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INTRODUCTION 

It is widely acknowledged that remote sens-
ing is an innovative information technology that 
plays a vital role in different fields (Huang et al., 
2024). Remote sensing techniques, as indicated in 
a number of studies, are often used in agriculture 
(Khanal et al., 2020), environmental monitoring 
(Vasiliou & Economides, 2006), urban planning 
(Netzband et al., 2007), mining exploration (Ci-
ampalini et al., 2013), as well as salinity-affected 
soil management (Dehni & Lounis, 2012). Like-
wise, in hydrology, remote sensing turns out to 

be highly important, particularly in rainfall-runoff 
modeling. The application of remote sensing al-
lows converting multiple data collected by remote 
sensors into information that is exploited to better 
understand and predict hydrological flows. In par-
ticular, precipitation data are viewed as the essen-
tial tool that generally affects several disciplines, 
such as water resources management, planning, 
modeling and planning (Duan et al., 2019; Shekar 
et al., 2024; Ur Rahman et al., 2020).

A large number of studies, carried out 
throughout the world, have used remote sensing 
for the purpose of analyzing various hydrological 
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processes. For example, (Yu et al., 2024) con-
ducted a study, in northern China, to develop a 
runoff simulation model using multi-source satel-
lite data. For this, these researchers relied on the 
precipitation data from the precipitation estima-
tion from remotely sensed information using arti-
ficial neural networks – climate data record (PER-
SIANN-CDR), surface temperature data from 
MOD11C1, a product developed by moderate 
resolution imaging spectroradiometer (MODIS), 
the evapotranspiration data, and soil moisture 
data from Global land evaporation amsterdam 
model (GLEAM). Similarly, in South Korea (Cho 
& Kim, 2022) conducted a study in which they ex-
ploited the local data assimilation and prediction 
system (LDAPS) meteorological data, while in-
tegrating precipitation, temperature data, surface 
pressure data, and some surface wind elements, 
with specific humidity and radiation data. Like-
wise, in Egypt (Abdelmoneim et al., 2020) used 
data from the tropical rainfall measuring mission 
(TRMM 3B42V7) and climate hazards group 
infra-red precipitation with station (CHIRPS) 
data satellite precipitation products as inputs to 
establish an appropriate hydrological model. As 
for Darand et al. (2017), they carried out a study 
in Iran with a view to assessing the tropical rain-
fall measuring mission (TRMM) multi-satellite 
precipitation analysis (TMPA) precipitation prod-
ucts. In addition, a particularly interesting study 
was conducted in Ethiopia by (Gebremicael et al., 
2019) with the purpose of analyzing satellite pre-
cipitation data from satellite-based rainfall prod-
ucts CHIRPS, RFEv2 (Rainfall Estimates version 
2), TRMM and PERSIANN. 

It is important to point out that several Alge-
rian researchers have used satellite-based rainfall 
products due to the scarcity of data in some ar-
eas. In this regard, (Lazri et al., 2020) performed 
a study that focused on improving precipitation 
estimation in northern Algeria. The remote sens-
ing data used include multispectral images from 
the spinning enhanced visible and infrared im-
ager (SEVIRI) radiometer as well as satellite pre-
cipitation data obtained from the climate predic-
tion center morphing technique (CMORPH) and 
TRMM 3B42 products. In particular (Bemmous-
sat et al., 2021) benefited from the contribution 
of satellite precipitation for the rainfall-runoff 
hydrological modeling in the region of Ham-
mam Boughrara (Algeria), using precipitation 
data from TRMM 3B43V7 and evapotranspi-
ration data from Global land data assimilation 

system (GLDAS). Moreover, other studies were 
conducted by a number of researchers who used 
precipitation, wind, relative humidity, solar radia-
tion data in the field of hydrogeology (Derdour et 
al., 2022; Inan et al., 2024). Nevertheless, to the 
best of our knowledge, the comparison of multi-
source satellite data in rainfall-runoff modeling 
has not been sufficiently investigated in Algeria, 
which constitutes a good research opportunity for 
those working in this field.

