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INTRODUCTION

Many different types of maps serve different 
functions, but most end up in one of three places: 
records of land division, engineering, planning, 
or design tools or as part of a geographic infor-
mation system (GIS) with a wide range of ap-
plications. The maps serve as a digital basis for 
all of the presented intangible data, including but 
not limited to market statistics, land appraisals, 
and assessment comparisons. Imagery has high 
values when removing all distortions; it is con-
nected to the main geodetic network, can serve 
as a base map, and meets the measurement toler-
ances with cadastral maps for the construction of 
the cadaster (Jasim, Al-Saedi, et al., 2024). Geo-
graphical, cultural, and physical aspects, as well 

as administrative and planning borders, should 
be included on large-scale base maps created for 
urban development plans (Jasim, Jasim, et al., 
2024). Depending on the field of study, the phrase 
“low-resolution”, “medium-resolution” or “high-
resolution” might refer to pictures, digital eleva-
tion models (DEMs), or point clouds, depending 
on the platform and sensors used. In terms of 
geometric resolution, data classified as low-reso-
lution has a size more than 30 m GSD, data clas-
sified as medium-resolution falls between 30 and 
5 m GSD, data classified as high-resolution falls 
between 5 and 1 m GSD, and data classified as 
very high-resolution displays a spatial resolution 
less than 1 m (Backes and Teferle, 2020). Pro-
fessionals have created a number of trustworthy 
classification algorithms that use remote-sensing 
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images for mapping purposes (Nandika et al., 
2023). Regarding the availability of comprehen-
sive results, each algorithm has its advantages 
and disadvantages. It is possible to classify in-
put patterns into hyper-rectangular clusters using 
supervised learning neural networks like fuzzy 
ARTMAP (FAM) (Carpenter et al., 1991). 

This paper presents a comprehensive strategy 
for enhancing the precision of digital maps gener-
ated from medium-resolution satellite images via 
the use of cutting-edge geomatics methods. By 
closing the gap between freely available data and 
the necessary high-quality standards, we want to 
solve the problems related to guaranteeing the cor-
rectness of spatial data collected from free satellite 
images. Digital maps are essential in urban plan-
ning, resource management, and environmental 
monitoring; this study aims to improve their quali-
ty and reliability by integrating GIS with advanced 
image processing and geospatial analysis methods.

MATERIALS AND METHOD

Study area

This research focuses on a small area situated 
inside the municipal limits of Al-Hindiyah. The 
region offers a combination of residential and 
business purposes, and it is defined by its close-
ness to important infrastructure, including urban 
services and local roadways. It may be found 
around the coordinates of 32°32’10” North and 

32°32’40” North and between the longitudes of 
44°15’30” East and 44°16’20” East, as shown 
in Figure 1. Residential neighborhoods and 
commercial areas are forming in the study area, 
which is undergoing urban development as part 
of Hindiyah’s urban expansion. There is a basic 
infrastructure present in the study region, includ-
ing roads, public buildings, schools, and health 
facilities. Its proximity to the city center makes it 
eligible for easy access to public services.

Database

For this investigation, satellite data was 
used. Sentinal-2B image for the year 2024 was 
collected from the USGS (https://earth explorer.
USGS.gov/). Before conducting the geo-special 
analysis, the images were adjusted using radio-
metric calibration and atmospheric correction. 
There are no clouds in the study area, and the 
image has a resolution of 10 meters. In addition, 
ground control points (GCPs) 15 monitoring sta-
tions use the field navigation device for ground 
monitoring. The data used for training accounted 
for 70% of the total, with 30% reserved for test-
ing. The classification process may be reason-
ably balanced with a 70/30 train/test dividing ra-
tio, which is ideal for cross-validation (Al-Saedi 
et al., 2023, Vrigazova, 2021).

Figure 2 shows the locations of the ground 
control stations (GCPs) that were used to cor-
rect the georeference of the study area. The 15 
GPS stations were strategically distributed to 

Figure 1. Location and geography of the study area
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ensure comprehensive coverage of the area, 
which contributes to improving the spatial ref-
erence accuracy of the satellite images. Opti-
mal distribution among the different urban, 
rural, and industrial sectors was achieved by 
carefully selecting the placements of the GPS 
stations. Data used to create the digital maps 
is more accurate because of this distribution, 
which aids in reducing mistakes caused by spa-
tial distortions in the original images.

