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INTRODUCTION

Flash floods are among the most frequent 
and destructive natural disasters globally, inflict-
ing widespread damage on both urban areas and 
agricultural lands while also posing a significant 
threat to human life (He et al., 2024a; Isma et al., 

2024; Saha et al., 2024). The urgency to address 
this challenge has intensified, particularly in the 
face of climate change, which exacerbates the 
frequency and severity of such events (Atanga 
and Tankpa, 2021; Ionno et al., 2024; Kundze-
wicz et al., 2014). Morocco, like many countries, 
has been increasingly vulnerable to catastrophic 
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floods, with several regions experiencing repeat-
ed and devastating incidents over the past de-
cades. Notably, cities like Agadir, Marrakech, and 
Beni Mellal have been severely impacted by flash 
floods, resulting in loss of life, property damage, 
and disruption of economic activities (Aangri et 
al., 2024; Cotti et al., 2022; Said and Ahmed, 
2023). These regions face a complex interplay of 
environmental and urban factors that make them 
prone to flooding. 

Previous approaches to managing flood risks 
in Morocco have largely relied on traditional 
methods, such as spatial data analysis and remote 
sensing (Sumi, Kantoush, and Saber, n.d.). Re-
mote sensing has enabled real-time monitoring 
and rapid assessment of flood damage but often 
lacks the predictive capability required to prevent 
such disasters. Despite advances, conventional 
methods have sometimes fallen short in accu-
rately predicting flash floods due to the complex 
and dynamic nature of the phenomenon (Patil et 
al., 2024). Thus, there is a growing need for more 
sophisticated and predictive models, particularly 
in regions where flash floods are recurrent.

In recent years, ML has emerged as a power-
ful tool in environmental science, offering more 
accurate and data-driven approaches for flood 
risk assessment (Mosavi et al., 2018). The use of 
ML models, especially when combined with GIS 
and spatial data, has provided more reliable pre-
dictions of flood-prone areas. However, despite 
the global shift toward advanced technologies, 
many regions in Morocco still rely on outdated or 
incomplete methods, making them vulnerable to 
increasingly severe flood events. 

Among the most affected regions in Mo-
rocco is the Guelmim area in the southwest, 
which has endured multiple severe floods over 
the past five decades, with notable events in 
1968, 1985, 1989, 2002, 2010, and 2014 (Ban-
nari, e al., 2019; Khaddari et al., 2023a; Theilen-
Willige et al., 2015). These recurrent disasters 
have led the Moroccan government to designate 
Guelmim as a disaster-prone area (Bannari et al., 
2020; Talha et al., 2019). Several studies have 
been conducted to assess flood risks in this re-
gion, utilizing techniques like spatial prediction 
of flood hazards, land surface moisture evalua-
tion, and the fuzzy analytical hierarchy process 
(FAHP) combined with GIS (Talha et al., 2019). 
While these methods have contributed to a bet-
ter understanding of flood risks, they often lack 
the precision needed to mitigate future events 

effectively (Al-Aizari et al., 2024; Albertini et 
al., 2024; Tan et al., 2024a).

This study aims to address the limitations of 
conventional methods by enhancing flash flood 
risk prediction in the Assaka watershed within the 
Guelmim region. By employing the RF machine 
learning algorithm, renowned for its accuracy and 
robustness, this research seeks to develop a high-
ly reliable flood susceptibility map for the region. 
The purpose of this study is to fill a critical gap 
in existing flood risk management by introduc-
ing a more data-driven and predictive approach, 
capable of accurately identifying and classifying 
flood-prone areas. The main objective is to assess 
whether integrating ML and GIS technologies can 
significantly improve flood prediction accuracy in 
comparison to traditional methods, thereby pro-
viding a valuable tool for disaster preparedness 
and risk management. The study hypothesizes 
that the random forest model, with its ability to 
process large and complex datasets, will provide 
enhanced predictive capabilities that contribute to 
a better understanding of flood susceptibility in 
the Guelmim region.

