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INTRODUCTION

Coastal zones of Morocco, like many others 
around the world, face significant challenges due 
to natural and anthropogenic changes. Among the 
most pressing concerns is the impact of sediment 
transport during flood events, which can dra-
matically alter the structural integrity and func-
tionality of critical infrastructures such as ports. 
Surface water, such as rivers and reservoirs, is 
essential for replenishing groundwater and acting 
as a significant water storage system (Al-Aizari 
et al., 2023). Surface water is also used for sec-
ondary purposes like generating electricity and 

supporting agriculture through irrigation (Renard 
et al., 1991; Park et al., 2011; Jarasiunas et al., 
2020; Amellah and el Morabiti, 2021). However, 
surface water sources face significant threats due 
to natural processes, many of which are exacer-
bated by climate change (Melo, 2017).. These 
include increased variability in weather patterns, 
leading to droughts or floods, and accelerated soil 
erosion, which affects water quality and reduces 
the capacity of reservoirs and river basins to store 
water efficiently (Ganasri and Ramesh, 2016; 
Sundara Kumar et al., 2018; Yadav and Satyan-
narayana, 2020). These environmental challeng-
es put additional pressure on water resources, 
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complicating efforts to manage water sustainably 
(Dutta et al., 2015). 

Various models have been developed to as-
sess soil erosion rates, which are typically cat-
egorized into three types: experimental, semi-
empirical, and physically process-based mod-
els. One of the most widely used models is the 
RUSLE, introduced by the U.S. Department 
of Agriculture (USDA) in 1978. RUSLE has 
become a key tool in estimating soil loss, par-
ticularly in erosion research and land manage-
ment practices (Poesen et al., 2003; Abdo and 
Salloum, 2017; Gayen et al., 2020). This model 
uses a combination of factors such as rainfall in-
tensity, soil type, topography, crop systems, and 
conservation practices to predict the amount of 
soil erosion that may occur in a specific area. 
RUSLE is an algorithm that relies on data col-
lected from experimental plots to calculate soil 
erosion, especially in terms of sheet erosion 
(where thin layers of soil are removed) and rill 
erosion (the creation of small channels due to 
water flow). Its simplicity, combined with its 
ability to incorporate different variables, makes 
RUSLE a valuable tool for land managers and 
researchers to evaluate erosion risk and imple-
ment preventive measures (1978) (Wischmeier 
and Smith, 1978).The RUSLE model is not only 
useful for estimating the amount of soil loss but 
also for simulating the spatial distribution of soil 
erosion across different landscapes. By mapping 
how erosion varies across a given area, RUSLE 
allows researchers and land managers to visu-
alize where soil loss is most severe. This spa-
tial capability makes the model a valuable tool 
for understanding erosion patterns, identifying 
high-risk zones, and prioritizing areas for in-
tervention (Renard et al., 1991; Yue-Qing et al., 
2008). The Equation of (RUSLE) model with 
geospatial technology provides a powerful ap-
proach for assessing soil erosion. This method 
is widely used because it simplifies the process 
of estimating soil loss, is highly reliable, and 
can be applied to large areas, making it par-
ticularly useful for regional or national studies. 
Moreover, it’s cost-effective compared to other 
methods. By using geospatial data such as sat-
ellite imagery and GIS, the RUSLE model can 
assess various factors like rainfall, topography, 
and land use, enabling efficient and practical soil 
erosion analysis in diverse geographic settings 
(Millward and Mersey, 1999; Zhang et al., 2010; 
Pradeep et al., 2015).

