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INTRODUCTION

The combined impact of global climate 
change and human activities is leading to a trou-
bling decrease in forest areas, with uncontrollable 
forest fires playing a significant role in this ongo-
ing decline. Uncontrolled forest fires are a major 
contributor to the rapid degradation of global for-
est ecosystems, as highlighted by Venkatesh et al. 
(2020). These fires pose a severe threat, especial-
ly in rural regions, where they lead to the destruc-
tion of life and property and cause considerable 
harm to the local ecological balance. The world is 
experiencing an exceptional moment of fragility 
and uncertainty, and climate-fueled disasters are 
becoming more frequent and intense. In Mediter-
ranean countries, wildfires pose a significant risk 
with both high probability and severe impact. 

Wildfire is one of the primary shaping factors of 
Mediterranean ecosystems (Paula et al., 2009), 
having an annual impact between 700.000–1 
million hectares on Mediterranean forests glob-
ally (Dimitrakopoulos and Mitsopoulos, 2006). 
The Mediterranean Basin is particularly vulner-
able to fires, primarily due to the abandonment 
of agricultural lands. This has led to the growth 
of early-successional plant species that are highly 
flammable and accumulate significant amounts 
of dead biomass. This buildup of dry material in-
creases the likelihood of fires starting and spread-
ing (Santana et al., 2018).

The Mediterranean region stands out as the 
globe’s third richest biodiversity hotspot (Mitter-
meier et al. 2004). Throughout history, numerous 
civilizations have depended on its forest resourc-
es for a variety of purposes, including cultural, 
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economic, social, and aesthetic services. These 
fires not only threaten biodiversity but also im-
pact the livelihoods of local communities and the 
stability of ecosystems. The increasing frequency 
and intensity of these fires can be attributed to 
factors such as climate change, land-use chang-
es, and inadequate forest management practices, 
have significantly contributed to the rise of wild-
fires with anthropogenic factors. Several environ-
mental and socioeconomic elements have been 
impacted by these changes.

Despite regional trends, research on fire 
events in the Eastern and Southern Mediterranean 
Basin is still limited, lacking systematic and uni-
fied documentation (Belhadj-Khedher et al., 2018; 
Aini et al., 2019). Conversely, changes in fire sup-
pression strategies in parts of the European Medi-
terranean, such as France since the 1990s and 
Spain, Italy, and Portugal since the 2000s, have 
led to a decrease in fire incidents in the mentioned 
regions (Ruffault and Mouillot, 2015). However, 
Mediterranean-wide analyses still depend on na-
tional databases to forecast future fire risks across 
the region (Ruffault et al., 2020). To effectively 
study wildfires, a fundamental prerequisite would 
be defining and measuring their key components, 
such as frequency, intensity, type, and seasonality 
across the different regions of the Mediterranean 
Basin (Gill, 1975). 

In the Eastern Mediterranean Basin, existing 
data are often non-uniform and of low accuracy 
(Faour, 2004) (FAour, 2015). A clear and com-
prehensive forecasting solution or dashboard that 
shows the interrelation between the spatial repre-
sentation of wildfire in this area and fire response 
management is lacking. This gap prevents the as-
sessment of future threats to forest sustainability, 
influenced by climate change and other contribut-
ing factors (Majdalani et al., 2022). 

Lebanon has been facing increasing concerns 
of forest fires which mainly are of natural or man-
made origin. As a Mediterranean country, Leba-
non is highly susceptible to forest fires during the 
summer, as the weather gets warm and dry, and 
the vegetation is highly flammable (World Bank, 
2011). The country’s socio-political and econom-
ic situation has impaired progress in risk manage-
ment leading to insufficient forest management 
and response capacities. 

Lebanon has been experiencing an increase 
in forest fires throughout the years. Within the 
last 22 years (2001–2023) the country has lost 
1.83 thousand hectares of tree cover due to fires 

(Global Forest Watch, 2024). From July 24, 2023, 
to July 29, 2024, VIIRS (Visible Infrared Imaging 
Radiometer Suite) reported 42 high-confidence 
fire alerts, marking a significant increase com-
pared to the number of alerts recorded in previous 
years since 2012 (Global Forest Watch, 2024). 

Lebanon is anticipated to face an increase in 
temperature, more frequent and severe droughts, 
and reduced precipitation. Studies predict that the 
average increase in temperature will be of 1 °C 
to 2 °C by 2040 on the coast and 2 °C to 5 °C 
by 2090 inland, compared to the baseline of years 
1991 to 2020 baseline (Ministry of Environment, 
Lebanon, “Vulnerability and Adaptation”). 

Lebanon’s 139.000 hectares of forests plays 
a crucial role for various ecosystem services to 
both local communities and the country. Estimat-
ing the exact value of these services is complex, 
but World Bank research estimates that Lebanon 
loses about $296 per hectare in economic value 
each time a forest fire occurs (PreventionWeb, 
2022). As climate change is exacerbating the 
risks of wildfire, Lebanon should rapidly ensure 
sustainable forest management, and enhance fire 
detection capacities and prevention efforts. 

No such methodology prior to the present 
study has been explored for mapping fire risk 
zones in the study area. Tentative maps indicating 
fire risk have been developed for Lebanon (Faour, 
2004) (Faour et al., 2006) (Masri et al., 2003). 
Nevertheless, these maps often fall short of ac-
curately reflecting the seasonal timing of fires, the 
total area burned (mapping), and the precise loca-
tions of fire boundaries. 

Understanding and predicting wildfires is 
challenging, yet significant technological ad-
vances have improved monitoring and modeling 
capabilities. These advancements have led to a 
data-driven approach to wildfire modeling, and 
there is growing interest in applying machine 
learning techniques to wildfire science and man-
agement (Jain er al., 2020). Geographic informa-
tion system (GIS) technology has been essential 
for creating forest fire susceptibility maps by 
effectively processing and integrating geospa-
tial data (El Hafyani et al., 2020) (Teodoro and 
Duarte, 2013). Moreover, using remote sensing 
and satellite images has become essential for col-
lecting the data needed to create these maps (Mo-
hajane et al., 2021). GIS technologies provide 
a fast, economical, and efficient way to obtain 
the necessary information for forest fire risk as-
sessment. By leveraging GIS and integration of 
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machine learning, authorities can better predict 
fire-prone areas, enhance early warning systems, 
and implement effective fire management strate-
gies to mitigate the impact of forest fires (Bui et 
al., 2018). Technological advancements have en-
hanced the efficiency of wildfire detection meth-
ods by integrating machine learning techniques 
with GIS and remote sensing to assess fire risk 
(Ghali et al., 2020).