It should be pointed out that, in the study area 
under consideration, we only have observed precipi-
tation and flow data. It turns out that using neural 
networks for rainfall-runoff modeling represents a 
solution to this problem. In this case, only precipi-
tation data are considered as input variable. How-
ever, it should be emphasized that the present work 
aims primarily to optimize the performance of flow 
simulation, while integrating input parameters from 
different satellite data sources, in addition to pre-
cipitation data measured and recorded in situ. These 
parameters were selected based on their relationship 
with the estimation of evapotranspiration.

MATERIALS AND METHODS 

Presentation of the study region 

In this article, the Beni Bahdel watershed was 
chosen and studied (Figure 1). It is located in the 
northwest of Algeria, between longitudes 1°8’ W 
and 1°47’ W, and latitudes 34°33’ N and 34°41’ 
N. The Beni Bahdel watershed covers an area of 
989 Km2 and crosses five rural municipalities, i.e. 
Ain Ghoraba, Beni Bahdel, Beni Snous, Azail 
and Sebdou, where the main activity is agricul-
ture. In the year 1930, the Beni Bahdel concrete 
dam, with a capacity of 63 million m3, was built 
at the outlet of the watershed where the two main 
Wadis, namely Wadi Khemis and Wadi Sebdou, 
meet. It should be noted that the climate in this re-
gion is semi-arid. This area is characterized by a 
mountainous relief, with a predominance of karst 
geological formations. This favors the infiltration 
of precipitation (Bouguerra & Mansour, 2023).

Data used

Observed data

The observed data, which were used in this 
study, include information on daily precipita-
tion (mm), and daily runoff (mm), from January 
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1, 2007 to December 31, 2015. These data were 
provided by the National Agency for Hydrau-
lic Resources (ANRH – Agence Nationale des 
Ressources Hydrauliques). In addition, the 
arithmetic means from the three rainfall sta-
tions, i.e. Khemis, Beni Bahdel and Sebdou 
stations, as well as the sum of the runoffs from 
the hydrometric stations, i.e. Wadi Khemis and 
Wadi Sebdou, were used for the rainfall-runoff 
modeling (Figure 1).

Satellite data 

It is worth emphasizing that several satellite data 
were used as input parameters in the model, along 
with precipitation data, for the purpose of optimizing 
the performance of the flow simulation. These data 
include information on evapotranspiration, mean, 
maximum, and minimum temperature, radiation, 
wind speed, and humidity. All these data were down-
loaded for free from the Climate Engine, POWER, 
and Giovanni websites. These sites provide weather 
and climate data from the following sources:
 • National Oceanic and Atmospheric Administra-

tion Climate Prediction Center (NOAA CPC)
 • European Reanalysis Analysis 5th Genera-

tion (ERA5)
 • European Reanalysis Analysis 5th Generation 

Agroclimatology (ERA5_AG)
 • European Reanalysis Analysis 5th Generation 

land (ERA5 Land)
 • Global Land Data Assimilation System 

(GLDAS).
 • Modern-Era Retrospective analysis for Re-

search and Applications, Version 2 (MERRA2)

 • Climate Forecast System Reanalysis (CFSR) 
produced by National Centers for Environ-
mental Prediction (NCEP); this system is 
managed by NOAA.

Hydrological modeling

Long-short term memory 

Long short-term memory (LSTM) is a type of 
recurrent neural network (RNN) that was initially 
designed by (Hochreiter & Schmidhuber, 1997) 
and was then developed by many other research-
ers over time. It has been revealed that these neu-
ral networks can be used in modeling the depen-
dencies of long time series data with high accura-
cy (Mao et al., 2021). In addition, LSTM can also 
be adopted for rainfall-runoff prediction because 
this approach represents a major advance to vari-
ous fundamental problems in the hydrological do-
main (Hashemi et al., 2022). In this regard, many 
studies have been carried out by (Cho & Kim, 
2022; Lees et al., 2021; Sabzipour et al., 2023) 
with the aim of comparing the performances of 
LSTM networks and classical hydrological mod-
els in the simulation of flows. The results proved 
that neural predictions are more efficient.