MATERIALS AND METHODS

Study area

The subject of this study (Fig. 1 and Fig. 2), 
the Assaka watershed, is located in southern Mo-
rocco within the Guelmim-Oued Noun region, 
under the supervision of the Hydraulic Basin 
Agency of Souss Massa ABHSM of Morocco. 
This hydraulic sub-watershed of Guelmim cov-
ers an area of 6.862 square kilometers, with a pe-
rimeter of 597 kilometers (Khaddari et al., 2022; 
Mahmouhi et al., 2016; Mathieu et al., 2004). It 
is characterized by an arid to semi-arid desert 
climate, with an average annual temperature of 
19 °C, and annual rainfall typically reaching up 
to 145 mm (Bannari et al., 2019; Said, Ahmed, 
and Kharrim, 2023; Said, Ahmed, Lahcen, Rhi-
ta, n.d.). According to the 2014 census, the re-
gion supports a population of over 18.000 peo-
ple (HCP of Morocco, 2014). The watershed has 
experienced several catastrophic flood and flash 
flood events in recent years, with notable oc-
currences in 1968, 1985, 1989, 2002, 2010, and 
2014 (Bannari et al., 2020; Bannari et al., 2019; 
Talha et al., 2019). These events have caused 
widespread damage, including the destruction of 
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infrastructure, loss of lives, and displacement of 
residents. 

The 2014 floods were particularly severe, re-
sulting in the Moroccan government declaring 
Guelmim a disaster zone (Talha et al., 2019). The 
Assaka watershed features rugged terrain in its 
northeastern part, with elevations ranging from 
sea level along the western Atlantic coast to over 

1.100 meters in the mountainous areas (Theilen-
Willige et al., 2015). The watershed is fed by 
the confluence of two rivers, Oum Laachar and 
Essayed, which flow into the Atlantic Ocean. 
The landscape is dominated by depressions and 
broad valleys with flat bottoms primarily lo-
cated at elevations between 300 and 600 meters 
(Khaddari et al., 2023a; Mahmouhi et al., 2016; 

Figure 1. Spatial representation of the study region

Figure 2. Flood impact on oases, farmlands, and a classroom in the study area (November 24, 2014) 
(Bannari et al., 2016)
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Mathieu et al., 2004). Recent flash flood events 
in the region highlight the vulnerability of this 
area. For instance, during the floods of 2014, 
the region experienced significant flooding, par-
ticularly around the Essayed and Oum Laachar 
tributaries. These floods damaged roads, homes, 
and agricultural lands, leaving long-lasting im-
pacts on local livelihoods. The watershed’s steep 
terrain and limited drainage capacity exacer-
bate the impact of heavy rainfall, making flash 
floods more frequent and severe. Photos of the 
aftermath of these floods show the devastation 
caused, with submerged roads and washed-away 
bridges becoming a common sight. The water-
shed’s slope map categorizes the terrain into five 
classes, with values ranging from 0 to over 64 
degrees. The slope generally decreases from the 
northeast toward the southwest, with large areas 
featuring gentle to moderate slopes (less than 
11 degrees) (Talha et al., 2019). Morphometric 
analysis highlights that wide valleys and depres-
sions at elevations between 350 and 400 meters, 
along with tableland regions characterized by 
gentle slopes, are significant features that influ-
ence flood dynamics (Talha et al., 2019).

Method 

The methodology followed in this study is 
summarized in the flowchart presented in (Fig. 3) 
It involves the preparation of a flood information 
map, identification of the factors contributing to 
flash flood conditions, creation of a flood suscep-
tibility model using RF algorithms, evaluation of 
model accuracy, and the generation of a compre-
hensive flash flood susceptibility map (Al-Aizari 
et al., 2024; Ganjirad and Delavar, 2023; Tan et 
al., 2024a).

Data used

The primary datasets employed in this re-
search include data from the Landsat-8 operation-
al land imager (OLI) sensor, the digital elevation 
model (DEM), and the flood information map.

Digital elevation model (DEM)

Altitude, represented as altimetry, is a funda-
mental descriptor of terrestrial topography. It is a 
crucial factor influencing the occurrence of flash 

Figure 3. Process for flash flood susceptibility mapping in the ASSAKA watershed using GIS 
and machine learning
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floods (Avand 2022; Muthusamy et al., 2021). 
Generally, the frequency of flash floods tends to 
increase as elevation decreases, rendering lower 
areas more prone to flooding conditions (Hawker 
et al., 2018; Tarekegn et al., 2010). For this case 
study, elevation data with a spatial resolution of 
30 by 30 meters was collected from the Global 
Data Explorer. The elevation in the study area 
varies significantly, ranging from as low as 17 
meters to heights exceeding 1000 meters. This 
variation in elevation plays an essential role in 
analyzing flood susceptibility and terrain charac-
teristics. (Fig. 5b).

Landsat-8 oli sensor data

Landsat-8 is the eighth satellite in the LAND-
SAT series and is equipped with two main sen-
sors: the OLI and the thermal infrared sensor 
(TIRS). The OLI sensor captures images in nine 
spectral bands, including visible, near-infrared, 
and shortwave infrared, with a spatial resolution 
of 30 by 30 meters. This allows for comprehen-
sive coverage of large terrestrial regions while 
maintaining sufficient resolution to identify and 
categorize various surface features. Addition-
ally, the TIRS was integrated into the mission 
to measure Earth’s thermal energy. It operates in 
two bands, ten and eleven, providing resolutions 
ranging from 30 to 100 meters. (Mao et al., 2020; 
Sivrikaya et al., 2024; Sun et al., 2021).