Various studies have explored the integration 
of these systems, with some employing pairwise 
comparisons to assign weights based on expert 
judgments or existing literature (Mazzeo et al., 
2022). A similar approach for weight assignment 
was employed by Mazzeo (Mazzeo et al., 2022) 
in Italy using Multi-Criteria Decision Support, 
and Lamat (Lamat et al., 2021) in India using 
MCDM with analytical hierarchy process (AHP) 
to compare the parameters. Additionally, Majlin-
gová (Majlingová, 2015) in Slovakia used Multi-
Criteria Decision Analysis, and Pourghasemi 
(Pourghasemi et al., 2016) in Golestan Province, 
Iran used Mamdani fuzzy logic (MFL) and mod-
ified-AHP models. Abdo et al. (2022) conducted 
a study to assess and compare the effectiveness 
of the frequency ratio (FR) and AHP methods for 
mapping forest fire vulnerability in the Al-Drai-
kich region of western Syria.

AIM OF THE STUDY

This study focuses on creating a forest fire 
risk map for Lebanon by combining satellite 
imagery, topographic data, and additional in-
formation through GIS technology. Further-
more, we introduce a methodology that le-
verages remote sensing, GIS techniques, and 
machine learning to fill existing gaps in wild-
fire research for Lebanon. The AHP, a widely 
used multi-criteria decision-making technique, 
will be employed to develop the Forest Fire 
Risk Map (Triantaphyllou and Triantaphyllou, 
2000). Various data types – including weather, 
topography, and human activities – will be col-
lected. Nine factors (elevation, slope, aspect, 
proximity to urban areas, agriculture, roads, 
temperature, wind speed, and land use/land 
cover) will be analyzed in ArcGIS Pro, using 
data gathered from various accessible sources.

This map will assist emergency response 
teams, environmental organizations, local au-
thorities, disaster risk management committees, 

and other governmental bodies in preventing or 
reducing fire risks in forests. It will also support 
timely interventions when fires occur and aid in 
proactive measures to mitigate fire risk.

AREA OF STUDY

The study area extends along the eastern 
Mediterranean coastline, characterized by moun-
tain ranges exceeding 2.500 meters in height and 
covering an area of 10.452 km² (Bugh et al., 2024) 
Mediterranean coastline, characterized by moun-
tain ranges exceeding 2.500 meters in height 
and covering an area of 10.452 km² (Bugh et al., 
2024). Lebanon is structured into eight governor-
ates – Beyrouth, Mount Lebanon, Bekaa, North, 
South, Nabatiyeh, Aakkar, and Baalbak El-Herm-
el – and further segmented into districts (qadaa or 
caza) (Bugh et al., 2024).

Lebanon’s terrain consists of 4 notable re-
gions which are: a narrow coastal plain hugging 
the Mediterranean Sea, the impressive Lebanon 
Mountains, the verdant Bekaa Valley, and the 
Anti-Lebanon and Mount Hermon mountain 
ranges that run alongside the Lebanon Moun-
tains. In addition, Lebanon was once rich in for-
ests, however, centuries of grazing, burning, and 
logging have severely limited the regeneration 
of this natural vegetation Lebanon falls within 
the Mediterranean climate zone (Csa) (Figure 
1), known for its hot, dry summers and mild, 
wet winters, which is typical of Mediterranean 
climates (World Bank, 2023). The average tem-
perature throughout the year is approximately 
15 degrees Celsius. Rainfall varies from 700 to 
1.000 millimeters along the coast and can reach 
up to 1.600 millimeters in the mountainous re-
gions, where precipitation includes both rain and 
snow (World Bank, 2022a).

According to the 2017 land cover/land use 
map (CNRS, 2017), Mount Lebanon, Baalbek-
Hermel, and North are the governorates with the 
most extensive areas of forest and shrubland, 
covering 80.100 hectares, 71.500 hectares, and 
40.200 hectares, respectively. They are followed 
by Nabatiyeh (29.300 hectares), South (28.800 
hectares), Beqaa (28.300 hectares), and Akkar 
(27.200 hectares) (CNRS, 2–17). The governor-
ate of Beirut is fully designated as urban land 
area (103 hectares) of forests, shrublands, and 
grasslands by Governorate in Lebanon and 
their percentage coverage – based on data from 



69

Ecological Engineering & Environmental Technology 2025, 26(2), 66–85

CNRS (2027) (Table1). Lebanon’s diverse to-
pography and climate create a range of biocli-
matic zones. Forests and wooded areas cover 
approximately 23% of the country, supporting 
a rich biodiversity. Lebanon is rich in plant di-
versity, hosting approximately 2600 species of 
terrestrial plants, which account for 1.11% of all 
plant species worldwide. In addition, 8.5% of 
these species are unique to Lebanon, Syria and 
Palestine with 3.5% found exclusively in Leba-
non. What stands out is Lebanon’s extraordinary 
floral density that it ranks among the highest 
in the Mediterranean Basin, with about 0.25% 
plant species per square kilometer Lebanon’s 

socioeconomic challenges are expected to wors-
en due to climate change, which will heighten 
the country’s long-term vulnerabilities. Projec-
tions from Lebanon’s fourth national commu-
nication to the UN Framework Convention on 
Climate Change (UNFCCC) indicate that by 
2040, temperatures could rise by 1 °C along the 
coast and 2 °C inland, with a potential decrease 
in rainfall of 10 to 20% (World Bank, 2023). 
These climatic shifts, including more frequent 
extreme weather events, are anticipated to cre-
ate significant difficulties for managing water 
resources and will impact critical areas such as 
agriculture and forestry (World Bank, 2023).