These positive results regarding neural net-
works motivated our choice to adopt the deep 
learning (DP) technique in our investigation. 
With regard to modeling, it was deemed interest-
ing to use LSTMs as a black box, while respect-
ing the following tasks:

Provide the model with the necessary input 
data such as the observed precipitation and other 

Figure 1. The study area map
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complementary parameters from satellite sources. 
In addition, observed flow data were introduced 
to allow the model to train and evaluate the per-
formance of the output flows for future periods.

Segment the study period into two phases. 
The first phase (2007–2013) for training and the 
second (2014–2015) for testing.Assign random 
values   to the training parameters of the LSTM 
model. This operation is then repeated, while 
performing several tests, in order to improve 
the performance.

The LSTM optimization function

The performance of flow simulation mainly 
depends on the input data used. However, it can 
also be influenced by the optimization function 
of the LSTM model. This optimization function 
contains several hyperparameters whose values 
can impact the modeling performance. Before 
running the LSTM algorithm, it is essential to 
tune the values of all hyperparameters by testing 
several combinations because this allows obtain-
ing the best possible performance in a reasonable 
time. This process is called hyperparameter opti-
mization (Wu et al., 2019).

The hyperparameter optimization process can 
be approached using two different methods, i.e. a 
manual method or an automatic method. The manu-
al approach has been adopted in this work. It is use-
ful to know that this method is difficult to handle 
due to the number of parameters to be optimized and 
also to their value interval (Wu et al., 2019). Thus, 
to make the tuning of hyperparameters easier, it is 
highly recommended to set typical starting values 
(Table 1) in order to train and evaluate the model.

A large number of research studies have 
shown that the number of epochs is one of the 
most important parameters. According to (Greff 
et al., 2016), this parameter accounts for up to 
two-thirds of the overall performance. For this 
reason, special attention has been paid to this pa-
rameter during the optimization step.

Modeling steps 

Figure 2 presents the modeling steps that are 
given below:
 • Introduce the in situ measured data, namely 

precipitation and runoff. Precipitation should be 
used as input data for the LSTM model, while 
runoff is used for training the model and evalu-
ating the performance of simulated runoffs.

 • Choose the input data complementary to pre-
cipitation. These data are divided into five 
groups, and each group can contain one or 
more parameters. The data for these param-
eters come from several satellite sources.

 • Introduce the initial hyperparameters.
 • Run the LSTM model.
 • Evaluate the performance using the NSE and 

R² indices.
 • Tune the hyperparameters by testing several 

possible combinations, and then stop when the 
best values of R² and NSE are obtained.

 • The hyperparameters that give the optimal 
performance are then used as initial hyperpa-
rameters for the next modeling group.

 • Compare and interpret NSE and R² values.

Evaluation of hydrological modeling 
performance

Nash-Sutcliffe efficiency 

The Nash-Sutcliffe efficiency (NSE) is a sys-
tem of measurement that is widely used by re-
searchers to assess the accuracy of models in flow 
simulation. It was first introduced by Nash and 
Sutcliffe in 1970 (Nash & Sutcliffe, 1970). It var-
ies from minus infinity to 1. The value 1 indicates 
a perfect match between the observed and simu-
lated values. The NSE can be calculated using the 
following formula:

  (1)

where: is the daily observed runoff, 
is the daily simulated runoff, the av-
erage of observed runoff, and N the num-
ber of observations.

Furthermore, the NSE performance ranges 
are presented as follows (Ritter & Muñoz-Carpe-
na,2013): for NSE ≥ 0.90, the model is excellent; 
for 0.80 < NSE < 0.90, the model is very satisfac-
tory; for 0.60 < NSE < 0.80, the model is satisfac-
tory; for NSE < 0.60: the model is poor. 

Table 1. Typical parameters of LSTM (Ravindra, 2018)
Parameters Typical starting values

Max epochs 250

Num hidden units 200

Gradient threshold 1

Initial learn rate 0.005

Learn rate drop factor 0.2

Learn rate drop period 125
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Coefficient of determination

The coefficient of linear determination (R2) is 
a qualitative indicator of a simple linear regres-
sion. It is commonly used in statistical studies; 
it allows evaluating the correlation between ob-
served and simulated data (Renaud & Victoria-
Feser, 2010). This coefficient can be calculated 
by means of the following formula:

  (2)

where: is the average of simulated runoff.