The accuracy of digital map-making depends 
heavily on the locating technique. As shown in 
Table 1, 15 ground control points (GCPs) were 
used to correct the georeferencing in the present 
study. The coordinates were obtained using very 
accurate GPS equipment with the goal of reduc-
ing positional errors. Reducing the possibility of 
spatial distortions and boosting the reliability of 
the georeferencing procedure, the research area 
was thoroughly covered by strategically placing 
the GPS stations.

Method

Fuzzy ARTMAP

Since its inception in 1992, the fuzzy ART-
MAP (FAM) neural network (NN) has piqued 
the attention of researchers due to its status as a 
fast, accurate, offline, and online pattern classifier 
(Lerner and Guterman, 2008). Typically, while 
establishing the issue and site selection criteria, 
fuzzy logic is used as the typical approach (Al-
Hameedawi, 2022). In image processing, image 

classification techniques are crucial for determin-
ing the location of objects that correspond to a 
given class that is specified in the image (Kadhum 
et al., 2023). In remote sensing, supervised and 
unsupervised classification are the two primary 
approaches. Neural network architectures belong-
ing to the ARTMAP class allow for the random 
presentation of input vectors that cause incremen-
tal supervised learning of recognition classes and 
multidimensional maps (Systems, 1991). Medi-
um- and low-resolution satellite data have a num-
ber of spectral and geographical restrictions that 

Figure 2. GPS stations in the study area

Table 1. Coordinates are recorded for georeference 
fixing

No. GPS Station Easting (m) Northing (m)

1 GPS1 430565 3600918

2 GPS2 430826 3600875

3 GPS3 431064 3600885

4 GPS4 431332 3600844

5 GPS5 431568 3600936

6 GPS6 431636 3600704

7 GPS7 431554 3600548

8 GPS8 431391 3600539

9 GPS9 431211 3600509

10 GPS10 430990 3600515

11 GPS11 430844 3600546

12 GPS12 430641 3600685

13 GPS13 430550 3600813

14 GPS14 431307 3600362

15 GPS15 431498 3600330
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impact the accuracy of LULC categorization, ac-
cording to many studies (Pal and Talukdar, 2020) 
(Yang et al., 2017, Latifovic and Olthof, 2004). 

A streamlined version of the fuzzy ART-
MAP algorithm is implemented using the Terr-
set program, drawing on extensive research 
into fuzzy ARTMAP and the features of re-
mote-sensing data. The direct method of map-
ping, terrestrial mapping (sometimes called a 
field survey), allows for maps to be created at 
multiple sizes using information with varying 
degrees of accuracy; yet, it is a labor-intensive, 
time-and resource-intensive method of map-
ping vast regions (Langat et al., 2021). Fuzzy 
ARTMAP is a simplified way to classify (Lern-
er and Guterman, 2008, Carpenter et al., 1991, 
Matias et al., 2021):

	 𝑇𝑇𝑗𝑗 = ‖𝐼𝐼∧𝑤𝑤𝑗𝑗‖
𝛼𝛼+‖𝑤𝑤𝑗𝑗‖ (1) 

‖𝐼𝐼∧𝑤𝑤𝐽𝐽‖
‖𝐼𝐼‖ ≥ 𝜌𝜌 (2) 

𝑤𝑤𝐽𝐽
new = 𝛽𝛽(𝐼𝐼 ∧ 𝑤𝑤𝐽𝐽

old ) + (1 − 𝛽𝛽)𝑤𝑤𝐽𝐽
old  (3) 

𝑂𝑂𝑂𝑂 = ∑ 𝐷𝐷𝑖𝑖𝑖𝑖
𝑟𝑟
𝑖𝑖=1

𝑁𝑁  (4) 

𝐾𝐾 = 𝑁𝑁 ∑ 𝑋𝑋𝑖𝑖𝑖𝑖
𝑟𝑟
𝑖𝑖=1 −∑ (𝑋𝑋𝑖𝑖+∗ 𝑋𝑋+𝑖𝑖)𝑟𝑟

𝑖𝑖=1
𝑁𝑁2−∑ (𝑋𝑋𝑖𝑖+∗ 𝑋𝑋+𝑖𝑖)𝑟𝑟

𝑖𝑖=1
 (5) 