Figure 1. Location of Lebanon within the Mediterranean basin

Table 1. Area (103 hectares) of forests, shrublands, and grasslands by governorate in Lebanon and their percentage 
coverage – based on data from CNRS (2022)

Parameter Akkar Baalbek - 
Hermel Beqaa Mount-

Lebanon Nabatiyeh North South

Total area (103 ha) 79.0 285.3 141.3 197.3 110.0 118.7 92.4

Forests and shrubs (103 ha) 27.2 71.5 28.3 80.1 29.3 40.2 28.8

Forests and shrubs (%) 34.4 25.0 20.0 40.6 26.6 33.9 31.1

Grass (103 ha) 2.9 2.7 6.2 9.4 11.4 3.5 6.1

Grass (%) 3.6 0.9 4.3 4.7 10.3 2.9 6.6
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MATERIALS AND METHODS

Methodology

In this research, AHP, a widely used multi-cri-
teria decision-making technique (Triantaphyllou 
and Triantaphyllou, 2000) was applied to identify 
and map regions at high risk of fire in Lebanon by 
developing a forest fire risk map.

By integrating GIS technology with AHP and 
remote sensing through satellite images, the study 
analyzed nine key factors contributing to fire risk. 
Different data sets sources were utilized to support 
the identification and mapping process, ensuring 
a comprehensive assessment of fire susceptibility 
across the region. However, the overall methodol-
ogy of the study is presented in Figure 4.

Resources and data preparation

Active fire data – NASA FIRMS

Because the lack of detailed of fire records in 
Lebanon NASA’s Fire Information for Resource 
Management System (FIRMS) was relied upon 
to determine the dates and locations of fires. 
FIRMS is a widely recognized tool for identify-
ing fire perimeters in global burnt area mapping 
algorithms by using the remote sensing tech-
niques (Pinto et al., 2021).

The system offers near real-time data on ac-
tive fire locations which is based on observations 
captured by NASA’s moderate resolution imag-
ing spectroradiometer (MODIS) (NASA FIRMS, 

n.d.). Since the year 2000, MODIS has provided 
precise information about active fires or thermal 
hotspots by identifying the center of a 1 km pixel 
where fire activity has been detected by its algo-
rithm (Giglio et al., 2016). However, the number 
of recorded fire events is lower than the actual 
occurrences in Lebanon over the last 20 years. 
This data remains our only available source, even 
though hotspots can still miss some smaller fires. 
However, a new approach was developed: a dash-
board that aggregates all fire related news posted 
by the Lebanese Civil Defense and the Lebanese 
Red Cross. This dashboard, that has been opera-
tional since April 2024, automatically updates 
and maps all fire events reported to accurately 
map the fires and the burned areas (Figure 2). 

Landsat data processing

Fire contours over Lebanon’s wildland areas 
were created using Landsat 7 (ETM+) and Landsat 
8 (OLI) data from 2000 to 2015, as well as Senti-
nel-2 (MSI) data from 2016 to 2020. This process-
ing was conducted with the assistance of Google 
Earth Engine (GEE), which served as a semi-au-
tomated tool for detecting burnt areas. Landsat 9 
was utilized for mapping recent fire events on the 
dashboard related to the Lebanese Red Cross.

Now a day the most usable tool computes two 
key spectral indices are: the normalized difference 
vegetation index (NDVI) (Rouse et al., 1973), this 
is used to evaluate plant health, and the normal-
ized burn ratio (NBR) (Key and Benson, 1999), 

Figure 2. Fire incidents across Lebanon dashboard
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which helps to measure the severity of burns. To 
establish the pre- and post-burn periods, users 
need to specify the burn date and select the target 
area. These indices are represented using an RGB 
color scale. Users then classify areas as either 
burnt or unburnt to train a random forest classi-
fier, which uses supervised classification to detect 
changes in the NDVI and NBR composites.

Each fire is initially located using NASA’s 
FIRMS, to identify a processing zone. The re-
sulting fire polygons are visually interpreted and 
manually refined to achieve the desired visual ac-
curacy (Figure 3). This process involves removing 
commission errors (such as fire polygons detected 
in agricultural lands) and reprocessing omitted 
burned areas by expanding and multiplying the 
training zones. While this procedure is time-con-
suming, it ensures a level of visual validation that 
automated methods typically cannot provide.

Metrological data

The Weatherbit API was utilized to collect 
meteorological data due to gaps identified in 
the climatic information from various weather 
stations across Lebanon. The Weatherbit API 
delivers real-time weather data for any loca-
tion worldwide, sourced from over 47.000 ac-
tive weather stations, as well as Doppler radar 
and meso-reanalysis data. It provides current 
weather conditions from a network of sub-hour-
ly reporting stations and includes atmospheric 
meso-analyses.

This API offers a real time weather updates 
from a network stations which report several 
times an hour. Each request gives us the most re-
cent and nearest weather data, along with detailed 

atmospheric analysis (Weatherbit, n.d.). To make 
a weather map for Lebanon, it is essential to gen-
erate a fixed location as a cell grid. Then, a script 
runs and requests from each API for each loca-
tion (Grid Cell) the weather data and stores the 
data in the feature class which is used to create a 
raster for each weather information. The Weather 
bit API was preferred as a selection because it is 
more accurate and complete, with no missing data 
compared to other options. Despite being a paid 
service, it offers superior results of weather data.

Digital elevation model 

This study utilized elevation, aspect and 
slope data from the advanced spaceborne ther-
mal emission and reflection radiometer (AS-
TER) Global digital elevation model (GDEM). 
Produced by the ASTER instrument on the 
Terra satellite, this high-resolution dataset pro-
vides highly detailed and accurate elevation in-
formation with a spatial resolution of 30 meters 
maximum. Its precision makes it an essential 
resource for geospatial analysis (NASA, n.d.). 
The ASTER GDEM data is publicly available 
and can be accessed through NASA’s Earthdata 
platform. This dataset covers the entire globe, 
offering consistent and comprehensive eleva-
tion information crucial for various environ-
mental and scientific applications. By integrat-
ing ASTER GDEM data into GIS software, it 
is possible to derive essential topographic pa-
rameters such as elevation, slope, and aspect, 
which are critical for modeling and analyzing 
wildfire risks and other geospatial phenomena. 
However, the overall methodology of the pres-
ent study is shown in the Figure 4.

Figure 3. Pre- and post-fires in Akroum (Akkar) in 29-7-2022



72

Ecological Engineering & Environmental Technology 2025, 26(2), 66–85

INFLUENTIAL FACTORS

Topography

Slope

Slope (°) measures the rate of change in el-
evation and is typically expressed as the angle 
or gradient of the terrain’s surface. Fires often 
spread more rapidly uphill because the vegeta-
tion is pre-heated and the flames have more direct 
contact with the surface. In fact, a fire’s speed can 
double with each 10-degree increase in slope, as 
the slope enhances the effect of the wind by di-
recting the flames and pre-heating the vegetation.