In 1990, the Food and Agriculture Organiza-
tion (FAO) conducted a study on soil degradation 
in Morocco, uncovering alarming data about the 
state of the country’s agricultural land. The study 
revealed that 12.6 million hectares of crops and 
pastures were at risk of degradation, a substantial 
portion of Morocco’s productive land. Another 
FAO study from the same year focused on a spe-
cific area, known as Region B, where 40% of the 
land was affected by water erosion. This type of 
erosion significantly reduces soil quality by wash-
ing away nutrients, thereby diminishing the land’s 
agricultural productivity. The findings empha-
sized the need for urgent soil conservation mea-
sures to protect Morocco’s agricultural sustain-
ability. Erosion not only reduces crop yields but 
also threatens long-term food security, especially 
in a country where agriculture plays a critical role 
in the economy. These studies highlighted the 
broader issue of environmental sustainability in 
the region (Benzougagh et al., 2022; Mohamed 
et al., 2022; Zouagui et al., 2018). Soil ero-
sion in the Ouringa River basin, characterized 
by steep slopes and a semi-arid climate, poses 
significant challenges due to seasonal rainfall 
and human activities like deforestation and 
overgrazing. These factors intensify soil loss, 
diminishing soil fertility and causing sediment 
buildup in rivers, which impacts water quality 
and storage. The erosion problem threatens lo-
cal agriculture and is complicated by inadequate 
land management and a lack of detailed data. 
While models like RUSLE, combined with re-
mote sensing and GIS, have proven effective in 
erosion assessment, specific erosion patterns in 
the Ouringa basin remain underexplored, high-
lighting a critical knowledge gap. The current 
research aims to address this gap by assessing 
soil loss within the watersheds of the Ouringa 
River basin using the RUSLE model, integrated 
with remote sensing (RS) and GIS techniques. 
This approach is expected to yield a detailed 
spatial analysis of erosion patterns, allowing 
for better identification of high-risk zones. The 
study seeks to provide new insights into the ex-
tent and distribution of soil erosion in the Our-
inga River basin, offering a foundation for im-
plementing targeted soil conservation measures. 
The research also aims to improve the accuracy 
of erosion assessments through the combined 
use of RUSLE and geospatial technologies, pro-
viding a methodological framework that can be 
applied in similar semi-arid regions. 
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MATERIALS AND METHODS

Study area

The Ouirnga River basin is located in north-
western Morocco, approximately 50 km from 
the city of Tetouan. Geographically, it is situated 
between the Mediterranean Sea to the north and 
a mountain range to the south, which serves as 
a watershed for coastal waters. The region lies 
between latitude 35°12’36” N and longitude 
4°42’0” W (Figure 1). This area covers about 
1,033.4 square kilometers and is characterized by 
a predominantly mountainous terrain, with eleva-
tions ranging from 40 meters to as high as 2.070 
meters above sea level(Amellah and el Morabiti, 
2021; Brahim et al., 2020; Mohamed et al., 2022). 

The Mediterranean basin experiences a pre-
vailing semi-arid to arid climate. Based on me-
teor-ological data provided by the Hydraulic 
Basin Agency of Loukkos in Tetouan from 1981 
to 2021, the average annual precipitation varies 
around 774.77 mm. With relatively cold winters, 

the average temperature reaches 1, and summers 
are hot with a temperature of 40, and the average 
annual T °C is 18.6 °C.

Data requirements

For the execution of this study, various types 
of data were utilized, as illustrated in Table 1.

Model of RUSLE

Overview

The RUSLE is a widely used model for esti-
mating soil erosion, typically expressed as tons 
per hectare per year. It integrates several envi-
ronmental and management factors that influence 
soil erosion rates. These factors include:
	• Rainfall erosivity (R): Measures the impact of 

rainfall and runoff on soil loss. High erosivity 
means more potential for soil to be eroded due 
to rain. For instance, a study in Kerala, India, 
employed RUSLE and found that the highest 

Table 1. Data requirements
Data Source

Digital elevation model (DEM) 30 m Earth explorer (usgs.gov)

Climate data https://www.chc.ucsb.edu/data/chrips

Soils data https://www.fao.org/home/en/

Land use Land cover Earth explorer (usgs.gov)
OLI ,LandSat8

Figure 1. Ouirnga River Basin



32

Ecological Engineering & Environmental Technology 2025, 26(1), 29–40

soil loss occurred in areas with high rainfall 
erosivity combined with steep slopes (Prasan-
nakumar et al., 2012). To estimate (R) from the 
acquired climatic data, the Equation for the rain-
fall erosivity factor is the following Equation 1:

	

 

 