𝛥𝛥 𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷 = ∣ 𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷 (𝑀𝑀𝑀𝑀𝑀𝑀) − 𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷 (𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹) ∣ (6) 
𝛥𝛥 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 = ∣ 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 (𝑀𝑀𝑀𝑀𝑀𝑀) − 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 (𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹) ∣ (7) 
𝐿𝐿𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒ℎ = ∣𝛥𝛥𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷∣
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∣𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉∣ )  ×  100 (10) 
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where:	 I – is the input (image pixel), wj – is the 
weight of the category j, ˄ – represents 
the fuzzy intersection process (calculat-
ing the minimum between values  I and 
wj). α – a small parameter to avoid di-
vision by zero. This equation is used to 
calculate the similarity score between the 
input (such as a pixel in a satellite image) 
and the stored class weights.
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where:	ρ – a vigilance parameter that determines 
the degree of similarity required. This 
equation checks whether the similarity 
score between the input (pixel) and the 
class is higher than the required threshold.
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	 (3)

where:	β – the learning coefficient, which deter-
mines how much the new input affects the 
weight update. To classify a new image, 
the selection score is calculated for each 
class, and the class with the highest selec-
tion score is selected.

Accuracy assessment 

Accuracy evaluation of fuzzy ARTMAP seg-
ment-based classified maps needs LULC. The 
Confusion Matrix in ArcGIS 10.8 is used to vali-
date the division classification by means of the 
ground truth points (Jasim et al., 2024). For this 
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	 (5)

where:	N – total number of values, r – number 
of rows, Dii – number of total correct 
values, Dij – number of correct values in 
row i, Dij – number of correct values in 
column j, Xii – number of values in row 
i and column i, X+i and Xi+ – the column 
total and row total, respectively.

Validation

1.	Calculate the absolute difference between the 
two values ​​(the difference without a negative 
sign) (Jasim, Al-Saedi, et al., 2024):

	 ∆Distance = |Distance (Map) – Distance (Field)|	 (6)

	 ∆Area = |Area (Map) – Area(Field)|	 (7)
2.	Divide the absolute difference by the true value 
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𝐿𝐿𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒ℎ = ∣𝛥𝛥𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷∣

𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷 (𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹) (8) 

𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 = ∣𝛥𝛥𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴∣
𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 (𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹) (9) 

𝑃𝑃𝑅𝑅𝐸𝐸 = (∣𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉 − 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉∣
∣𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉∣ )  ×  100 (10) 

 
	(10)

where:	PRE – percentage relative error 

Methodology

1.	Data acquisition
	• Download low-resolution satellite imagery 

(such as Landsat or Sentinel).
	• Collect ground reference data (Ground Con-

trol Points - GCPs) to increase the accuracy 
of the results.

2.	Preprocessing
	• Radiometric correction.
	• Geometric correction.
	• Noise reduction using filtering techniques.

3.	Image processing
	• Apply image enhancement techniques such as 

contrast enhancement or radiometric correction.
	• Image classification: Classification can in-

clude either supervising or unsupervising.
	• Layer extraction: Use band analysis to select 

important features.
4.	Data analysis
	• Use spatial analysis tools in ArcGIS.
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	• Analyze spatial and numerical errors.
	• Compare results with reference maps to assess 

accuracy.
5.	Digital map production
	• Generate final digital maps using GIS.
	• Prepare maps for interpretation and evaluation 

(map layout).
6.	Accuracy assessment
	• Calculate the confusion matrix to assess clas-

sification accuracy.
	• Compare results with reference data to deter-

mine the error rate.
7.	 Validation and compare results, as in Figure 3.

RESULTS AND DISCUSSION

Results of Fuzzy ARTMAP

Georeferencing is a fundamental step in the 
production of digital maps. By applying observed 

coordinates, spatial inconsistencies in raw satel-
lite imagery are corrected, improving positional 
accuracy. This process is essential to ensure the 
integration of satellite data with other geographic 
datasets, contributing to spatial consistency in 
future geographic analyses. For this research, 
the supervised classification method was used to 
classify the objects as specified. Image process-
ing supervised classification involves building a 
training area from which the class signature is 
used to generate the classification criteria. 

The classified map, as shown in Figure 4, 
shows the spatial distribution of land cover pat-
terns in the study area, which are classified into 
three main categories: Farmlands, Urban Struc-
ture, and Arid Lands. This map was produced 
using the Fuzzy ARTMAP algorithm, which is 
particularly effective in dealing with complex and 
overlapping spectral data. The findings show that 
the Urban Structure (red areas) is dominant in the 

Figure 3. Methodology based on flowcharts
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northern and central parts of the research area, 
which is consistent with the tendencies of urban 
growth. The southern portion is mainly composed 
of Farmlands, which are green regions, while the 
outlying portions are mostly Arid Lands, which 
are yellow places. An issue with satellite image 
classification is the correct identification of tran-
sition areas between classes; this highlights the 
algorithm’s capability to deal with mixed pixels. 

