝛼𝛼𝑖𝑖𝑢𝑢𝑖𝑖 +

ℎ
8𝑒𝑒4 𝑒𝑒𝛼𝛼𝑖𝑖𝑒𝑒𝛼𝛼𝑗𝑗𝑢𝑢𝑖𝑖𝑢𝑢𝑗𝑗 −

ℎ
24𝑒𝑒2 𝑢𝑢𝑖𝑖𝑢𝑢𝑖𝑖,    𝛼𝛼 = 2, 4, 6, 8

    (5) 

 
ℎ =∑𝑓𝑓𝛼𝛼

𝛼𝛼
 (6) 

𝑢𝑢𝑖𝑖 =
1
ℎ∑𝑒𝑒𝛼𝛼𝑖𝑖𝑓𝑓𝛼𝛼

𝛼𝛼
 (7) 

 
𝑓𝑓𝛼𝛼(1, 𝑗𝑗) = 𝑓𝑓𝛼𝛼(2, 𝑗𝑗), 𝛼𝛼 = 1, 2, 8 (8) 

 
𝑓𝑓𝛼𝛼(𝑁𝑁𝑥𝑥, 𝑗𝑗) = 𝑓𝑓𝛼𝛼(𝑁𝑁𝑥𝑥 − 1, 𝑗𝑗), 𝛼𝛼 = 4, 5, 6 (9) 

 

𝑓𝑓1 = 𝑓𝑓5 +
2ℎ𝑢𝑢
3𝑒𝑒  (10) 

 

 (10)

Figure 2. 9-Speed square lattice
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Boundary conditions 

The solution of the shallow water equations 
necessitates the application of specific boundary 
conditions. The transformation of these condi-
tions into appropriate boundary conditions for the 
LABSWE is important. The following subsec-
tions outline the suitable boundary conditions for 
the problem being investigated:

Inflow, outflow boundary conditions

In the LBM framework, the distribution 
functions at the boundary nodes require careful 
treatment, as they cannot be directly obtained 
from the lattice nodes within the computational 
domain. At the inflow boundary, the distribu-
tion functions f1, f2, and f8 along the line 

 1 

𝐴𝐴𝐴𝐴̅̅ ̅̅   
 
𝐵𝐵𝐵𝐵̅̅ ̅̅   

𝑣𝑣 = 1
3 (𝜏𝜏 − 1

2) (13) 

𝑅𝑅𝑅𝑅 = 𝑈𝑈𝑈𝑈
𝑣𝑣  

 
 𝑅𝑅𝑅𝑅 =  𝜌𝜌𝜌𝜌𝜌𝜌 

𝜇𝜇   
 
 
 

 (as 
shown in Fig. 3 are unknown after the stream-
ing step. To determine these values, we apply a 
zero-gradient condition normal to the boundary, 
a method commonly used in LBM simulations. 
This zero-gradient condition implies that the 
distribution function at the boundary node is set 
equal to the value at the adjacent internal node. 
Specifically, the distribution functions at the in-
flow boundary are updated as follows:
 

 1 

𝜕𝜕ℎ
𝜕𝜕𝜕𝜕 +

𝜕𝜕(ℎ𝑢𝑢𝑖𝑖)
𝜕𝜕𝑥𝑥𝑖𝑖

= 0 (1) 
 

𝜕𝜕(ℎ𝑢𝑢𝑖𝑖)
𝜕𝜕𝜕𝜕 +

𝜕𝜕(ℎ𝑢𝑢𝑖𝑖𝑢𝑢𝑗𝑗)
𝜕𝜕𝑥𝑥𝑗𝑗

= 

= −𝑔𝑔 𝜕𝜕
𝜕𝜕𝑥𝑥𝑖𝑖
(ℎ

2

2 ) + 𝑣𝑣
𝜕𝜕2(ℎ𝑢𝑢𝑖𝑖)
𝜕𝜕𝑥𝑥𝑗𝑗𝜕𝜕𝑥𝑥𝑗𝑗

+ 𝐹𝐹𝑖𝑖 
(2) 

 
where: ℎ the water depth, 𝜕𝜕 the time, 𝑖𝑖 and 𝑗𝑗 space direction indices, 𝑢𝑢𝑖𝑖 the velocity, 𝐹𝐹𝑖𝑖 the force term, 
defined as 𝐹𝐹𝑖𝑖 = −𝑔𝑔ℎ