Flood information map

To collect flood data for predicting flash flood 
susceptibility using the random forest machine 
learning algorithm (Fig. 5o), the methodology 
is organized into several crucial steps. Initially, 
flood conditioning factors are prepared using GIS 
tools and geographic datasets. Next, the analyti-
cal hierarchy process (AHP) is employed to as-
sign weights to various criteria. In the third step, 
these factors are transformed into a normalized 
range between 0 and 1 through the Fuzzy Mem-
bership algorithm with linear functions. The 
weighted criteria obtained from the AHP are then 
combined with the normalized factors. Ultimate-
ly, this complete dataset is used in the Random 
Forest algorithm to generate a susceptibility map 
for flash floods (Talha et al., 2019).

Flood factors

Based on insights from previous studies 
(Bakhtiari et al., 2023; He et al., 2024b; Tan et al., 

2024b), fourteen critical flash flood conditioning 
predictors have been identified and utilized in this 
case study. The factors analyzed include altitude, 
slope, aspect, drainage density, soil type, lithol-
ogy, and land use and land cover (LU/LC), along 
with hydrological indices such as flow accumula-
tion (FA), stream power index (SPI), topographic 
position index (TPI), topographic wetness index 
(TWI), and curvature. Additionally, climatic vari-
ables such as land surface temperature (LST) and 
soil moisture index (SMI) are considered. This di-
verse range of factors is derived from established 
research and plays a critical role in evaluating 
flash flood susceptibility.

Drainage density

In watershed environments, drainage density 
(Fig. 5d) significantly influences water circula-
tion when rainfall occurs (Bhattacharjee, n.d.; 
Ngai et al., 2024; Yao et al., 2017). This factor 
plays a crucial role in predicting the likelihood of 
flash floods. Lower drainage systems can lead to 
various issues, including watershed overflow and 
persistent flooding in specific areas. Given the 
substantial impact of drainage density, it is essen-
tial to accurately measure it. In this case, drainage 
density was derived using the line density tool 
from QGIS software. For the Research Area, the 
resulting drainage density map, displayed in (Fig. 
5d), ranged from 0 to over 2.30 km/km² at a 30 by 
30-meter resolution.

Land use land cover

Land use and land cover (LULC) (Fig. 5k) 
at various scales is a valuable asset for resource 
managers, offering insights drawn from a broad 
range of satellite imagery to satisfy user require-
ments and support decision-making (Bano, 2024; 
Ghouldan et al., 2023). In this study, land use is 
a critical factor in determining runoff velocity, 
which motivated its inclusion in the analysis. The 
vulnerability to floods in LULC contexts differs 
for each land cover type due to the distinct ef-
fects of these covers on water runoff and absorp-
tion. Presented below is a detailed analysis of the 
flood vulnerability of the aforementioned LULC 
classes (Mawasha and Britz, 2022a). Urban Re-
gions Surfaces like concrete and asphalt cannot 
absorb water, making these regions more vul-
nerable to flooding (Allafta and Opp, 2021). As 
a result, there is more runoff and the possibility 
of flooding(Abd El-Hamidet al., 2021). Bodies of 
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water because of the high water content in these 
places, flooding is a real possibility in the areas 
immediately around them in the event of heavy 
rains or an influx of water from further upstream 
(Mawasha and Britz, 2022b). The flora Vegetation 
helps absorb water and stabilizes the soil, mini-
mizing runoff, therefore areas with lush vegetation 
tend to be less vulnerable to floods. Agricultural 
Lands: The vulnerability of these regions to flood-
ing might differ. Reduce your risk of flooding by 
using well-managed agricultural fields that use ef-
fective soil techniques to absorb large volumes of 
water. On the other hand, floods might occur more 
often on unmanaged property that has exposed or 
compacted soil (Ait El Haj et al., 2023; Parvin et 
al., 2024). No Coverage Bare ground, particularly 
compacted or poorly permeable soil, makes an 
area prone to floods. More water will flow off and 
more people will be in danger of flooding since 
there is very little vegetation to soak it up. There-
fore, according to LULC classifications, places 
with lush vegetation are often less vulnerable to 
flooding than those with built-up areas or bare 
land (Abd El-Hamid et al., 2021; Allafta and Opp, 
2021; Mawasha and Britz, 2022a). A land use map 
for the study area was created using Landsat 8 
OLI satellite imagery, which has a spatial resolu-
tion of 30 meters.This map categorizes the region 
into five key classes: Built-up areas, water bodies, 
vegetation, agricultural lands, and bare soil.