This technique was able to decrease classifi-
cation errors in regions with substantial spectral 
overlap, in contrast to conventional methods. 
There was an improvement in the separation be-
tween rural and urban regions, which are com-
monly misclassified because of similarities in 
spectral reflectance characteristics within particu-
lar spectral bands, thanks to its capacity to dy-
namically modify the learning rate. These find-
ings highlight the promising future of digital maps 
created from medium-resolution satellite images 
by merging the Fuzzy ARTMAP algorithm with 
advanced geomatics methods.

Classification accuracy evaluation

Table 2 displays the results of the evaluation 
of classification accuracy using the Fuzzy ART-
MAP method. This technique was used to classify 
satellite imagery into three primary classifications: 
Farmlands, Urban Structures, and Arid Lands. The 
overall accuracy and kappa coefficient show that 
this method performs well in the results. There 
was a great deal of agreement between the refer-
ence data and the classification findings since the 
overall accuracy was 89%. A very consistent and 
reliable classification method was shown by the 
computed kappa coefficient of 0.83.

Farmlands: With a 93% class accuracy, the 
system properly classified 28 out of 30 reference 
locations. A few errors occurred, including the 
classification of two points into various catego-
ries. With 25 out of 30 points properly classified, 
the classification accuracy for Urban Structures 
was 83%. There were several minor errors in the 
classification, and there was minimal overlap 

Figure 4. The finalization of the digital map.

Table 2. The outcomes of the accuracy assessment of the classification technique using the Fuzzy ARTMAP algorithm

Classifiers Classes Farmlands Urban structures Arid lands Total Overall
accuracy %

Kappa
coefficient

Fuzzy 
ARTMAP 
algorithm

Farmlands 28 2 2 32

89 0.83

Urban structures 1 25 1 27

Arid lands 1 3 27 31

Total 30 30 30 90

Class accuracy % 93 83 90
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between Farmlands and Arid Lands. The algo-
rithm accurately classified 27 out of 30 points in 
the Arid Lands class, indicating 90% accuracy 
in understanding this classification. There were 
some minor errors, mainly with urban structures.

Farmlands, Urban Structures, and Arid Lands 
are shown in Figure 5 as histograms illustrating 
the distribution of accurate and incorrect classifi-
cations for each class. The visualization provides 
a thorough study of the class-level performance 
of the Fuzzy ARTMAP algorithm. There were 4 
errors in the Farmlands classification, with two 
points classified as Urban Structures and one as 
Arid Lands. Urban Structures had 5 errors, the 
highest number of errors among the classes, in-
dicating the spectral overlap between this class 
and the other two classes. In the Arid Lands 
class, only 3 errors were recorded, highlighting 

the robustness of the algorithm in dealing with 
this class. The issues of spectral similarity across 
classes are reflected in the discrepancy in the 
number of mistakes between them, especially be-
tween Arid Lands and Urban Structures.

Validation 

Distance

Figure 6 shows the finished digital map that 
was created using sophisticated geomatics meth-
ods. This map displays precise measurements of 
distances between key points, highlighting the 
significant improvement in the accuracy of geo-
graphic data compared to traditional maps. The 
map demonstrates the ability of modern tech-
niques, such as geometric displacement correc-
tion and integration with topographic data, to 

Figure 5. Evaluation of the Fuzzy ARTMAP algorithm’s classification accuracy

Figure 6. Distance measurements on the final digital map
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improve location accuracy to within a few meters, 
which is critical for demanding applications such 
as urban planning and natural resource manage-
ment. Distance measurements were used to ana-
lyze the efficiency of the correlation between the 
different elements on the map and to identify fac-
tors that influence the improvement of data qual-
ity. The results showed a high agreement between 
the values ​​actually measured and those calculated 
on the digital map, confirming the effectiveness 
of the methods used to produce the map.