𝜕𝜕𝑧𝑧𝑏𝑏
𝜕𝜕𝑥𝑥𝑖𝑖

− 𝜏𝜏𝑏𝑏𝑖𝑖
𝜌𝜌 , 𝑧𝑧𝑏𝑏 the bed elevation, 𝑔𝑔 the gravitational acceleration, and 𝜏𝜏𝑏𝑏𝑖𝑖 the bed 

shear stress are determined by 𝜏𝜏𝑏𝑏𝑖𝑖 = 𝜌𝜌𝐶𝐶𝑏𝑏𝑢𝑢𝑖𝑖√𝑢𝑢𝑗𝑗𝑢𝑢𝑗𝑗, in which 𝐶𝐶𝑏𝑏 is the bed friction coefficient defined as 

𝐶𝐶𝑏𝑏 =  
𝑔𝑔𝑛𝑛𝑏𝑏2

ℎ
1
3

 , where 𝑛𝑛𝑏𝑏 is Manning's coefficient. 

 
𝑓𝑓𝛼𝛼(𝑥𝑥 + 𝑒𝑒𝛼𝛼∆𝜕𝜕, 𝜕𝜕 + ∆𝜕𝜕) − 𝑓𝑓𝛼𝛼(𝑥𝑥, 𝜕𝜕) = 

= −1
𝜏𝜏 [𝑓𝑓𝛼𝛼(𝑥𝑥, 𝜕𝜕) − 𝑓𝑓𝛼𝛼

𝑒𝑒𝑒𝑒(𝑥𝑥, 𝜕𝜕)] + ∆𝑡𝑡
6𝑒𝑒2 𝑒𝑒𝛼𝛼𝑖𝑖𝐹𝐹𝑖𝑖(𝑥𝑥, 𝜕𝜕) 

(3) 
where: 𝑓𝑓𝛼𝛼 is the distribution function of particles; 𝐹𝐹𝑖𝑖 Is the component of the force in 𝑖𝑖 direction; 𝜏𝜏 is the 
relaxation time; 𝑒𝑒 = ∆𝑥𝑥

∆𝑡𝑡 ; ∆𝑥𝑥 is the lattice size, and ∆𝜕𝜕 is the time step, 𝑒𝑒𝛼𝛼 is the particle velocity in link 
𝛼𝛼, which is defined by: 
 

𝑒𝑒𝛼𝛼 =

{
 
 

 
 (0,0),                                                             𝛼𝛼 = 0               

𝑒𝑒 [𝑐𝑐𝑐𝑐𝑐𝑐
(𝛼𝛼 − 1)𝜋𝜋

4 , 𝑐𝑐𝑖𝑖𝑛𝑛
(𝛼𝛼 − 1)𝜋𝜋

4 ] ,            𝛼𝛼 = 1, 3, 5, 7  

√2𝑒𝑒 [𝑐𝑐𝑐𝑐𝑐𝑐
(𝛼𝛼 − 1)𝜋𝜋

4 , 𝑐𝑐𝑖𝑖𝑛𝑛
(𝛼𝛼 − 1)𝜋𝜋

4 ] ,       𝛼𝛼 = 2, 4, 6, 8

   (4) 

 
𝑓𝑓𝛼𝛼𝑒𝑒𝑒𝑒 is the local equilibrium distribution function is officially defined as: 
 

𝑓𝑓𝛼𝛼𝑒𝑒𝑒𝑒 =

{
  
 