Aspect

Aspect (°) denotes the direction of the great-
est change in elevation between each cell and 
its adjacent cells, with measurements given in 
degrees from north (0° for north, 90° for east, 
180° for south, and 270° for west) (Esri, n.d.). 
In the northern hemisphere, north-facing slopes 
are typically shaded, while south-facing slopes 
receive more solar radiation because they are 
oriented towards the sun and are not directly 
shaded by surrounding terrain. The direction a 
slope faces influences fire behavior in various 
ways. South- and west-facing slopes, which re-
ceive more direct sunlight throughout the day, 
particularly in summer, tend to have drier soil 
and vegetation due to higher rates of evapo-
transpiration compared to north- and east-facing 

slopes. West-facing slopes are warmer in the late 
afternoon and evening due to direct sunlight, 
while east-facing slopes warm up quickly in the 
morning after cooler nights.

Elevation

Elevation (m), or the height above sea level 
(m a.s.l.), significantly influences wildfire behav-
ior and risk. In the context of Lebanon’s diverse 
topography, which includes coastal plains, hilly 
areas, and mountain ranges, elevation interacts 
with other factors such as temperature, humid-
ity, and vegetation types. Forest fires typically 
decrease with rising elevation, as cooler tem-
peratures and higher humidity at higher altitudes 
contrast with the conditions at lower elevations 
(Rothermel, 1983). 

Metrological data

Temperature

As temperatures (°C) increase throughout the 
day, the air can hold more moisture which causes 
relative humidity to decrease. This means the 
air has low moisture compared to its maximum 
capacity. During the night cooler air holds more 
moisture and fuels soak up this moisture from the 
damp environment which reduce fire activity.

Wind speed

Wind speed (m/s) significantly impacts the 
intensity and spread of a fire in an area. Stronger 

Figure 4. Flowchart of the methodology
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winds accelerate fire spread by supplying addition-
al oxygen, which intensifies the flames and pre-
heats and dries the fuel in front of the fire. Winds 
can carry sparks and embers ahead of the main 
blaze, leading to spot fires. Additionally, wind 
moving up slopes can increase the fire’s spread, 
while draws and ravines can channel flames up-
ward like chimneys.

Land use and land cover (LULC) 

Fuel types

Human activities greatly expedite changes in 
LULC, resulting in considerable effects on for-
ests and ecosystems (Agarwal, 2002; Kumar et 
al., 2018). Previous studies have highlighted the 
crucial role of land cover classifications in assess-
ing fire risk, given their relationship with different 
fuel types and their characteristics (Vadrevu et al., 
2010) (Szpakowski and Jensen, 2019).

Proximity to urban

Areas adjacent to urban areas are more likely 
to experience fires than area regions situated fur-
ther from these lands. Urban areas often contrib-
ute to fire risk through human activities such as 
improper disposal of flammable materials, con-
struction work, and increased heat from buildings 
and infrastructure. As the distance from urban ar-
eas grows, the influence of these activities dimin-
ishes, leading to a reduced risk of fire (Raval and 
Motiani, 2022).

Proximity to agriculture

Areas adjacent to agricultural lands are more 
likely to experience fires than areas situated fur-
ther from these lands. This is because agricultur-
al activities often involve the use of machinery, 
burning of crop residues, and other practices that 
can increase the likelihood of fire ignition. As the 
distance from agricultural lands increases, the in-
fluence of these activities diminishes, leading to a 
lower fire risk (Glagolev et al., 2018).

Proximity to roads

Areas adjacent to roads are more likely to 
experience fires than areas situated further from 
these roads. Roads are often associated with hu-
man activities that can increase fire risk, such 
as vehicle emissions, discarded cigarettes, and 
roadside vegetation management. As the dis-
tance from roads increases, the influence of these 

factors diminishes, leading to a lower fire risk 
(Raval and Motiani, 2022).

METHODS

GIS integration and raster calculation for fire 
risk mapping 

The study utilized the integration of GIS-
based multi-criteria decision-making (MCDM) 
and the AHP to identify and map areas within the 
study region that are potentially vulnerable to fire. 
This approach involved using spatial data layers 
corresponding to nine factors (elevation, slope, as-
pect, proximity to urban, fuel types, proximity to 
agriculture, proximity to agriculture, temperature, 
and wind speed) were processed using GIS and re-
mote sensing techniques to create spatial data lay-
ers in raster format. (Fig. the parameters diagram).

The raster factor maps were standardized to a 
uniform scale ranging from 1 (very low) to 5 (very 
high) using the reclassify tool in the spatial ana-
lyst tools. The raster factors were then resampled 
to a 10 meters resolution using the resample tool 
within ArcGIS’s data management tools. In addi-
tion, the agricultural and forest cover rates were 
assessed based on the guidelines set in the Leba-
nese National Action Plan (NAP) of 2003. After re-
classifying the maps of all fire-controlling factors, 
each factor was assigned a relative weight using the 
AHP model. The final national fire susceptibility 
map was then produced by overlaying the nine fire-
controlling spatial layers using the raster calculator 
tool in the ArcGIS environment. The AHP analysis, 
along with the processing, generation, and overlay-
ing of digital raster layers, was conducted utilizing 
ArcGIS, Jupyter Lab, and Microsoft Excel.