Slope

Flash floods are closely linked to the degree 
of slope (Fig. 5c) (Hermawan et al., 2024; Iresh et 
al., 2024; Shayannejad and Ostad, n.d.), which is 
a critical morphological characteristic. The slope 
has a direct impact on the velocity of surface run-
off, which in turn affects flash flood susceptibility. 
In this study, a slope degree map was produced 
from the digital elevation model (DEM) raster us-
ing QGIS. The slope values across the study area 
range from 0 to more than 64 degrees, with a spa-
tial resolution of 30 meters.

Soil moisture index (SMI)

Soil moisture (SM) (Fig. 5a) is an important 
physiographic feature used in numerous hydro-
logical applications and acts as an early warning 
sign for potential flash floods. Regions with a low 
soil moisture index (SMI) tend to retain less wa-
ter, indicating limited moisture absorption capac-
ity and an increased risk of flash flooding (Saha 

et al., 2018; Zhang and Zhou, 2016). On the other 
hand, regions with a high Soil Moisture Index 
(SMI) demonstrate better moisture absorption 
abilities, making them less prone to flash floods. 
In this study, SMI maps were generated using 
Landsat-8 OLI data with a spatial resolution of 30 
meters. The analysis showed that SMI values are 
notably high in mountainous areas, highlighting 
their critical role in evaluating flood risk.

Soil type

Soil (Fig. 5m) is a porous medium composed 
of three phases: water, air, and minerals. It is also 
home to numerous microorganisms and macro-
organisms from both the plant and animal king-
doms. Insufficient water absorption by soil plays 
a significant role in the development of floods 
(Basri et al., 2022; Loeb et al., 2007). There-
fore, recognizing soil types within a study area 
is of paramount importance. Creating a soil map 
involves utilizing data from the FAO. In this re-
search, the resulting map classified the soils into 
six categories: Calcaric Fluvisols (Jc), Chromic 
Luvisols (Lc), Lithosols (I), Yermosols (Y), and 
Haplic Yermosols (Yh). The map was subse-
quently re-projected from the WGS84 coordinate 
system to UTM coordinates.

Aspect

The slope aspect (Fig. 5e) is defined as the 
direction in which the terrain’s maximum slope 
occurs and is considered a crucial parameter for 
flood susceptibility analysis in many studies (But-
tle et al., 2016; Kang et al., 2021; Lawford et al., 
1995). The aspect map was generated in QGIS 
using data from the DEM.

Curvature

Curvature (Fig. 5f) is identified as another in-
fluential conditioning factor for flood susceptibil-
ity and is derived from the digital elevation model 
(DEM) using QGIS (Heerdegen and Beran, 1982; 
Jeong et al., 2003). It is categorized into three 
types: concave, convex, and flat surfaces. As a crit-
ical element affecting runoff flow, curvature can 
play a significant role in assessing areas prone to 
flooding (Malik et al., 2020; Tehrany et al., 2013).

Topographic wetness index (TWI)

The TWI (Fig. 5h), introduced by Beven and 
Kirkby in 1979, quantifies the spatial distribution of 
moisture across a watershed (De Risi et al., 2018; 
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Riadi et al., 2018). It essentially measures the poten-
tial for water accumulation at any given pixel within 
the watershed, calculated using the formula:

 

1 
 

𝑇𝑇𝑇𝑇𝑇𝑇 = ln( 𝐴𝐴
𝑡𝑡𝑡𝑡𝑡𝑡𝛽𝛽) (1) 
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(6)𝑅𝑅𝑅𝑅 = 𝑇𝑇𝑃𝑃𝑃𝑃𝑇𝑇
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(10)𝐴𝐴𝐴𝐴𝐴𝐴 =
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 (1)

where: A represents the specific catchment area 
(m² per meter), while β indicates the slope 
gradient (in degrees). The topographic 
wetness index (TWI) was calculated us-
ing GIS software, offering insights into 
regions with greater moisture retention, 
which may be more prone to flooding (De 
Risi et al., 2014; Lee and Rezaie, 2022).

Topographic position index (TPI)

This morphometric factor, derived from the 
DEM (Fig. 5i), serves as a valuable indicator by 
quantifying the elevation difference between a 
specific cell and the mean elevation of its neigh-
boring area within a defined radius (Calderón et 
al., 2020). The values are divided into five dis-
tinct classes utilizing the natural breaks method 
(Mokarram and Hojati, n.d.).