  
 ℎ − 5𝑔𝑔ℎ

2

6𝑒𝑒2 − 2ℎ
3𝑒𝑒2 𝑢𝑢𝑖𝑖𝑢𝑢𝑖𝑖,                                                        𝛼𝛼 = 0                                       

𝑔𝑔ℎ2
6𝑒𝑒2 +

ℎ
3𝑒𝑒2 𝑒𝑒𝛼𝛼𝑖𝑖𝑢𝑢𝑖𝑖 +

ℎ
2𝑒𝑒4 𝑒𝑒𝛼𝛼𝑖𝑖𝑒𝑒𝛼𝛼𝑗𝑗𝑢𝑢𝑖𝑖𝑢𝑢𝑗𝑗 −

ℎ
6𝑒𝑒2 𝑢𝑢𝑖𝑖𝑢𝑢𝑖𝑖,          𝛼𝛼 = 1, 3, 5, 7

𝑔𝑔ℎ2
24𝑒𝑒2 +

ℎ
12𝑒𝑒2 𝑒𝑒𝛼𝛼𝑖𝑖𝑢𝑢𝑖𝑖 +

ℎ
8𝑒𝑒4 𝑒𝑒𝛼𝛼𝑖𝑖𝑒𝑒𝛼𝛼𝑗𝑗𝑢𝑢𝑖𝑖𝑢𝑢𝑗𝑗 −

ℎ
24𝑒𝑒2 𝑢𝑢𝑖𝑖𝑢𝑢𝑖𝑖,    𝛼𝛼 = 2, 4, 6, 8

    (5) 

 
ℎ =∑𝑓𝑓𝛼𝛼

𝛼𝛼
 (6) 

𝑢𝑢𝑖𝑖 =
1
ℎ∑𝑒𝑒𝛼𝛼𝑖𝑖𝑓𝑓𝛼𝛼

𝛼𝛼
 (7) 

 
𝑓𝑓𝛼𝛼(1, 𝑗𝑗) = 𝑓𝑓𝛼𝛼(2, 𝑗𝑗), 𝛼𝛼 = 1, 2, 8 (8) 

 
𝑓𝑓𝛼𝛼(𝑁𝑁𝑥𝑥, 𝑗𝑗) = 𝑓𝑓𝛼𝛼(𝑁𝑁𝑥𝑥 − 1, 𝑗𝑗), 𝛼𝛼 = 4, 5, 6 (9) 

 

𝑓𝑓1 = 𝑓𝑓5 +
2ℎ𝑢𝑢
3𝑒𝑒  (10) 

 

 (11)
Similarly, for the outflow boundary 

 1 

𝐴𝐴𝐴𝐴̅̅ ̅̅   
 
𝐵𝐵𝐵𝐵̅̅ ̅̅   

𝑣𝑣 = 1
3 (𝜏𝜏 − 1

2) (13) 

𝑅𝑅𝑅𝑅 = 𝑈𝑈𝑈𝑈
𝑣𝑣  

 
 𝑅𝑅𝑅𝑅 =  𝜌𝜌𝜌𝜌𝜌𝜌 

𝜇𝜇   
 
 
 

 as de-
picted in Figure 3, the relationships for f4, f5, and 
f6 can be given by:
 

 1 

𝜕𝜕ℎ
𝜕𝜕𝜕𝜕 +

𝜕𝜕(ℎ𝑢𝑢𝑖𝑖)
𝜕𝜕𝑥𝑥𝑖𝑖

= 0 (1) 
 