𝑅𝑅 = 1.74 × 𝐿𝐿𝐿𝐿𝐿𝐿 ∑(𝑝𝑝𝑝𝑝2/𝑝𝑝) + 129 (1)
𝑛𝑛

𝑖𝑖 =1
 

KrUSLE = fcsand · fcl−si · forgc · fhisand (2) 
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= ( 1 − 0.25 ·  𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 
𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 + 𝑒𝑒𝑒𝑒𝑒𝑒[3.72 −  2.95 ·  orgC]) (5) 

𝑓𝑓ℎ𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 = 

= (1 −
07 × (1 − 𝑚𝑚𝑠𝑠

100)
(1 − 𝑚𝑚𝑠𝑠

100) + 𝑒𝑒𝑒𝑒𝑒𝑒 {−5.55 + 22.9. (1 − 𝑚𝑚𝑠𝑠
100)}

) (6) 

𝐿𝐿𝐿𝐿 = (𝐹𝐹𝐹𝐹 × ( cell size
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 (7) 

𝐶𝐶 =  EXP { −α × 𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁
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A = R × K × LS × C × P (9) 
 

	 (1)

where:	pi is the average precipitation monthly and 
p is average the precipitation manually. 

	• Soil erodibility (K): Describes the susceptibil-
ity of soil particles to detachment and transport 
by rainfall and runoff. Soils with higher erod-
ibility values are more prone to erosion. For 
example, studies have shown that areas with 
specific soil types have higher K values, mak-
ing them more vulnerable to erosion (Gayen et 
al., 2020). In this study, soil composition and 
soil erodibility to erosion, which are closely 
related to organic carbon content, were calcu-
lated according to the following Equation 2–6.

	 KrUSLE = fcsand · fcl−si · forgc · fhisand	 (2)

where:	KrUSLE – this is the soil erodibility factor 
for the RUSLE model, which represents 
the susceptibility of the soil to erosion 
based on its composition and other factors;

	 fhisand – this factor represent the percentage 
of sand particles in the soil, which can af-
fect its ability to resist erosion.
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	• Slope length and steepness (LS): Steeper 
and longer slopes lead to higher erosion 
rates as the gravitational pollution water in-
creases its erosive power. For instance, in 
steep ter-rains, such as the Himalayan re-
gion, the RUSLE model indicated a strong 
correlation between slope steepness and 
increased soil erosion rates (Kalambukattu 
and Kumar, 2017). By calculating L and S 
separately, The RUSLE model has the capa-
bility to consider the impacts of slope length 
and steepness on soil erosion separately, and 
subsequently combine them in the overall 
LS factor Equation 7 to estimate the com-
bined influence of topography on soil loss 
caused by erosion.
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	• Vegetation cover (C): The extent of vegetation 
significantly reduces soil erosion by protect-
ing the soil surface from the impact of rain-
drops and reducing runoff velocity. Forested 
areas typically have lower C values, meaning 
they experience less erosion. This is evident 
in studies where vegetation covers substan-
tially reduced erosion rates in various regions 
(Gayen et al., 2020). The Equation 8 for the 
cover and management factor is the following 
scheme Equation 8:
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where:	C – the percentage of ground cover, 
which represents the proportion of soil 
that is covered by vegetation. NDVI: It is 
a remote sensing index used to estimate 
the density of vegetation cover. α and β: 
Empirical constants that control the shape 
and slope of the C-NDVI curve

	• Conservation practices (P): Practices such 
as terracing, contour farming, and other soil 
conservation measures are represented by the 
P factor. Effective conservation practices can 
reduce soil loss significantly. A study in South 
China used RUSLE to show how conservation 
efforts decreased erosion rates over time (Ran-
ran et al., 2013).



33

Ecological Engineering & Environmental Technology 2025, 26(1), 29–40

GIS integration and implementation

Through the utilization of GIS technology, 
the RUSLE model facilitates the generation of 
maps that offer a comprehensive understand-
ing of regions prone to soil erosion. Through the 
implementation of the RUSLE Eq. using GIS al-
gorithms and data obtained from remote sensing 
operations, specialized data for each factor can 
be generated, facilitating accurate assessments of 
erosion risk. To calculate the average yearly soil 
erosion within watersheds, the following scheme 
Equation 9 and (Fig. 2) are used: 
	 A = R × K × LS × C × P	 (9) 

RUSLE is a powerful model that is widely 
used, and the method used in this research is 
shown schematically in Figure 2.