It is worth pointing out that R2 varies from 0 
to 1. The fit is considered perfect for R2 values   
equal to 1, and values   greater than 0.5 are gen-
erally accepted (Santhi et al., 2001; Van Liew et 
al., 2003). With regard to the performance ranges 
of the R² coefficient, it was decided to adopt the 
same thresholds as for the NSE.

RESULTS AND DISCUSSIONS 

Study of the linear correlation between 
rainfall and measured runoff

The graph depicted in Figure 3 shows a sig-
nificant dispersion of points around the regression 

line, with a coefficient of determination almost 
equal to zero (R2 = 0.08), which indicates a non-
linearity between precipitation and measured 
runoff. These observations confirm that the re-
lationship between these two variables is much 
more complex, which requires the use of a more 
sophisticated model that can be utilized to find a 
solution to this problem. 

Study of the correlation between rainfall and 
measured runoff using the LSTM model

Analysis of the linear correlation between pre-
cipitation and runoff gave rather poor results. It 
was therefore deemed necessary to test the prob-
able existence of a relationship with LSTM while 
considering only rainfall as input data. Conse-
quently, very good results were obtained for both 
the training and test periods (training period: R2 
= 0.92 and NSE = 0.9; test period: R2 = 0.82 and 
NSE = 0.79). The graphical results of the test pe-
riod, which obviously are the most interesting, are 
presented below. Thus, (Figure 4) clearly shows 
that the points are grouped around the regres-
sion line, which confirms the existence of a sig-
nificant correlation. No apparent shift is observed 
when the two curves depicted in Figure 5 are su-
perimposed, which indicates a good fit between 
the observed and simulated data. These results 

Figure 2. Modeling steps
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confirm that it is more advantageous to use neural 
networks than classical models which include at 
least evapotranspiration, in addition to rainfall as 
input data, and sometimes even other parameters, 
such as pedology, land cover, slope, and others. 
The development and adoption of deep learning 
(DL) is highly beneficial for hydrological model-
ing as it helps to detect the non-linear relationship 

between different variables, using only a limited 
number of data (Yu et al., 2024)

Rainfall-runoff modeling

The modeling, in which only precipitation 
was used as input, gave quite satisfactory results. 
However, these results were further improved 

Figure 3. Linear correlation between precipitation and measured runoff, during the period between 2007 and 2015)

Figure 4. Linear regression between measured and simulated runoff, using the LSTM model, 
for the test period between 2014 and 2015

Figure 5. Observed daily runoff and simulated runoff, using only measured rainfall 
and observed runoff as inputs in the LSTM model
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by adding other parameters (Table 2). It should 
also be noted that the performances are gener-
ally good, for training and prediction, with NSE 
values ranging from satisfactory to excellent, and 
R² values generally quite high. With regard to in-
terpretation of the results obtained, it was agreed 
to focus mainly on the prediction ones which are 
considered essential for the evaluation, compari-
son and ranking of the models. These outcomes 
allow a better understanding of the effectiveness 
of the different models tested.

Interpretation of modeling results by input group

The main purpose of this section is to evaluate 
the performance of each dataset in order to analyze 
and compare the quality of modeling using input 
parameters from different satellite data sources.
 • Evapotranspiration – the impact of different 

evapotranspiration data sources on rainfall-
runoff modeling reveals variations in per-
formance, with very satisfactory results ob-
tained data from NOAA CPC and MERRA-2 

systems. On the other hand, the results ob-
tained from the ERA5-Land satellite are the 
weakest in comparison with the other sources. 
The high performances from NOAA CPC and 
MERRA-2 are certainly due to the quality 
and accuracy of the data that these satellites 
provide. Observations from both systems and 
ground stations are also integrated (Okirya et 
al., 2024; Yakubailik et al., 2020; Chaudhari et 
al., 2004). The method adopted here allows to 
better estimate the variations of evapotranspi-
ration (Núñez et al., 2021; Olioso et al., 2022).
It is noteworthy that evapotranspiration is a 
crucial factor in a region like northwestern Al-
geria where climatic conditions vary consider-
ably due to the proximity to the Mediterranean 
Sea and the Atlas Mountains (Born & Bachner, 
2003; Meddi, 2015). In addition, the NOAA 
CPC and MERRA-2 data are distinguished by 
their high spatial and temporal resolution, their 
advanced data assimilation techniques (Khat-
ibi & Krauter, 2021), and their adaptability to 
the specific conditions of regions with sparse 