𝜕𝜕(ℎ𝑢𝑢𝑖𝑖)
𝜕𝜕𝜕𝜕 +

𝜕𝜕(ℎ𝑢𝑢𝑖𝑖𝑢𝑢𝑗𝑗)
𝜕𝜕𝑥𝑥𝑗𝑗

= 

= −𝑔𝑔 𝜕𝜕
𝜕𝜕𝑥𝑥𝑖𝑖
(ℎ

2

2 ) + 𝑣𝑣
𝜕𝜕2(ℎ𝑢𝑢𝑖𝑖)
𝜕𝜕𝑥𝑥𝑗𝑗𝜕𝜕𝑥𝑥𝑗𝑗

+ 𝐹𝐹𝑖𝑖 
(2) 

 
where: ℎ the water depth, 𝜕𝜕 the time, 𝑖𝑖 and 𝑗𝑗 space direction indices, 𝑢𝑢𝑖𝑖 the velocity, 𝐹𝐹𝑖𝑖 the force term, 
defined as 𝐹𝐹𝑖𝑖 = −𝑔𝑔ℎ

𝜕𝜕𝑧𝑧𝑏𝑏
𝜕𝜕𝑥𝑥𝑖𝑖

− 𝜏𝜏𝑏𝑏𝑖𝑖
𝜌𝜌 , 𝑧𝑧𝑏𝑏 the bed elevation, 𝑔𝑔 the gravitational acceleration, and 𝜏𝜏𝑏𝑏𝑖𝑖 the bed 

shear stress are determined by 𝜏𝜏𝑏𝑏𝑖𝑖 = 𝜌𝜌𝐶𝐶𝑏𝑏𝑢𝑢𝑖𝑖√𝑢𝑢𝑗𝑗𝑢𝑢𝑗𝑗, in which 𝐶𝐶𝑏𝑏 is the bed friction coefficient defined as 

𝐶𝐶𝑏𝑏 =  
𝑔𝑔𝑛𝑛𝑏𝑏2

ℎ
1
3

 , where 𝑛𝑛𝑏𝑏 is Manning's coefficient. 

 
𝑓𝑓𝛼𝛼(𝑥𝑥 + 𝑒𝑒𝛼𝛼∆𝜕𝜕, 𝜕𝜕 + ∆𝜕𝜕) − 𝑓𝑓𝛼𝛼(𝑥𝑥, 𝜕𝜕) = 

= −1
𝜏𝜏 [𝑓𝑓𝛼𝛼(𝑥𝑥, 𝜕𝜕) − 𝑓𝑓𝛼𝛼

𝑒𝑒𝑒𝑒(𝑥𝑥, 𝜕𝜕)] + ∆𝑡𝑡
6𝑒𝑒2 𝑒𝑒𝛼𝛼𝑖𝑖𝐹𝐹𝑖𝑖(𝑥𝑥, 𝜕𝜕) 

(3) 
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𝑓𝑓2 = ℎ𝑢𝑢
6𝑒𝑒 + 𝑓𝑓6 + 𝑓𝑓7 − 𝑓𝑓3

2  (11) 

𝑓𝑓8 = ℎ𝑢𝑢
6𝑒𝑒 + 𝑓𝑓4 + 𝑓𝑓3 − 𝑓𝑓7
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𝑓𝑓2 = ℎ𝑢𝑢
6𝑒𝑒 + 𝑓𝑓6 + 𝑓𝑓7 − 𝑓𝑓3

2  (11) 

𝑓𝑓8 = ℎ𝑢𝑢
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 (15)

Solid boundary conditions

Accurate simulation of the interaction be-
tween fluid and solid surfaces in LBM strongly 
relies on the inclusion of solid boundary condi-
tions. Commonly applied conditions include two 
types: no-slip and slip boundary conditions.

Under situations of no-slip, the bounce-back 
scheme is commonly used. Within this particu-
lar design, the distribution functions that go to-
wards a solid boundary undergo reflection in the 
opposite direction during the streaming step. As 
mandated by the no-slip boundary condition, this 
reflection takes place at the lattice node next to 
the boundary, therefore imposing a zero-velocity 
requirement at the wall.