Analytical hierarchy process (AHP)

The AHP introduced by Saaty (1987), is 
widely utilized to assess and assign relative im-
portance to different criteria in studies. While 
several methodologies, including fuzzy sets 
(Bellman and Zadeh, 1970), linguistic variables 
(Chen and Hwang, 1992), and AHP (Saaty, 1987), 
are applied for determining fire risk zones, AHP 
remains the most prevalent method (Sharma et 
al., 2014; Vadrevu et al., 2010). In this study, AHP 
was used to assign weights to various factors in-
fluencing fire susceptibility, following Saaty’s 
step-by-step procedure. 
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The AHP was applied to identify and map 
fire-prone areas in Lebanon by developing a for-
est fire risk map. This study combined GIS tech-
nology with AHP to assess nine critical factors in-
fluencing fire risk. Multiple spatial criteria (such 
as aspect, slope, distance to the road, etc.) must be 
combined under suitable conditions to determine 
the likelihood of fire ignition and spread in forest 
areas. GIS is highly effective for simultaneously 
analyzing multiple spatial criteria and drawing 
effective conclusions (Key and Benson, 1999). 
These factors were evaluated based on their rela-
tive importance, categorized into levels such as 
very low, low, moderate, high, and very high. The 
procedure is implemented as follows:

To create the pairwise comparison matrix as seen 
in Table 2. Each factor was assigned a value ranging 
from 1 to 9 to represent its relative importance. The 
value 1 means that the two factors are equally im-
portant, while the value 9 means that one factor is 
significantly more important than the other.Applying 
the formula, sum the values in each column of the 
pairwise comparison matrix. (Table 3) (Equation 1):
 𝐿𝐿𝐿𝐿𝐿𝐿 = ∑ 𝐶𝐶𝐿𝐿𝐿𝐿𝑛𝑛

𝑛𝑛=1  (1) 
 
𝑋𝑋𝐿𝐿𝐿𝐿 = 𝐶𝐶𝐶𝐶𝐶𝐶

𝐿𝐿𝐶𝐶  (2) 
 

𝑊𝑊𝐿𝐿𝐿𝐿 = ∑ 𝑋𝑋𝐶𝐶𝐶𝐶𝑛𝑛
𝑗𝑗=1

𝑁𝑁  (3) 
 
𝜆𝜆 = ∑ 𝐶𝐶𝐶𝐶𝐿𝐿𝐿𝐿𝑛𝑛
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where: Lij – total column value of the pair-wise 

comparison matrix; Cij – the analysis’s 
criteria that were applied.

To create a normalized pair-wise compari-
son matrix, divide each matrix element by the 
total number of rows in the matrix (Table 4) 
(Equation 2):
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where: Xij – normalized pair-wise comparison 
matrix.

Calculate the standard weight by dividing the 
sum of the normalized rows of the matrix by the 
total number of criteria/parameters (N) using the 
following formula. (Equation 3):
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where: Wij – standard weight.

The following formula was used to calculate 
the consistency vector values (Equation 4):
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where: λ – consistency vector.

After knowing the weights for each fire-con-
trolling factor, a consistency check was carried 
out to ensure the comparisons if they accurate 
and reliable. This involved calculating the consis-
tency index (CI) using Equation 5 by following 
the method outlined by Saaty (1987).
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The consistency ratio (CR) is calculated using 
the following formula (Equation 6):
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where: RI – random inconsistency, which varies de-
pending on the number of factors used in the 
pairwise comparison matrix Tables 5–7).

If and only if the CR is 0.10 or greater this 
indicates that the comparisons lack sufficient con-
sistency, requiring the process to be revisited and 
adjusted until the CR falls below the 0.10 of the 
thresholds (Saaty, 1987).

Method of wildfire susceptibility map 
preparation

To create the fire susceptibility map for the 
study area, spatial layers were combined using 
Equation 7 through raster calculator in Arc-
GIS’s spatial analyst extension. For each fac-
tor influencing fire risk was carefully prepared 

Table 2. Scale of a pair wise comparison
Intensity importance Linguistic variables

1 Equal importance

2 Equal to moderate importance

3 Moderate importance

4 Moderate to the strong importance

5 Strong importance

6 Strong to the very strong 
importance

7 Very strong importance

8 Very to the extremely strong 
importance

9 Severe importance

Table 3. Distribution of fire susceptibility per area in 
Lebanon

Fire susceptibility Area (ha) Area (%)

Very low (1) 39.650 4.5

Low (2) 172.425 19.54

Moderate (3) 307.950 34.89

High (4) 295.225 33.45

Very high (5) 67.275 7.62



75

Ecological Engineering & Environmental Technology 2025, 26(2), 66–85

Table 4. Pair-wise comparison matrix
Factors FT EL SL AS TEMP WS PTR PTA PTU

FT 1 3 3 2 1 1 3 2 3

EL 1/3 1 2 1 1 1 3 3 4

SL 1/3 1/2 1 3 1 1 1 3 1

AS 1/2 1 1/3 1 1 1 2 1 2

TEMP 1 1 1 1 1 1 1 1 1

WS 1 1 1 1 1 1 1 1 1

PTR 1/3 1/3 1 1/2 1 1 1 5 7

PTA 1/2 1/3 1/3 1 1 1 1/5 1 4

PTU 1/3 1/4 1 1/2 1 1 1/7 1/4 1

Note: FT fuel type, EL elevation, SL slope, AS aspect, TEMP temperature, WS wind speed, PTR proximity to 
road, PTA proximity to agriculture, PTU proximity to urban area. 

Table 5. Normalized Pair-wise Comparison Matrix
Para-
meter FT EL SL AS TEMP WS PTR PTA PTU Sum CW CW(%)

FT 0.1875 0.35646 0.28125 0.181818 0.111111 0.111111 0.243056 0.115942 0.125 1.713224 0.190358181 19.04

EL 0.0625 0.118812 0.1875 0.090909 0.111111 0.111111 0.243056 0.173913 0.166667 1.265578 0.140619829 14.06

SL 0.0625 0.059406 0.09375 0.272727 0.111111 0.111111 0.081019 0.173913 0.041667 1.007204 0.111911518 11.19

AS 0.09375 0.118812 0.03125 0.090909 0.111111 0.111111 0.162037 0.057971 0.083333 0.860285 0.095587175 9.56

TEMP 0.1875 0.118812 0.09375 0.090909 0.111111 0.111111 0.081019 0.057971 0.041667 0.893849 0.099316599 9.93

WS 0.1875 0.118812 0.09375 0.090909 0.111111 0.111111 0.081019 0.057971 0.041667 0.893849 0.099316599 9.93

PTR 0.0625 0.039604 0.09375 0.045455 0.111111 0.111111 0.081019 0.289855 0.291667 1.126071 0.125118998 12.51

PTA 0.09375 0.039604 0.03125 0.090909 0.111111 0.111111 0.016204 0.057971 0.166667 0.718577 0.079841851 7.98

PTU 0.0625 0.029703 0.09375 0.045455 0.111111 0.111111 0.011574 0.014493 0.041667 0.521363 0.057929248 5.79

Note: FT fuel type, EL elevation, SL slope, AS aspect, TEMP temperature, WS wind speed, PTR proximity to 
road, PTA proximity to agriculture, PTU proximity to urban area, CW criteria weights.