Table 2. Performance results and training parameters, using different satellite data

Group Parameters Satellite sources
Training Prediction

NSE R2 NSE R2

1 Evapotranspiration

NOAA CPC 0.92 0.94 0.84 0.85

ERA5_AG 0.91 0.93 0.81 0.87

GLDAS 0.88 0.89 0.73 0.78

MERRA2 0.92 0.92 0.87 0.89

CFSR 0.91 0.93 0.76 0.78

ERA5 0.88 0.89 0.79 0.79

ERA5 LAND 0.79 0.82 0.76 0.76

2 Temperature

ERA5_AG 0.95 0.96 0.91 0.91

MERRA2 0.95 0.96 0.86 0.86

CFSR 0.80 0.81 0.61 0.61

ERA5 0.89 0.91 0.92 0.93

ERA5 LAND 0.89 0.90 0.82 0.82

3 Radiation, wind speed, 
humidity

MERRA2 0.79 0.81 0.75 0.79

CFSR 0.96 0.98 0.81 0.83

4 Radiation

GLDAS 0.91 0.93 0.78 0.87

MERRA2 0.76 0.78 0.77 0.78

CFSR 0.89 0.91 0.82 0.83

5 Temperature min-max

NOAA CPC 0.84 0.87 0.71 0.86

ERA5_AG 0.92 0.94 0.84 0.89

MERRA2 0.90 0.91 0.88 0.90

CFSR 0.83 0.86 0.75 0.75

ERA5 0.90 0.91 0.88 0.89

ERA5 LAND 0.93 0.95 0.92 0.93
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monitoring network, such as northwestern 
Algeria (El & Kerroumi, 2022; White et al., 
2008)where the climatic conditions are quite 
complex and can vary significantly. Such an 
approach allows providing more accurate and 
reliable evapotranspiration estimates.

 • Temperature – as concerns temperatures, the 
ERA5_AG data evidently achieve an excellent 
performance level. The very good outcomes 
are obviously attributed to the high resolution 
of this data source, the quality of reanalyses, 
the combination of multiple data sources, the 
long-term consistency of this source, its adapt-
ability to various regions, as well as the con-
tinuous updates that ensure the accuracy and 
relevance of temperature data (Kassem et al., 
2024). In compliance with these results, Ma 
et al. (2008) also found out that data from the 
global reanalysis dataset ERA-40 provided an 
excellent match with the temperature mea-
surements that were recorded in China, al-
though ERA-40 is a rather old version. These 
findings then suggest that the global weather 
dataset ERA5_AG is the most reliable data 
source because it offers better robustness and 
precision for temperatures compared to other 
sources. These findings corroborate the excel-
lent NSE and R² results obtained.

 • Min-max temperature – the minimum and 
maximum temperatures from the reanalysis 
dataset ERA5-Land allowed achieving an 
optimal flow simulation performance, which 
means that using min-max temperature data 
from the ERA5-Land source leads to superi-
or performances compared to those obtained 
from the other data sources. The good results 
obtained are due to several reasons. First, the 
ERA5-Land source which offers a precise spa-
tial resolution of 9 km (Arsenault et al., 2020) 
is particularly advantageous for detecting lo-
cal climatic variations. These variations are 
crucial in a semi-arid region like northwestern 
Algeria where microclimatic variations are 
important due to the diversity of terrain and 
vegetation, and surface characteristics. In-
deed, according to (Aimé & Remaoun, 1988), 
these circumstances can change rapidly over 
short distances. Next, the climate data pro-
vided by ERA5-Land are regularly updated 
and adjusted from multiple observations, 
which ensures greater reliability of extreme 
temperatures that are highly important in 