Stream power index

The stream power index (SPI) (Fig. 5g) mea-
sures the potential energy of flowing water to 
cause erosion and is calculated based on the slope 
and catchment area (flow accumulation) (Elmah-
dy et al., 2020). The results are visible in a raster 
with a 30-meter resolution.

Flow accumulation (FA)

Regions near flow accumulation paths (Fig. 
5l), particularly those with substantial upstream 
water accumulation, are at a higher risk of flood-
ing. The flow accumulation factor, obtained from 
the Digital Elevation Model (DEM), indicates the 
total weight of all upstream cells that contribute 
water flow to each downslope cell in the raster 
output (‘FA2’, n.d.; Ikirri et al., 2022; Zingaro 
et al., 2020). Cells with high flow accumulation 
signify areas of concentrated water flow, making 
them useful for detecting flow channels. In con-
trast, cells with zero flow accumulation represent 
local topographic elevations, which can be used 
to identify ridges or peaks.

Lithology

Lithology (Fig. 5n) significantly influences 
flood formation by affecting the permeability and 
water infiltration capacity of the terrain (Heit-
muller et al., 2015; Langston and Temme, 2019; 
Mavromatis et al., 2016). The lithological distribu-
tion map of the Assaka watershed categorizes the 
region based on the permeability of the rock types. 
In this classification, lower values represent areas 
with higher permeability, whereas higher values 
indicate less permeable zones. The analysis of 
the lithological map shows that the study area is 
primarily composed of shales, limestones, sand-
stones, and quartzites, spanning several geological 
periods from the Precambrian to the Quaternary. 
This variety of lithological units has a direct im-
pact on the hydrological behaviour of the area.

Land surface temperature (LST)

The presence of extensive impermeable sur-
faces, such as concrete and asphalt, often leads to 
increased land surface temperatures (Fig. 5j) in 
urban and developed regions (Diallo et al., 2019; 
Rahaman and Shermin, 2022). Because water 
cannot penetrate these surfaces, runoff is greater 
and flooding is more likely, particularly during 
periods of heavy rain. Furthermore, elevated LST 
can worsen evaporation and influence regional 
weather patterns, which in turn may cause heavier 
downpours (Diallo et al., 2024; Silvestro et al., 
2013). regions with more vegetation or bodies of 
water tend to have lower land surface tempera-
tures because they are better able to absorb and 
retain moisture compared to urbanized regions 
(Atta, 2023; Getirana et al., 2021). Soil and veg-
etation act as a natural flood control system, col-
lecting water and slowly releasing it, therefore 
these circumstances often lessen the likelihood 
of flooding. Greater runoff from impermeable 
surfaces and less efficient land absorption makes 
regions with warmer land surfaces more likely to 
experience floods (Atta, 2023; Diallo et al., 2019, 
2024; Getirana et al., 2021).

Data preprocessing

This stage aims to prepare the data for use in 
a machine learning algorithm and is divided into 
two sub-steps: data preparation followed by data 
cleaning.
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Data preparation 

fourteen raster (Fig. 5) images were pro-
cessed by converting them into numerical val-
ues using Python libraries such as Pandas and 
NumPy within a GIS environment. This trans-
formation yielded a dataset in which each pixel 
is linked with its respective X and Y coordinates, 
along with values for various factors (Masmoudi 
et al., 2021). The quality of this data is crucial 
for achieving accurate results. To ensure data 
integrity, it’s essential to clean the data before 
use. A fundamental aspect of this cleaning pro-
cess is the removal of outliers that significantly 
differ from the majority (Dietterich, 1990; F.Y 
et al., 2017). The challenge in identifying and 
eliminating these outliers stems from the lack 
of universally accepted statistical rules for their 
detection. Successful outlier detection relies on 
thorough knowledge of the subject matter and a 
comprehensive understanding of the data collec-
tion process (Mahesh, 2020).

Machine learning algorithm

Humans learn from past experiences, and now 
machines can be trained to do likewise. This con-
cept forms the core of machine learning—a branch 
of artificial intelligence that allows machines to 
learn from historical data (Malakouti, 2023).