Table 6. Calculating consistency
Para-
meter FT EL SL AS TEMP WS PTR PTA PTU WSV CW WSV/CW

FT 0.190358 0.421859 0.3357 0.191174 0.0993166 0.099317 0.3753569950.1596837020.1737877442.0465882140.19035818110.75124904

EL 0.063453 0.14062 0.2238 0.095587 0.0993166 0.099317 0.3753569950.2395255530.2317169921.5687155070.140619829 11.15572049

SL 0.063453 0.07031 0.1119 0.286762 0.0993166 0.099317 0.125118998 0.2395255530.0579292481.153642684 0.111911518 10.308525

AS 0.095179 0.14062 0.0373 0.095587 0.0993166 0.099317 0.2502379970.079841851 0.115858496 1.0132614770.09558717510.60039144

TEMP 0.190358 0.14062 0.1119 0.095587 0.0993166 0.099317 0.125118998 0.0798418510.057929248 1 0.09931659910.06881032

WS 0.190358 0.14062 0.1119 0.095587 0.0993166 0.099317 0.125118998 0.0798418510.057929248 1 0.09931659910.06881032

PTR 0.063453 0.046873 0.1119 0.047794 0.0993166 0.099317 0.125118998 0.3992092550.4055047361.398497297 0.125118998 11.1773377

PTA 0.095179 0.046873 0.0373 0.095587 0.0993166 0.099317 0.0250238 0.0798418510.2317169920.8101592230.07984185110.14704962

PTU 0.063453 0.035155 0.1119 0.047794 0.0993166 0.099317 0.0178741430.0199604630.0579292480.5527098420.057929248 9.541118884

Note: FT fuel type, EL elevation, SL slope, AS aspect, TEMP temperature, WS wind speed, PTR proximity to 
road, PTA proximity to agriculture, PTU proximity to urban area, CW criteria weights, WSV weight sum value.

and reclassified on a scale from 1 (very low) to 
5 (very high). These factors were then assigned 
weights using the AHP and integrated to gener-
ate the final map.

 𝐹𝐹𝐹𝐹 = ∑ x𝑖𝑖 ×  𝑤𝑤𝑖𝑖𝑛𝑛
𝑘𝑘=0  (7) 

 
 (7)

where: FS is the fire susceptibility; n is the num-
ber of decision criteria; xi is the particular 
normalized criterion; i is the weight as-
signed to that criterion. These weighted 
values are then added together to create 
the final fire susceptibility output map.



76

Ecological Engineering & Environmental Technology 2025, 26(2), 66–85

Table 7. Random inconsistency values (Saaty, 1987)
n 2 3 4 5 6 7 8 9

RI 0 0.52 0.9 1.12 1.24 1.32 1.41 1.45

RESULTS AND DISCUSSION

The forest fire risk assessment in Lebanon 
was based on nine essential factors which are: el-
evation, slope, aspect, distance from urban areas, 
proximity to agricultural land, distance to roads, 
fuel types, temperature, wind speed and land use/
land cover. By analyzing these factors, we were 
able to map and identify the areas most suscep-
tible to fires. A detailed overview of each factor, 
including how they were classified and weighted 
in the assessment of fire risk zones, is provided 
below (Table 8) 

Topography

Slope

The reclassified slope map (Figure 8) indi-
cates that approximately 16.48% (176,000 ha) of 
the study area has slopes between 0 and 5 degrees, 
representing the lowest fire susceptibility. Around 
18.22% (194,500 ha) of the area is classified as 
having low susceptibility (5–10°), while 50.5% 
(539,300 ha) falls into the moderate susceptibil-
ity range (10–20°). Areas with high (20–30°) and 
very high (>30°) fire susceptibility make up about 
13.9% (148,500 ha) and 0.91% (9700 ha), respec-
tively (Figure 5). It was found that forest fire in-
cidents were most frequent on moderate and high 
slopes, with 1069 and 583 incidents respectively, 
and fewer occurrences on steeper slopes.

Aspect (Degree)

In the study area, slopes were classified 
into categories based on their aspect: very low 
(flat), low (northeast), moderate (northwest), 
high (east-southeast), and very high (south-
west). These categories cover 0.19% (2000 ha), 
1.46% (15,600 ha), 2.3% (24,500 ha), 41.61% 
(444,400 ha), and 54.44% (581,500 ha), respec-
tively (Figure 8). It was found that forest fire 
incidents were most frequent in areas with very 
high and high aspects, with 1122 and 777 in-
cidents respectively, and fewer occurrences in 
other directions (Figure 6). 

Elevation

As shown in elevation map (Figure 8) areas 
with lower elevations, particularly those located 
along the western part of Lebanon where the al-
titude is below 500 meters above sea level, are 
the most vulnerable to fire risk. As elevation 
increases from the western part of the country 
towards the center, culminating in the Bekaa 
Valley where the highest elevations are found, 
the vulnerability to fire decreases, with 14.85% 
(158,600 ha) and 8.08% (86,300 ha) of the area 
exhibiting low and very low susceptibility to fire 
risk, respectively. Conversely, approximately 
24.32% (259,800 ha) and 26.97% (288,000 ha) 
of the study area are classified as very high and 
high fire risk zones, respectively, corresponding 
to regions with elevations ranging from 0–500 
meters and 500–1.000 meters, respectively. As 
the elevation continues to increase towards the 
Bekaa Valley, fire risk decreases further, with 
areas at 1000–1500 meters exhibiting moderate 
susceptibility, covering 25.78% (275,300 ha) of 
the region. It was observed that forest fire inci-
dents were predominantly concentrated in the 
lowest elevation ranging from 0–500 meters and 
500–1000 meters with 809 and 784 incidents re-
spectively, with fewer occurrences at higher ele-
vations and none in the highest areas of the study 
region (Figure 7). This pattern is likely attributed 
to the increased moisture content in vegetation 
and soil at these elevations, which diminishes the 
risk of fire ignition and spread

Metrological data

Temperature (C-degree)

Elevated temperatures accelerate evapora-
tion, resulting in drier vegetation that is more 
susceptible to ignition and burns with greater 
intensity. The average monthly temperatures 
ranged from 13.3 °C to 41.2 °C, with maximum 
temperatures recorded during fire events falling 
between 23 °C and 41 °C.