RESULTS AND DISCUSSION 

The erosivity factor (R) 

The R factor measures the likelihood of rain-
fall causing soil erosion, and is affected by its in-
tensity, duration, and amount. (Ganasri and Ra-
mesh, 2016). The analysis of precipitation patterns 
in the study area revealed no significant temporal 

or spatial variation in the overall amount of rain-
fall (Fig. 3A–D). Average annual precipitation re-
corded at twenty-one stations over four time pe-
riods – 1981–1991, 1992–2002, 2003–2013, and 
2014–2022 – ranged from 524.29 mm to 638.59 
mm, with precipitation generally increasing from 
coastal areas to higher elevations. However, 
rainfall erosivity varied significantly between 
stations. The R-factor values in the study area 
ranged from 52.32 to 144.88 MJ mm ha⁻¹ h⁻¹, 
with the southern region exhibiting higher values, 
indicating a greater risk of soil loss. Compare this 
study with study of Esfaye et al. (2021) in the Gil-
gel Gibe-1 basin in Ethiopia, they found K factor 
values ​​ranging from 0.032 to 0.063 t/h MJ mm-1. 
Soils with high silt content, poor structure, and 
low permeability were more erodible, similar to 
the focus of this study on how clayey silt soils 
balance infiltration and runoff to modulate erod-
ibility (Tesfaye and Ameyu, 2021). also study of 
Vigiak et al. (2011) the LaTrobe River catchment 
in Australia and found that soil erodibility ranged 
from 0.015 to 0.055 Mg ha h MJ mm, depending 
on local factors such as topsoil texture, organic 
content, and local knowledge of soil conditions. 
The study suggests that climatic factors and soil 
classification systems can significantly influence 
calculated K factor values (Vigiak et al., 2011).

Figure 2. Schematically of RUSLE model
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Figure 3. Map of the R-factor A, B, C, D (1981–2022) for the Ouringa River Basin

The soil erodibility (K) factor 

The K-factor measures soil’s susceptibility to 
erosion, influenced by soil properties, and is vi-
tal in USLE and RUSLE models for conservation 
planning (Panagos et al., 2015).

Soil erosion factor K values ranged from 0.35 
to 0.35 t ha/ha/mJ/mm (Fig. 4). Medium-textured 
soils like silt loam have a moderate K-factor 
(0.25–0.4), balancing infiltration and runoff. 
High-silt soils are more erodible, easily detached, 
and prone to crusting, reducing infiltration. As a 
result, high silt-content soils have a higher K-fac-
tor, indicating a higher susceptibility to erosion. 
Consistent across many studies, soils high in silt 
are the most erodible, especially under conditions 

of low organic matter and poor soil structure, 
which limit infiltration and promote surface run-
off. This is a common observation in Mediterra-
nean and temperate (Tesfaye and Ameyu, 2021)

The topographic factor (LS) 

The LS-factor quantifies slope length and 
steepness impact on erosion, derived from DEMs 
for USLE/RUSLE models (Fijałkowska, 2021). 
LS-factor values range from 0 to 1734, increasing 
as slopes become steeper and flow accumulation 
intensifies (Fig. 5). A spatial distribution map re-
veals that most basins have LS values between 
10 and 60, with around 80% of watersheds ex-
hibiting the highest values. The LS-factor directly 
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Figure 4. Map of the K factor for the Ouriga River Basin

Figure 5. Map of the LS factor for the Ouriga River Basin

correlates with the topography’s role in soil ero-
sion, where longer slopes lead to higher cumula-
tive runoff, and steeper slopes increase runoff ve-
locity, both contributing to erosion rates. The ac-
curacy of LS-factor estimation is highly depen-
dent on the spatial resolution of the DEM used 
in its calculation (Michalopoulou et al., 2022). 
The highest LS values are concentrated along 

the watershed network, particularly in areas 
with complex and steep terrain, especially in the 
northwest. In sloped areas, rainfall accelerates 
water runoff, which gathers speed as it descends, 
carrying sediment and increasing the potential 
for erosion. The steeper the slope, the greater the 
runoff velocity and erosion risk. Steeper terrains 
with complex watershed networks, like those in 
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this study, generally exhibit higher LS values, 
confirming the higher risk of erosion in these 
regions. Similar results have been observed in 
mountainous regions and areas with rugged ter-
rain (Vigiak et al., 2011).