Random forest

The model employed in this case study is 
RF. A random forest consists of a set of decision 
trees, described as {h(x, θ), θ = 1,...}. Each h(x, 
θ) represents an individual decision tree, where 
θ denotes a specific tree within the collection. 
These trees independently issue predictions (h(x, 
θ)) for a given input x (Kim et al., 2018; Savargiv 
et al., 2021; Zhu et al., 2018). The final predic-
tion from the random forest is derived by aggre-
gating the outputs of all these trees, typically by 
choosing the most common class among the dif-
ferent tree predictions (Avci et al., 2023; Han et 
al., 2022). Random Forests are effective across 
a wide array of problems. The core concept is 
to utilize multiple decision trees to mitigate the 
tendency of a single tree to overfit specific data 
segments (Boulesteix et al., 2012; Probstet al., 
2018). By amalgamating various individual deci-
sion trees into a collective ensemble, a random 
forest can average out individual errors, thus 
minimizing the risk of overfitting (Naghibi, et 

al., 2017; Papineni et al., 2021). An advantage 
of random forests is that they do not necessi-
tate data pre-processing. However, to achieve 
optimal performance, It is crucial to adjust key 
model parameters, such as the maximum depth 
of the trees and the maximum number of features 
considered (Patil and Singh, 2014).

Evaluation of the model’s performance

Assessment is an essential part of the proba-
bilistic modeling process; without it, the model’s 
reliability cannot be ensured (Krause et al., 2017). 
For effective model training and evaluation, it 
is important to split the dataset into two parts: a 
training set and a testing set.  In this case study, 
a split of 75% for training and 25% for testing is 
recommended (Kamal and Bablu, n.d.). Addition-
ally, using a seed ensures that the results can be 
reproduced during this split. It is crucial to note 
that the percentage of data allocated for testing 
is very important (Azari et al., 2022). Ideally, it 
should be between 20% and 40% of the total data. 
Exceeding 40% may compromise the reliability of 
the tests, while less than 20% might be considered 
for large datasets. However, staying within these 
values is advised for more reliable and represen-
tative results (Coopera et al., 1997; Garosi et al., 
2019). The method used to separate the data pri-
marily involves random division, often referred to 
as the “holdout method”. This random operation 
Partitions the data into two sets: one designated 
for training and the other for testing. In this ex-
ample, a parameter of 0.25 means that 25% of the 
data is reserved for testing and 75% for training 
(Ibrahim and Bennett, 2014; Moein et al., 2023). 
There is no specific mathematical formula for this 
function, but it relies on statistical concepts to 
randomly divide the data, ensuring that both the 
training and test sets accurately represent the ini-
tial dataset. After splitting the data, it is necessary 
to standardize the features by centering and scal-
ing them (Ismail et al., 2021; Oytun et al., 2020). 
Data standardization is a relatively straightfor-
ward mathematical operation that involves center-
ing the data around zero and scaling it to have a 
unit variance. Here are the mathematical formulas 
for standardizing the data. To standardize a dataset 
X: Calculate the mean (k) of each feature, where 
xi represents each value of the feature and m Rep-
resents the overall count of samples (Equation 
2). Calculate the standard deviation (ω) of each 
feature (Equation 3). The formula to standardize 
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a specific value x is (Equation 4), This means that 
for each value x in your dataset, you subtract the 
mean of the feature (k) and divide it by the stan-
dard deviation (ω) of that feature. This centers the 
data around zero and scales it to have a variance of 
2 (Coopera et al., 1997; Garosi et al., 2019; Ibra-
him and Bennett, 2014).
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tion 7). These performance metrics are widely 
used in the literature.
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TrPs refers to true positives, FaPs to false pos-
itives, TrNe to true negatives, and FaNe to false 
negatives. Pd indicates the relative agreement 
among evaluators, Pep represents the expected 
probability of agreement by chance, d is the total 
number of flood pixels, and Nu is the total num-
ber of non-flood pixels. For the research Site case, 
the model’s performance during the test period 
was rigorously evaluated using several key met-
rics. The results are as follows: precision: 0.968, 
recall: 0.967, accuracy: 0.967, F1 score: 0.965, 
Kappa statistic: 0.839, and AUC: 1. These met-
rics collectively indicate that the model performs 
exceptionally well. The high precision and recall 
rates reflect the model’s capability to accurately 
determine positive instances, while the accuracy 
demonstrates its overall effectiveness. The F1 
Score highlights a well-balanced performance be-
tween precision and recall, and the Kappa statistic 

Figure 4. Receiver operating characteristic (ROC) curve
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Figure 5. (a) soil moisture index (SMI); (b) altitude; (c) slope; (d) drainage density; (e) aspect; (f) curvature; 
(g) stream power index (SPI); (h) topographic wetness index (TWI)
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Figure 5. (i) topographic position index (TPI); (j) land surface temperature (LST); (k) land use and land cover 
(LULC); (l) flow accumulation (FA); (M) soil type; (N) lithology; (O) target
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signifies a strong level of agreement beyond what 
would be expected by chance. The perfect AUC 
(Fig. 4) further underscores the model’s superior 
capability in distinguishing between the classes, 
confirming its robust and reliable performance.