The reclassified temperature map was classi-
fied into five categories: very low (T < 32°), low 
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Table 8. Classification and weight for different factors for assessment of forest fire risk zone
Thematic layers Subclass Divisions Rate Area (ha) Area (%)

Topography

Elevation (m)

0–500 5 259,800 24.32
500–1000 4 288,000 26.97

1000–1500 3 275,300 25.78
1500–2000 2 158,600 14.85
2000–3033 1 86,300 8.08

Slope (°)

0–5 1 176,000 16.48
5–10 2 194,500 18.22

10–20 3 539,300 50.5
20–30 4 148,500 13.9
30–80 5 9,700 0.9

Aspect (°)

SW 5 581,500 54.44
ES 4 444,400 41.61
NW 3 24,500 2.3
NE 2 15,600 1.46
Flat 1 2,000 0.19

Anthropogenic 
factors

Proximity to roads 
(m)

0–100 m 5 487,100 45.61
100–200 m 4 235,900 22.09
200–300 m 3 112,600 10.54
300–400 m 2 52,300 4.9

> 400 m 1 180,100 16.86

Proximity to urban 
(m)

0–100 m 5 261,085 24.49
100–200 m 4 198,280 18.6
200–300 m 3 123,125 11.55
300– 400 m 2 78,215 7.33

> 400 m 1 405,560 38.03

Proximity to 
agriculture (m)

0–100 m 5 332,100 31.11
100–200 m 4 213,900 20.04
200–300 m 3 129,700 12.15
300–400 m 2 82,100 7.7

> 400 m 1 309,600 29

Climate

Temperature (°C)

T<32 1 531,200 38.78
32<T<34 2 480,000 35.05
34<T<36 3 76,800 5.61
36<T<38 4 108,800 7.94

T>38 5 172,800 12.62

Wind speed (m/s)

W<2.8 1 134,525 13.11
2.8<W<3.5 2 93,900 9.15
3.5<W<4.4 3 279,425 27.23
4.4<W<5.3 4 132,825 12.94

W>5.3 5 385,600 37.57

Fuel types

Agriculture

Protected agriculture 1

230,171.25 35.6

Fruit trees 1
Vineyards 1

Field crops in medium to large terrace 1
Field crops in small fields/terrace 1

Olives 3

Forest

Clear oaks 2 85,626.75 13.24
Dense oaks 3

235,145.50 36.37Scrubland with some dispersed bigger trees 3
Clear grasslands 3

Dense-other types of broadleaved trees 4
28,634.75 4.43Clear-other types of broadleaved trees 4

Clear mixed wooded lands 4
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Figure 5. Frequency of fire incidents with respect to slope risk index

Table 8. Cont. Classification and weight for different factors for assessment of forest fire risk zone

Thematic layers Subclass Divisions Rate Area (ha) Area (%)

Fuel types Forest

Dense pines 5

67,010 10.36

Dense mixed wooded lands 5
Burnt wooded lands 5

Clear fir 5
Clear pines 5
Dense fir 5

Dense cypress 5
Clear cedars 5
Clear juniper 5

Figure 6. Frequency of fire incidents with respect to aspect risk index

Figure 7. Frequency of fire incidents with respect to elevation risk index

(32° < T < 34°), moderate (34° < T < 36°), high 
(36° < T < 38°) and very high (T > 38°).

The areas with low temperature had very few 
fire occurrences due to the high moisture content 
in the fuel, which made the conditions less suit-
able for ignition of fire (Figure 8). 

Wind speed

The reclassified wind speed map (Figure 8) 
shows that about 13.11% (134,525 ha) of the study 
area has an average wind speed < 2.8 m/s which 
belongs to lowest susceptibility to fire. About 
9.15% (93,900 ha) and 27.23% (279,425 ha) of the 
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study area are characterized by low (2.8 < W < 3.5 
m/s) and moderate (3.5 < W < 4.4 m/s) suscepti-
bility to fire, respectively. Areas of high (4.4 < W 
< 5.3 m/s) and very high (W > 5.3 m/s) fire sus-
ceptibility cover about 12.94% (132,825 ha) and 
37.57% (385,600 ha), respectively. The range of 
monthly average wind speeds recorded in the study 
area was between 1.11 and 12.5 meters per second. 

Land use and land cover 

Fuel types

In this study, LULC data obtained from 
CNRS has been categorized into two categories, 
forests and agriculture and the rate were assessed 
following the Lebanese NAP (2003). LULC was 
classified under 5 categories very low, low, mod-
erate, high and very high with area covers 35.6% 
(230171.25 ha), 13.24% (85626.75 ha) 36.37% 
(235145.5 ha), 4.43% (28634.75 ha) and 10.36% 
(67010 ha) respectively (Figure 8). In our study, 
most fire incidents were observed in areas with 
moderate fire susceptibility.

Proximity to urban

In the study area, regions within 100 meters 
from urban areas are categorized as having very 
high susceptibility to fire, with a risk rating of 5. 
Areas within distances of 100 to 200 meters, 200 
to 300 meters, and 300 to 400 meters are consid-
ered to have high, moderate, and low fire risk, 
with risk ratings of 4, 3, and 2, respectively. Areas 
located more than 400 meters away from urban 
regions are categorized as having very low fire 
risk, with a rating of 1 (Figure 8).

Proximity to agriculture

In the study area, locations within 100 me-
ters of agricultural lands are categorized as 
having very high susceptibility to fire, with a 
risk rating of 5. Areas within 100 to 200 me-
ters, 200 to 300 meters, and 300 to 400 meters 
are classified as having high, moderate, and 
low fire risk, with risk ratings of 4, 3, and 2, 
respectively. Areas more than 400 meters away 
from agricultural lands are categorized as hav-
ing very low fire risk, with a rating of 1. It was 
found that forest fire incidents were more fre-
quent in areas closest agriculture lands, with 
597 and 477 incidents, respectively, and less 
frequent further away from the agriculture ar-
eas (Figure 8).