Slip boundary conditions eliminate friction 
and resistance, therefore enabling fluid motion 
along the boundary. This phenomenon is repre-
sented by imposing a zero-gradient condition 
on the distribution function that is normal to the 
solid boundary. This implies that the value of 
the distribution function remains constant when 
approached perpendicular to the boundary. This 
state replicates a situation in which the fluid as-
sumes no shear stress at the boundary, therefore 
enabling it to move through a slide down the sur-
face. In practice, these boundary conditions are 
implemented as follows:

Figure 3. Lattice node inflow/outflow boundary definition sketch
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 • the no-slip condition (Bounce-Back) states 
that when a distribution function fα is oriented 
towards a solid boundary, it will be reflected 
back as fᾱ, where ᾱ represents the opposite di-
rection. Consequently, the no-slip condition 
is satisfied as the macroscopic velocity at the 
border remains zero.

 • slip condition (zero gradient) - in slip boundaries, 
the distribution functions are modified to ensure 
that the gradient perpendicular to the boundary 
is zero, indicating that the distribution function 
at the boundary is equivalent to the distribution 
function at adjacent internal node.

These methods ensure that the solid bound-
aries are accurately represented, preventing un-
physical behaviors such as fluid penetration or 
artificial boundary effects that could compromise 
the simulation’s accuracy.

Solution procedure

For LABSWE, the resolution method is 
straightforward and is outlined in Figure 4.

RESULTS AND DISCUSSIONS

Effect of relaxation time

In this section, we investigate the influence of 
relaxation time, a critical parameter in fluid dy-
namics, which is intrinsically linked to the fluid’s 
viscosity via the relationship:

 

 1 

𝐴𝐴𝐴𝐴̅̅ ̅̅   
 
𝐵𝐵𝐵𝐵̅̅ ̅̅   

𝑣𝑣 = 1
3 (𝜏𝜏 − 1
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𝑅𝑅𝑅𝑅 = 𝑈𝑈𝑈𝑈
𝑣𝑣  

 
 𝑅𝑅𝑅𝑅 =  𝜌𝜌𝜌𝜌𝜌𝜌 

𝜇𝜇   
 
 
 

 (16)

This indicates that studying relaxation time 
is like studying viscosity. The lattice Boltzmann 
model for shallow water equations (LABSWE) 
with a D2Q9 lattice was used to simulate a 
straight channel 6m long and 0.6m wide. The re-
laxation times were set to τ = 0.55, τ = 0.54, τ = 
0.53, τ = 0.52, τ = 0.51, τ = 0.507 and τ = 0.501. 
The channel simulations used an inflow dis-
charge of Q = 0.0123 m3·s-1, and a downstream 
water depth of  h = 0.05 m. Δx and Δt are consid-
ered to be 0.02 m and 0.004 s, respectively. No-
slip boundary criteria are applied on wall sides.

The velocity distribution at the cross section 
for different relaxation time values is depicted in 
Figure 5. At higher relaxation times, the distribu-
tion is parabolic, characteristic of laminar flow. 
However, as the relaxation time decreases, the 
distribution becomes logarithmic, indicating a 

Figure 4. LABSWE model flowchart

transition to turbulent flow. This transition is in-
trinsically linked to the relationship between re-
laxation time and viscosity in the fluid (Eq. 16). A 
reduction in the relaxation time results in a corre-
sponding drop in the viscosity of the fluid, there-
by causing an elevation in the Reynolds number, 
as presented in Figure 6. This phenomenon arises 
due to the fact that the Reynolds number is a di-
mensionless parameter that exhibits an inverse re-
lationship with viscosity. In particular, the Reyn-
olds number is determined by the Equation
 

 1 
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 (17)
where: U represents the characteristic velocity, L  

represents the characteristic length, and v 
represents the kinematic viscosity.