semi-arid environments where they can have 
a significant impact (Levesque, 2022). In ad-
dition, ERA5-Land adapts mainly to semi-arid 
regions where temperature directly affects hy-
drological processes, which helps to achieve 
more accurate runoff modeling. Finally, the 
extended temporal coverage and data consis-
tency provided by ERA5-Land facilitate more 
efficient calibration of LSTM models (Muñoz-
Sabater et al., 2021), which allows for more 
accurate simulations. All these observations 
lead to the conclusion that ERA5-Land out-
performs other data sources. 

 • Radiation – the solar radiation results ob-
tained from the CFSR reanalysis product 
show slightly better performance than other 
sources. The Nash and R² values obtained   
suggest that the model used simulates the flow 
with a fairly high accuracy using the CFSR 
radiation data. Moreover, the achieved per-
formance was found quite consistent with the 
findings of (Khaled et al., 2014) who evalu-
ated the accuracy of CFSR solar radiation data 
and compared it with that of the ground-based 
measurements made in the MENA region. The 
study found that CFSR data generally show 
good agreement with ground-based observa-
tions, especially in the regions of Egypt and 
Northwest Africa where the normalized mean 
bias coefficients were low and the correlation 
coefficients high, reaching the value of 0.982.

 • Radiation, wind speed, humidity – the results 
of the modeling integrating radiation, wind 
speed and humidity, show that CFSR out-
performs MERRA2 as input data source in 
the LSTM model. This is due to several fac-
tors. First, the spatial and temporal resolution 
of CFSR is slightly more precise than that of 
MERRA. Indeed, CFSR has a resolution of 
0.5° x 0.5° (Saha et al., 2010), while MERRA-2 
has a slightly lower resolution, namely 0.5° x 
0.625° (Khatibi & Krauter, 2021). It should be 
emphasized that this accuracy is particularly 
important in regions, such as northwestern Al-
geria, where specific climatic conditions can 
have a significant impact on the results (Irvem 
& Ozbuldu, 2018; Khaled et al., 2014).

Furthermore, the diversity of data types in-
tegrated in CFSR is remarkable, including direct 
measurements of wind speed and humidity, from 
various sources, such as ocean buoys, weather 
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stations and aircraft (Essou et al., 2016; Saha et 
al., 2010). This multitude of data sources pro-
motes a more robust modeling of dynamic param-
eters, unlike MERRA-2 which could have a data 
weighting and assimilation less adapted to these 
specific parameters (McClean et al., 2023).

Global interpretation by comparison of the results 
of the modeling of the different input parameters 
in the LSTM model from various satellite sources

The results obtained with the LSTM model, 
with the integration of different input parameters 
from various satellite data sources, exhibit a vari-
ability that affects the flow simulation perfor-
mance. Indeed, a difference of 0.31 was recorded 
for NSE and 0.32 for R², between the temperature 
data from the CSFR (NSE = 0.61 and R² = 0.61) 
and the maximum and minimum temperature data 
from ERA5-Land and ERA5 (NSE =0.92 and R² 
= 0.93), which represents a very significant gap. 
In addition, the performances of the minimum 
and maximum temperatures from the ERA5-
Land source and those of the temperature data 
from the ERA5 source are ranked equal, for the 
considered validation periods. However, when 

the training phase is integrated into the evalua-
tion, the ERA5-Land dataset stands out with an 
excellent performance. It was indeed found that 
the Nash coefficient was equal to 0.93 and R² 
equal to 0.95 in the training phase, while the Nash 
coefficient was equal to 0.92 and R² to 0.93 in the 
validation period. Furthermore, (Figure 6) clearly 
shows that, for the test period, the data points are 
tightly clustered around the regression line, con-
firming an almost perfect correlation between the 
observed and simulated data. 

It should also be noted that the superposition of 
the two curves (Figure 7) shows that there is almost 
no mismatch between them, proving the strong fit 
between the observed and simulated results.