Proximity to roads

In the study area, regions within 100 meters 
from roads are categorized as having very high 
susceptibility to fire, with a risk rating of five. Ar-
eas within distances of 100–200 meters, 200–300 
meters, and 300–400 meters are considered to 
have high, moderate, and low fire risk, with risk 
ratings of 4, 3, and 2, respectively. Areas located 
more than 400 meters away from roads are cat-
egorized as having very low fire risk, with a rating 
of 1. It was found that forest fire incidents were 
most frequent closest to roads, with 1059 and 651 
incidents, respectively, and less frequent further 
away from the roads (Figure 8).

Stakeholder collaboration and 
implementation considerations

Active collaboration with various stakehold-
ers is necessary for effective wildfire risk man-
agement. The initiative aims to enhance response 
capabilities, involving various stakeholders such 
as civil defense and community emergency re-
sponse teams.

Additionally, following the community-
based disaster risk reduction approach through 
training initiatives and awareness campaigns 
leads to more safe and resilient communities 
by raising preparedness to mitigate the risk of 
fire. Implementation efforts can be strength-
ened by collaborating with local organizations 
and NGOs through building capacities of ex-
isting structures within the communities. Also, 
applying this map NGOs may prioritize their 
target areas based on identified high risk zones 
where communities can benefit from several 
funded projects and activities related to this 
kind of hazard and other natural hazards. 

FOREST FIRE RISK MAP OF THE STUDY 
AREA

The forest fire risk map was developed using 
geospatial technology and AHP. Final weights of 
all parameters were first determined. Then, the 
data was converted into raster format and com-
bined with a raster calculator in ArcGIS to define 
the potential fire risk zones. The resulting scores 
were classified into five categories: very high (5), 
high (4), moderate (3), low (2), and very low (1). 

Table 8 details the area distribution for each 
risk category: very low (4.5% or 39,650 ha), low 
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(19.54% or 172,425 ha), moderate (34.89% or 
307,950 ha), high (33.45% or 295,225 ha), and 
very high (7.62% or 67,275 ha). The highest risk 
areas were mainly located in sparsely populated 
regions, especially in the western and southern 
parts of the district where agricultural and human 
activities are extensive. Moreover, areas of very 
high fire susceptibility were mostly found in lower 
elevation ranges with gentle slopes, particularly in 
the western part of the study area (Figure 9).

VALIDATION OF FIRE RISK ZONE MAP

To verify the accuracy of the fire risk zone 
map we should compare it with fire point data 
from the MODIS satellite. Fire polygons were 
placed over the risk zone map for the study area. 
Using the Spatial Analyst tool in GIS. The per-
centage of land with each risk zone was calcu-
lated based on the method outlined in Equation 

8. The proportion of the area affected by fires was 
then computed using following equation:

 
𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 𝑜𝑜𝑜𝑜 𝑃𝑃𝑃𝑃 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 (%) =

= 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 𝑒𝑒𝑎𝑎𝑒𝑒𝑒𝑒
𝑒𝑒𝑡𝑡𝑒𝑒𝑒𝑒𝑡𝑡 𝑒𝑒𝑎𝑎𝑒𝑒𝑒𝑒  ×  100  

 
(8) 

 

 (8)

Validating the model is essential to ensure 
its predictions accurately reflect real-world 
conditions. This involves comparing the mod-
el’s results with actual fire incidents. In this 
study, the validation was carried out by cross-
referencing historical fire data from MODIS 
with the fire-prone areas indicated on the risk 
map. 

The analysis of fire points detected by MO-
DIS over the past 20 years confirmed the mod-
el’s reliability (Table 9). The results revealed 
that fires were more common in low to moder-
ate elevation areas, with a significant correlation 
between fire occurrences and the high-risk zones 
identified on the map.

Figure 8. Reclassification of fire controlling factors
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Figure 9. Fire susceptibility map of the study area

Table 9. Validation of Forest fire risk zones detected by the MODIS satellite over the past 20 years
Fire susceptibility Area (ha) Area (%)

Very low (1) 7.060284 0.06

Low (2) 766.828381 6.18

Moderate (3) 3069.998585 24.74

High (4) 7090.562629 57.15

Very high (5) 1472.134795 11.87

Additionally, data extracted from the Fire 
Incidents Dashboard related to the Lebanese 
Red Cross was overlaid on the fire risk model 
(FRM) to further assess its accuracy (Table 10). 
This data collection began in April 2024 and 

will continue to be updated on a weekly basis. 
Overlaying point data onto the output map is a 
technique for verifying the model’s accuracy, a 
method that has been utilized in various stud-
ies (Hagos et al., 2022; Ogato et al., 2020). The 
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points correspond to the high-susceptibility ar-
eas identified by the model, indicating that the 
fire events recorded in the field align well with 
the FRM generated by the study (Figure 10).

CONCLUSIONS

This study investigates the use of geospatial 
technologies and the AHP to evaluate fire risk 

in Lebanon, taking into account factors such as 
elevation, slope, aspect, proximity to urban ar-
eas, agriculture, roads, temperature, wind speed, 
and fuel types. The fire risk map generated from 
this evaluation categorizes the area into five risk 
zones: very high, high, moderate, low, and very 
low. The analysis revealed that approximate-
ly 34.89% of the area had moderate fire risk, 
33.45% was classified as high risk, and 7.62% 
was identified as very high risk. The remaining 
19.54% showed low susceptibility, while 4.5% 
was in the very low risk category. The model’s 
validity was confirmed through a comparison 
with historical fire data, showing a strong align-
ment between the model’s predictions and actual 
fire events. The integration of GIS-based meth-
ods, AHP, and MCDM has proven effective in 
mapping fire-prone areas, highlighting its utility 
for fire risk management showing the total area 
burned (mapping), the seasonal timing of flames, 
and the exact locations of fire boundaries. These 

Figure 10. Validation map of the Fire susceptibility map

Table 10. Validation of fire incidents detected by the 
dashboard of the Lebanese Red Cross

Fire susceptibility Number of incidents

Very low (1) 0

Low (2) 24

Moderate (3) 348

High (4) 1,111

Very high (5) 514
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findings provide valuable insights for local au-
thorities in planning for large-scale fire hazards 
and suggest that the methodology can be adapted 
for other regions within the Mediterranean basin 
facing similar fire risks. The produced risk map 
also improves safety procedures, such as resource 
allocation and creation of evacuation plans dur-
ing fire events. Besides, it can help guide strate-
gic decision-making directing initiatives and fire 
control measures. Thus, can develop a compre-
hensive and proactive framework for managing 
wildfires at the local and national levels.
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