RESULTS AND DISCUSSION

Flash flood risk map

The final model for the Assaka basin, which 
incorporates various factors along with the ran-
dom forest approach, generated a map identify-
ing five zones prone to flooding (Fig. 6). The 
map indicates that residential areas located near 
the watershed outlet, particularly near rivers and 
the main tributaries Essayed and Oum Laachar 
Wadis (highlighted in red in the northwest), are 
highly vulnerable to flooding. These areas fall 
into the highest flash flood susceptibility category 
and are primarily situated in the southeastern sec-
tion of the basin. The highest-risk zone, covering 
14.34% of the basin’s area, is primarily around 
the Essayed and Assaka wadis and downstream of 
the wadis that form these tributaries, such as the 
Essayed wadi. The high-risk zone occupies a vast 
random extent along the wadis that are tributaries 
of Essayed and Assaka, representing thus 35.06% 
of the total area. Additionally, the medium-risk 
zone encompasses a large part of urban areas and 
wadis, covering 28.80%. The other two zones, 

with low and very low risk of flooding, are pri-
marily located in the northeastern part of the As-
saka basin, occupying 21.52% of the area, where 
there are mainly high to very high slopes (Fig. 5c, 
Fig. 8a, Fig. 8b). These regions with high flood 
potential are characterized by very low elevations 
ranging between 17 and 390 meters, low drainage 
density of 0 to 0.79 km/km², and predominance 
of built-up areas and water bodies on the land 
use and land cover map. Additionally, these areas 
exhibit a low soil moisture index between 0 and 
0.31, gentle slopes ranging from 0 to 0.6 degrees, 
and more concave curvatures. The high land sur-
face temperatures, ranging from 18 to 28 degrees 
Celsius, along with a high topographic wetness 
index of more than 10.87, a low topographic po-
sition index of less than -33.19, and a low stream 
power index of less than -6.30, further contrib-
ute to flood risk. These locations also experience 
high flow accumulation. The presence of soil 
types such as Calcaric Fluvisols (Jc), Haplic Yer-
mosols (Yh), and Yermosols (Y), which impede 
water infiltration and can rapidly also change soil 
saturation levels, exacerbates the situation. Fur-
thermore, the composition of shales, limestones, 
sandstones, and quartzites in these areas affects 
their flooding dynamics. 

The inherent qualities of these rock types, 
including porosity, permeability, and structural 
features, alongside local terrain and climatic con-
ditions, make these regions particularly prone to 
flooding during rain events (Fig. 6 and Fig. 8). 

Figure 6. Feature importances
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The feature importance analysis from the Ran-
dom Forest model highlights the critical factors 
influencing flash flood risk in the Assaka Water-
shed. Among the evaluated variables, the digital 
elevation model (DEM) emerges as the most in-
fluential factor, with relative importance nearing 
40%. This underscores the significant role that 
terrain elevation plays in determining flood sus-
ceptibility. Land use and land cover (LULC) and 
the soil moisture index (SMI) also contribute sub-
stantially to the model, emphasizing the impact 
of land cover changes and soil moisture varia-
tions on flood risk. Lithology, representing the 
geological characteristics of the area, is another 
important factor, while topographic indices like 
TPI (topographic position index), slope, and TWI 
(topographic wetness index) play more moderate 
roles. Features such as flow accumulation (FA), 
aspect, and drainage density (DD), however, have 
minimal influence on the model’s predictions. 
This analysis provides valuable insights for pri-
oritizing key variables in improving flood risk 
models, suggesting that elevation and land cover 
should be given particular attention in predictive 
frameworks (Fig. 7). In this study, we utilized 
advanced machine learning techniques, specifi-
cally the Random Forest model, to evaluate flood 
susceptibility in the Assaka watershed. This ap-
proach contrasts with and arguably enhances 
the methodologies applied in previous studies 