The excellent performance obtained with 
ERA5-Land data can be explained as follows. It is 
observed that minimum and maximum tempera-
tures have a direct impact on several hydrologi-
cal processes, such as snowmelt, evaporation and 
evapotranspiration, which significantly affect the 
river runoff (Wang et al., 2020). In addition, these 
temperatures reveal a wide range of climatic con-
ditions, which allows the model to better detect and 
predict watershed responses in extreme situations. 

Figure 6. Linear regression between measured and simulated runoff, using the ERA5-Land dataset, 
for the test period from 2014 to 2015

Figure 7. Observed and simulated daily runoffs, using the ERA5-Land dataset
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This should increase and improve the accuracy of 
forecasts (Zhang et al., 2023). Likewise, the inte-
gration of minimum and maximum temperatures 
from remote sensing allows the LSTM model to 
better understand the complex dynamics of runoff 
in watersheds, hence maximizing its performance 
(Wang et al., 2024). In the same context, (Boul-
maiz et al., 2020) have also consistently found 
that using these temperature data as inputs to the 
LSTM model contributes to significantly improv-
ing the modeling of the rainfall-runoff relation-
ship. Furthermore, these temperature data are gen-
erally considered more reliable and less subject 
to measurement or estimation errors compared to 
other parameters, such as evapotranspiration or ra-
diation (Yilmaz, 2023).

CONCLUSIONS

When satellite data as well as rainfall and run-
off are used, the model shows generally good per-
formance for training and prediction, with NSE 
and R² values ranging from satisfactory to excel-
lent. The findings indicate that the temperature 
parameter presents the best performance, which 
corroborates its significant influence on evapo-
transpiration, a key factor in the water balance. 
In addition, the minimum and maximum tem-
peratures from the ERA5-Land source showed 
excellent performance during the calibration and 
validation periods. They seem particularly well 
suited to capture the hydrological dynamics in 
our study area, outperforming all other param-
eters, such as evapotranspiration, mean tempera-
ture, radiation, as well as the combination of radi-
ation, wind speed, and humidity, whose impact is 
more moderate. Based on these findings, it can be 
concluded that minimum and maximum temper-
atures are the most influential input parameters, 
and that the ERA5-Land data source is particu-
larly effective for optimizing rainfall-runoff mod-
eling with the LSTM model. However, it should 
be noted that the runoff simulation performance 
varies in accordance with the satellite data source 
used, because the choice of sources is highly cru-
cial in modeling optimization. Moreover, a sig-
nificant gap of nearly 0.30 was observed between 
the CSFR and ERA5-Land sources. The results 
of the present study highlight the effectiveness 
of satellite data in the LSTM model. They also 
emphasize the importance of correctly choos-
ing the input data for rainfall-runoff modeling 

with recurrent neural networks. In the future, it 
would be interesting to explore other data sources 
to further improve the accuracy of hydrological 
forecasts in various contexts.

REFERENCES

1. Abdelmoneim, H., Soliman, M.R., Moghazy, H.M. 
2020. Evaluation of TRMM 3B42V7 and CHIRPS 
Satellite Precipitation Products as an Input for Hy-
drological Model over Eastern Nile Basin. Earth 
Systems and Environment 4(4), 685–698. https://
doi.org/10.1007/s41748-020-00185-3 

2. Aimé, S., Remaoun, K. 1988. Climatic variability 
and steppisation in the Tafna basin (western Oranie) 
(in french). Méditerranée 63(1), 43–51. https://doi.
org/10.3406/medit.1988.2528

3. Arsenault, R., Brissette, F., Martel, J.L., Troin, 
M., Lévesque, G., Davidson-Chaput, J., Gonzalez, 
M.C., Ameli, A., Poulin, A. 2020. A comprehen-
sive, multisource database for hydrometeorologi-
cal modeling of 14,425 North American watersheds. 
Scientific Data 7(1), 1–12. https://doi.org/10.1038/
s41597-020-00583-2