The vegetation cover factor (C) 

In the Ouringa River basin, the Table 2 and 
Figure 6 presents the types of NDVI-based veg-
etation cover in the River Ouringa watershed, in-
dicating their impact on soil erosion through C 
factors and detailing their area coverage in square 
kilometers and percentage of the total watershed 
area. Built-up areas have a C factor of 1.0, cover-
ing 38 km², or 8% of the watershed. These areas, 
with minimal vegetation, contribute significantly 
to soil erosion. Cropland, with a C factor of 0.28, 
covers 67 km², representing 13% of the area. It has 

a moderate impact on erosion due to agricultural 
activities. Bare land makes up the largest portion, 
with a C factor of 0.18, spanning 337 km², or 67% 
of the watershed. Although it has a lower erosion 
potential than cropland, the extensive bare land 
area makes it vulnerable to soil loss. Tree-covered 
areas, with a C factor of 0.004, cover 61 km², or 
12% of the watershed. The low C factor indicates 
that these areas are highly effective at preventing 
soil erosion, thanks to the stabilizing effect of tree 
roots. Waterbodies and unclassified areas** have a 
C factor of 0.00, covering no area in the watershed, 
indicating they do not contribute to soil erosion.

Multiple studies employ NDVI to map C-fac-
tors and have found that areas with sparse veg-
etation (low NDVI) show higher erosion risks, 
reflected in lower C-factor values, just as your 
study demonstrates(Panagos et al., 2015; Tesfaye 
and Ameyu, 2021). Overall, while tree-covered 

Table 2. Types of NDVI vegetation cover in the Ouringa watershed
Land use C factor Area (km) Area (%)

Built up 1.0 38 8

Crop 0.28 67 13

Bare land 0.18 337 67

Three 0.004 61 12

Waterbody 0.00 0 0

Unclassified 0 0 0

Figure 6. Map of the C factor for the Ouriga River Basin
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areas provide the most protection against soil ero-
sion, the dominance of bare land in the watershed 
presents a challenge for erosion control.

The factor of erosion control practices (P)

The P-factor represents the percentage of 
soil loss from down-slope cultivation after the 
adoption of conservation measures. Based on the 
spatial distribution map, the P-factor in the study 
area ranges from 0.2 to 2.10 (Fig. 7). A P-factor 
closer to 0 indicates highly effective conserva-
tion practices, while values near 1 reflect full 
protection against erosion due to the successful 
implementation of conservation measures. Con-
versely, P-factor values between 1 and 2.1 indi-
cate areas where little to no conservation mea-
sures have been applied, leaving the soil highly 
vulnerable to erosion. Overall, the P-factor is a 
crucial parameter in the RUSLE model, as it di-
rectly reflects the effectiveness of soil conserva-
tion efforts in controlling runoff and minimizing 
soil loss (Cheng et al., 2018).

Evaluation of soil losses 

The resulting erosion map was classified 
into six soil loss categories: very slight, slight, 

moderate, intense, very intense, and severe. These 
classifications help identify high-risk erosion ar-
eas, providing valuable insights for management 
decisions to mitigate soil loss. Based on data 
from 1981 to 2022 (Table 3 & Fig. 8, E, F, J, h), 
the study revealed six erosion hazard categories, 
ranging from no to low wear to very high wear.

The Table 3 shows the levels of soil erosion in 
the River Ouringa watershed over four distinct time 
periods: 1981–1991, 1992–2002, 2003–2013, and 
2014–2022. It categorizes land areas based on the 
severity of soil loss, measured in tons per hectare 
annually, and highlights trends in erosion across 
the watershed. The data shows that the majority of 
the watershed, between 60% and 66%, experienced 
minimal soil loss, categorized as “no erosion” (0 to 
100 tons per hectare annually). This indicates that 
most of the land in the watershed remains within 
acceptable soil erosion limits, suggesting relatively 
stable soil conditions in these areas. These areas 
likely benefit from either natural resilience or ex-
isting soil conservation practices. However, 20% 
to 23% of the land area falls into the “low erosion” 
category, with soil loss between 100 to 200 tons per 
hectare annually. While not as critical as higher ero-
sion categories, this consistent percentage indicates 
areas where soil degradation could become more 
severe if not addressed. Additionally, about 8% to 