(Khaddari et al., 2023b), such as the one employ-
ing analytical hierarchy process (AHP) and fuzzy 
logic modeling (FLM) techniques detailed in the 
reviewed article. Although these conventional 
methods provided substantial outcomes, with 
AUC values indicative of considerable mapping 
accuracy, the precision and robustness of the Ran-
dom Forest model offer improved discrimination 
and more nuanced classifications of flood-prone 
zones. The application of Random Forest in our 
study not only facilitated a refined assessment of 
the spatial pattern of flood susceptibility but also 
integrated a wider range of environmental vari-
ables effectively. Unlike AHP and FLM, which 
often rely on subjective weight assignments and 
simplifications in modeling interactions among 
multiple factors, the Random Forest approach 
inherently accommodates complex interdepen-
dencies among predictors. This capability results 
in a more dynamic and accurate depiction of 
flood risks, which is critical for creating effective 
flood risk mitigation strategies. Furthermore, our 
model identified critical zones with high preci-
sion, underlining areas that require urgent atten-
tion for mitigation efforts. This aligns with the 
need for advanced predictive tools that can pro-
vide local authorities with reliable information 
to make informed decisions about land use plan-
ning and disaster preparedness. The integration 
of machine learning into flood risk assessment, 

Figure 7. Flood susceptibility maps using RF model
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as demonstrated by our findings, represents a 
significant advancement over traditional meth-
ods, offering a pathway toward more resilient 
and adaptive management of flood-prone regions. 
The influence of climate on flood susceptibility 
is increasingly significant, particularly under the 
scenario of global climate change, which alters 
precipitation patterns and enhances flood risks. 
Research from the papers reviewed suggests that 
climate changes, particularly precipitation vari-
ability and the impact of the North Atlantic Oscil-
lation (NAO), play a critical role in shaping flood 
patterns across various regions, including the As-
saka watershed. Studies like those by (Said and 

Ahmed, 2023; Said et al., 2023, n.d.) demonstrate 
that shifts in precipitation are closely linked to 
broader atmospheric phenomena such as NAO, 
which directly affects rainfall distribution and 
intensity, ultimately influencing flood (Said and 
Ahmed, 2023; Said et al., 2023, n.d.). This cli-
matic interplay, evidenced by extended periods of 
both drought and heavy rainfall, underscores the 
necessity of integrating robust climatic models 
into flood risk assessments. Utilizing advanced 
machine learning algorithms, as applied in this 
study, offers a nuanced understanding of how 
these climatic factors impact flood susceptibility, 
offering a more accurate and dynamic framework 

Figure 8. (a) and (b) flood susceptibility relative to the factors used
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for predicting and managing flood risks in re-
sponse to climate variability.

CONCLUSIONS

This study has aimed to enhance flash flood 
risk prediction within the Assaka watershed in 
southwestern Morocco by employing the RF 
machine learning algorithm integrated with 
GIS technologies. The research sought to ad-
dress the limitations of conventional flood risk 
assessment methods and to provide a more ac-
curate and data-driven approach for predicting 
flood-prone areas. By analyzing over 8 million 
data points and incorporating fourteen critical 
flash flood conditioning predictors, such as LST, 
drainage density, and LULC, the study success-
fully developed a reliable flood susceptibility 
map for the region.  The results identified five 
distinct flood-prone zones, ranging from lowest 
to highest susceptibility, with the highest-risk ar-
eas located near the watershed’s outlet and along 
the main tributaries, Essayed and Oum Laachar 
Wadis. These zones are characterized by specific 
geological and soil conditions, such as Calcaric 
Fluvisols and Haplic Yermosols, and factors 
like low drainage density and high land surface 
temperatures, which contribute to heightened 
vulnerability. 

The findings of this study confirm that inte-
grating the RF algorithm with GIS provides sig-
nificantly improved prediction accuracy compared 
to traditional methods. This new approach offers a 
scientifically robust and reliable flood susceptibil-
ity model, thus achieving the study’s goal of en-
hancing predictive capabilities for flash flood risk. 
The new scientific contribution of this research lies 
in its advanced integration of machine learning and 
geospatial data, which has enabled the identifica-
tion of specific factors influencing flood suscepti-
bility more accurately than previous studies. 

The study fills a critical gap in existing flood 
management practices by providing a tool that 
local authorities, urban planners, and policymak-
ers can use to prioritize conservation efforts and 
implement targeted flood preparedness strate-
gies. Moreover, this methodology demonstrates 
a novel way to utilize sophisticated data analysis 
techniques to predict and mitigate natural disaster 
risks, contributing to enhanced resilience in vul-
nerable communities.

 In conclusion, this research provides valu-
able insights into the application of ML and GIS 
in flood risk management, underscoring the sci-
entific novelty of using advanced data-driven ap-
proaches to achieve more precise predictions. The 
framework developed here is not only applicable 
to the Assaka watershed but could be adapted to 
other regions facing similar challenges, opening 
new prospects for flood risk mitigation globally. 
This proactive approach aims to safeguard vul-
nerable communities and reduce the economic 
and human impact of future flooding events, thus 
contributing to sustainable disaster management 
strategies in the context of climate change.
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