Table 3 shows measurements of three sets of 
points (Pair ID) with the differences between map 
distances and field distances for each pair. The 
data showed slight variation in distances, as the 
difference between distances (Δ Distance) ranged 
from 1.94 m to 3.46 m. At the level of individual 
measurements, the relative errors were low, rang-
ing between 0.41% and 1.04%. This reflects a 
good convergence between digital data and field 
measurements, indicating high accuracy in pro-
ducing digital maps using satellite images. The 
average of the differences between distances was 
calculated, which amounted to 2.41 m. The fact 
that the differences between the map values and 

the field values are so minimal is supported by 
this average. Also, the overall error was 0.73%, 
which means that the geomatics procedures 
helped keep the discrepancies to a minimum. The 
results prove that advanced geomatics methods 
are capable of creating digital maps with excep-
tional detail. Quality procedures, such as spatial 
processing and image analysis, are evident from 
the few discrepancies in the results. Applications, 
including urban planning, infrastructure construc-
tion, and management of natural resources, need 
this kind of study due to the high degree of spatial 
accuracy it provides. Time and effort saved com-
pared to conventional field measurements and im-
proved planning and implementation efficiency 
are both brought about by the capacity to receive 
correct findings from digital maps.

Area

The computed spatial measures in Figure 7 
are based on the final digital map that was cre-
ated by using advanced geomatics methods. The 
data derived from this map is more reliable for 
many applications since it demonstrates substan-
tial increases in spatial accuracy when compared 

Table 3. Evaluation of distance accuracy

Pair ID Location 
description

Distance 
(Map) (m)

Distance 
(field/GPS) (m)

Δ Distance 
(m)

Avg. Δ 
distance (m)

Relative error 
(%)

Overall error 
(%)

1 (P1-P2) 336.65 333.19 3.46

2.41

1.04

0.732 (P3-P4) 449.45 447.62 1.83 0.41

3 (P5-P6) 263.44 265.38 1.94 0.73

Figure 7. The finished digital map’s area measurements
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to conventional maps. The correctness of the map 
was confirmed by comparing the produced spa-
tial measures with reference data. The computed 
values converged closely to the reference values, 
and the error rate was minimal, according to the 
findings. This proves that the approaches used are 
successful in making digital maps more accurate, 
particularly when applied to medium-resolution 
satellite images using advanced correction proce-
dures such as geometric and spectral correction.

Table 4 compares the areas assessed in the 
field using GPS methods to those measured using 
satellite imagery across many geographies. Dis-
played as well are the discrepancies between the 
computed areas, as well as the relative and over-
all errors for these areas. The results show that 
the relative error is often rather modest, which 
is a reflection of how accurate the digital maps 
made from satellite images appear. In region A1, 
for instance, a discrepancy of 14.88 m2 was noted 
between field areas and satellite imagery, with a 
relative error of 0.01%; this demonstrates the su-
perior accuracy of digital map generation.

The researcher’s experience with the area’s 
terrain and climate enables them to choose the 
location of the study because of their familiarity 
with the region’s geographical characteristics. Al-
though this study relied only on data collected by 
GIS and RS methods, the findings were boosted 
by including field data sources that used GPS and 
topographical maps. There was a strong correla-
tion between the statistical outputs and the cap-
tured field reality, which indicated that the analy-
sis was accurate when compared to field data.

Although digital map accuracy has been con-
siderably improved using geomatics strategies, 
there are still certain limits and challenges that 
need to be taken into regard, such as:
1.	Image captured by a satellite: Information 

may be lost in low-resolution images. Clouds 
and spectral distortions are two examples of 
external variables that might impact the ac-
curacy of the analysis.

2.	Not enough field verification: This could gen-
erally result in less exact results.

The use of high-resolution images, field evi-
dence, and the development of advanced algo-
rithms to lessen the probability of errors are all 
suggested responses to these problems.

CONCLUSIONS

The study’s findings confirm the validity of 
geomatics methods for creating accurate maps 
that agree well with collected data. These findings 
provide validity to digital maps and satellite im-
agery as vital resources in a variety of industries, 
and they pave the path for more studies to refine 
and advance these methods. Urban planning, nat-
ural resource management, and the monitoring of 
spatial changes are just a few of the many appli-
cations that benefit greatly from the higher accu-
racy of spatial data made possible by contempo-
rary geomatics technology. These technologies, 
when combined with satellite images, provide the 
groundwork for creating accurate geographic so-
lutions that can fulfill the demands of contempo-
rary spatial analysis. Furthermore, the image em-
phasizes how these strategies effectively decrease 
errors, which boosts trust in judgments that rely 
on geographic data. The confusion matrix was 
used to assess the classification accuracy; the re-
sults indicated a kappa coefficient of 0.83 and an 
overall accuracy of 89%. These results show that 
the Fuzzy ARTMAP algorithm is reliable and can 
withstand difficult situations.
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