Figure 7. Map of the erosion control practices factor P for the Ouriga River Basin
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Table 3. Categorization of potential soil erosion statistics
Years ID Classes Erosion state Area (KM) %

2014–2022

1 0 to100 ton per ha No erosion 33450.3 66

2 100-to-200 ton per ha Low erosion 10375.65 21

3 200-to-400 ton per ha Moderate 3974.67 8

4 400-to-1000 ton per ha Moderately high 2098.26 4

5 1000 to 5000 ton per ha High erosion 475.02 1

6 Above 5000 tons per ha Very high erosion 10.26 0.2

2003–2013

ID Classes Erosion state Area (KM) %

1 0 to100 ton per ha No erosion 30488.58 60

2 100-to-200 ton per ha Low erosion 11593.17 23

3 200-to-400 ton per ha Moderate 5068.44 10

4 400-to-1000 ton per ha Moderately high 2522.43 5

5 1000 to 5000 ton per ha High erosion 690.48 1

6 Above 5000 tons per ha Very high erosion 21.06 0.4

1992–2002

ID Classes Erosion state Area (KM) %

1 0 to100 ton per ha No erosion 32766.75 65

2 100 to 200 ton per ha Low erosion 10724.04 21

3 200-to-400-ton per ha Moderate 4192.02 8

4 400 to 1000 ton per ha Moderately high 2183.13 4

5 1000 to 5000 ton per ha High erosion 506.61 1

6 Above 5000 tons per ha Very high erosion 11.61 0.2

1981–1991

ID Classes Erosion state Area (KM) %

1 0 to100 ton per ha No erosion 33038.1 65

2 100 to 200 ton per ha Low erosion 10460.43 20

3 200 to 400 ton per ha Moderate 4156.2 8

4 400 to 1000 ton per ha Moderately high 2181.51 4

5 1000 to 5000 ton per ha High erosion 534.69 1

6 Above 5000 tons per ha Very high erosion 13.23 0.2

10% of the land experienced “moderate erosion” 
(200 to 400 tons per hectare annually). This level 
of erosion can start to affect soil fertility and pro-
ductivity, and may require interventions such as re-
forestation or improved land management practices. 
Furthermore, 4% to 5% of the watershed experi-
enced “moderately high erosion” (400 to 1000 tons 
per hectare), a significant level of soil loss that can 
lead to more serious environmental degradation. A 
smaller portion, about 1%, falls into the “high ero-
sion” category, with soil loss between 1000 to 5000 
tons per hectare. Lastly, although very rare (0.2% to 
0.4%), some areas experienced “very high erosion,” 
exceeding 5000 tons per hectare, posing a severe 
risk to land stability and productivity.

These results align with findings from the Na-
khla watershed (Western Rif, northern Morocco) 
and the Wadi Amter watershed, which spans 300 
square kilometers. Similar soil erosion patterns 
were observed in both regions, highlighting the 

consistent impact of erosion across comparable 
Moroccan watersheds (Issa et al., 2014; Ouallali et 
al., 2016; Mohamed et al., 2022). Overall, the need 
for targeted soil management practices in areas 
with moderate to severe erosion, even as a majority 
of the watershed experiences manageable soil loss.

CONCLUSIONS

The study successfully achieved its goal of 
assessing soil erosion in the Ouringa River wa-
tershed using the RUSLE model with GIS and 
remote sensing. The analysis provided a detailed 
spatial understanding of erosion patterns, high-
lighting that despite minor erosion in most of 
the area, certain zones suffer from severe losses 
exceeding 1000 tons per hectare annually. This 
research revealed previously unquantified ero-
sion severity, especially in regions with sparse 
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vegetation cover, which earlier studies in Mo-
rocco did not capture with the same precision. By 
integrating NDVI-based mapping, the study filled 
a critical gap in linking vegetation cover to ero-
sion dynamics. These findings open prospects for 
implementing targeted soil conservation practic-
es and provide a basis for developing predictive 
models applicable in similar semi-arid regions.
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