As viscosity decreases, the Reynolds number 
increases, driving the transition from a laminar re-
gime, characterized by a parabolic velocity profile, 
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Figure 6. Variation of reynolds number with relaxation time τ

Figure 5. Velocity distribution at the cross-section for different relaxation times.

to a turbulent regime. In flows with high Reyn-
olds numbers, inertial forces become more sig-
nificant than viscous forces, leading to a logarith-
mic velocity distribution profile. This logarithmic 
profile is a defining feature of turbulent flows. 
Through the analysis of the temporal develop-
ment of the velocity at the center of the channel 
for two distinct relaxation times, τ = 0.55 and , τ 
= 0.501, as shown in Figures. 7 and 8, the appar-
ent shift from laminar to turbulent flow regimes is 
verified. For a value of 0.55, the velocity near the 
central point of the channel remained constant at 
0.25 m·s-1 before progressively decelerating.  In-
ternal viscous forces, which disperse the fluid’s 
kinetic energy when no external forces propel the 

flow, cause the diminution in velocity. When the 
relaxation period was reduced to τ = 0.501, signif-
icant variations in the velocity near the channel’s 
center were observed, indicating a significant de-
gree of flow instability. The oscillations seen and 
the logarithmic shape of the velocity distribution 
at the cross-section are strong proof that the flow 
regime changed from laminar to turbulent.

Effect of channel width

To examine the impact of the width of a 
straight channel on flow properties, the LAB-
SWE model with a D2Q9 lattice was employed. 
The length of the channel was maintained at 6 m, 
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Figure 7. Temporal evolution of the channel center velocity with τ = 0.55

Figure 8. Temporal evolution of the channel center velocity with τ = 0.501

while the width was gradually raised in a sequence 
of increments: 0.6 m, 1 m, 1.4 m, 1.8 m, 2.2 m, and 
5.4 m. The numerical calculations were conducted 
with a discharge charge of Q = 0.0123 m3·s-1, at 
the inflow and a predetermined h value of 0.05 m 
at the downstream end. Δx = 0.02 m, Δt = 0.004 s, 
and τ = 0.55. Non-slip boundary conditions were 
imposed on the side walls.

The influence of the width of the channel on 
the distribution of velocity in the cross-section is 
illustrated in Figure 9. The analysis of this image 
reveals that the channel width has a crucial influ-
ence on the flow dynamics in this particular ar-
rangement. Furthermore, the correlation between 
Reynolds number (Re) and channel width is cru-
cial for studying the shift of flow from laminar to 

turbulent. Reynolds number  is defined as the ratio 
of the fluid density to the dynamic fluid viscosity. 
 

 1 

𝐴𝐴𝐴𝐴̅̅ ̅̅   
 
𝐵𝐵𝐵𝐵̅̅ ̅̅   

𝑣𝑣 = 1
3 (𝜏𝜏 − 1

2) (13) 

𝑅𝑅𝑅𝑅 = 𝑈𝑈𝑈𝑈
𝑣𝑣  

 
 𝑅𝑅𝑅𝑅 =  𝜌𝜌𝜌𝜌𝜌𝜌 
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 (18)

where: ρ is the fluid density, u is the fluid veloc-
ity, D is the characteristic length (channel 
width), and μ is the effective fluid viscosity.

Smaller Reynolds numbers in narrower chan-
nels suggest a scenario in which viscous forces 
outweigh inertial forces. These conditions lead to 
a laminar flow that is defined by a parabolic dis-
tribution of velocity in the channel. The Reynolds 
number increases proportionally with the channel 
width, as depicted in Figure 10. Once the value 
of 𝑅𝑒 beyond a specific threshold, the flow un-
dergoes a transition from a laminar to a turbulent 
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Figure 9. Velocity distribution at the cross-section for different channel widths: 
(a) 0.6 m, (b) 1 m, (c) 1.4 m, (d) 1.8 m, (e) 2.2 m, (f) 5.4 m

regime. This transition is accompanied by a shift 
in velocity distribution from a parabolic to a loga-
rithmic profile due to the substantial impact of in-
ertial forces on the material flow.

Effect of external forces

This section examines the impact of external 
forces on the flow dynamics in a linear channel 

using the LABSWE method. This study examines 
the impact of external influences on the velocity 
and depth of flow in the x and y directions.

The channel has dimensions of 6 m in length 
and 1.5 m in width. Application of a constant 
force in the x-direction fx = 0.000171 N and in 
the y-direction fy = 0.000012 N is seen. A dis-
charge defines the inlet Q = 0.0123 m3·s-1 and a 
fixed water depth of 0.05 m is established at the 
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downstream exit according to the discharge. Ap-
plication of no-slip boundary conditions is imple-
mented along the side walls. The parameters Δx, 
Δt, and τ are given values of 0.02 m, 0.004 s, and 
0.55, respectively.

In the absence of external forces (𝑓𝑥 = 𝑓𝑦 = 0), 
the flow exhibited a parabolic velocity profile, 
as shown in Figure 11, characteristic of lami-
nar flows. The Reynolds number, in this case, 
is Re = 1078. However, with the application 
of external forces 𝑓𝑥 = 0.000171 𝑁 and 𝑓𝑦 = 
0.000012 𝑁, the velocity profile underwent an 
apparent transformation, as illustrated in Fig. 
12, showing a logarithmic distribution indicat-
ing a transition to the turbulent regime. What 
confirms this transition is the increase in the 
Reynolds number to Re = 140625.

Applying external forces increases fluid ve-
locity, thereby elevating the Reynolds number. 
When this number exceeds a certain threshold, 
inertial forces dominate viscous forces, causing 
the flow to transition from laminar to turbulent.

In addition, the constant depth of the fluid ob-
served without external forces (Fig. 13) becomes 
variable when the force is applied (Fig. 14). This 
difference is linked to the appearance of a pressure 
gradient due to these forces. When external forces 
are applied to the fluid, they create zones of non-
uniform pressure. The resulting pressure gradient 
causes the fluid to move, accelerating the flow in 
certain regions. In the context of fluid dynamics, 
flow acceleration in certain areas leads to localized 
decreases in fluid depth due to the principle of con-
servation of mass. At the same time, decelerations 

Figure 10. Variation of Reynolds number with channel width.

Figure 11. Channel velocity profile without external forces
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Figure 12. Channel velocity profile under external forces

Figure 13. Fluid depth in the channel without external forces

Figure 14. Fluid depth in the channel under the effect of external forces.
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or lateral displacements can cause depth increases 
in other regions. Fluid depth variation is, there-
fore, a direct reflection of fluid dynamics under 
pressure triggered by external forces.

CONCLUSIONS

This research successfully delineates the ef-
fects of relaxation time, channel width, and ex-
ternal forces on the transition between laminar 
and turbulent flow regimes in straight channels. 
We found that reducing relaxation time not only 
accelerates the transition but also instigates pro-
nounced fluctuations in central channel veloci-
ties, a phenomenon less documented in existing 
studies. Similarly, our findings regarding the 
role of channel width provide new quantitative 
insights into how much widening a channel in-
fluences the onset of turbulence, providing a 
clearer understanding of the critical dimensions 
necessary for such transitions. Additionally, in-
troducing external forces as a variable in our ex-
periments revealed their potent effect in hastening 
the laminar-turbulent transition, filling a critical 
knowledge gap regarding the direct manipulation 
of flow behavior through external stimuli.

This study bridges a significant gap by quan-
titatively linking changes in flow behavior to spe-
cific alterations in physical channel conditions 
and external force applications, enhancing our 
understanding of flow dynamics that could guide 
the design and management of hydraulic systems 
and environmental flows.

Looking forward, these findings open pros-
pects for further research into the scalability of 
these effects in larger or more complex channel 
systems and their applicability in real-world sce-
narios, such as flood management and environ-
mental conservation.
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