4. Bemmoussat, A., Korichi, K., Baahmed, D., Maref, 
N., Djoukbala, O., Kalantari, Z., Bateni, S.M. 2021. 
Contribution of Satellite-Based Precipitation in Hy-
drological Rainfall–Runoff Modeling: Case Study 
of the Hammam Boughrara Region in Algeria. Earth 
Systems and Environment 5(4), 873–881. https://
doi.org/10.1007/s41748-021-00256-z

5. Born, K., Bachner, S. 2003. Cyclogenesis and 
severe weather in the vicinity of the Atlas Moun-
tains: studies using a nonhydrostatic mesoscale 
atmospheric model, in: EGS-AGU-EUG Joint As-
sembly. p. 11689. https://ui.adsabs.harvard.edu/
abs/2003EAEJA....11689B/abstract

6. Bouguerra, S.A., Mansour, B. 2023. Rainfall-flow 
modeling using a global conceptual model: Case of 
the beni bahdel watershed (northwest of algeria). 
Journal of Water Management Modeling. https://
doi.org/10.14796/JWMM.C500

7. Boulmaiz, T., Guermoui, M., Boutaghane, H. 2020. 
Impact of training data size on the LSTM perfor-
mances for rainfall–runoff modeling. Modeling 
Earth Systems and Environment 6(4), 2153–2164. 
https://doi.org/10.1007/s40808-020-00830-w

8. Chaudhari, K.N., Sarkar, C., Patel, N.K., Parihar, 
J.S. 2006. an Inter-Comparison of Satellite Based 
Noaa Cpc Rainfall Estimates and Gauge Observa-
tions Over Selected Stations in India. Proc of ISPRS 
symposium on Geospatial databases for Sustain-
able Development 27–30. https://www.isprs.org/
proceedings/xxxvi/part4/RS-A-3.pdf



417

Ecological Engineering & Environmental Technology 2025, 26(2), 407–419

9. Cho, K., Kim, Y. 2022. Improving streamflow pre-
diction in the WRF-Hydro model with LSTM net-
works. Journal of Hydrology 605, 127297. https://
doi.org/10.1016/j.jhydrol.2021.127297

10. Ciampalini, A., Garfagnoli, F., Del Ventisette, C., 
Moretti, S. 2013. Potential Use of Remote Sens-
ing Techniques for Exploration of Iron Deposits in 
Western Sahara and Southwest of Algeria. Natural 
Resources Research 22(3), 179–190. https://doi.
org/10.1007/s11053-013-9209-5

11. Darand, M., Amanollahi, J., Zandkarimi, S. 2017. 
Evaluation of the performance of TRMM Multi-
satellite Precipitation Analysis (TMPA) estimation 
over Iran. Atmospheric Research 190, 121–127. 
https://doi.org/10.1016/j.atmosres.2017.02.011

12. Dehni, A., Lounis, M. 2012. Remote sensing tech-
niques for salt affected soil mapping: Applica-
tion to the Oran region of Algeria. Procedia En-
gineering 33, 188–198.https://doi.org/10.1016/j.
proeng.2012.01.1193

13. Derdour, A., Benkaddour, Y., Bendahou, B. 2022. 
Application of remote sensing and GIS to assess 
groundwater potential in the transboundary water-
shed of the Chott-El-Gharbi (Algerian–Moroccan 
border). Applied Water Science 12(6), 136. https://
doi.org/10.1007/s13201-022-01663-x

14. Duan, Z., Tuo, Y., Liu, J., Gao, H., Song, X., Zhang, 
Z., Yang, L., Mekonnen, D.F. 2019. Hydrological 
evaluation of open-access precipitation and air tem-
perature datasets using SWAT in a poorly gauged ba-
sin in Ethiopia. Journal of Hydrology 569, 612–626. 
https://doi.org/10.1016/j.jhydrol.2018.12.026

15. El, N., Kerroumi, I. 2022. Study of the interan-
nual variability of temperature and precipitation 
in the high plateaus (in french) 6, 65–77. https://
onm-blog.meteo.dz/wp-content/uploads/2024/08/
Article_Kerroumi_2.pdf

16. Essou, G.R.C., Sabarly, F., Lucas-Picher, P., Bris-
sette, F., Poulin, A. 2016. Can precipitation and 
temperature from meteorological reanalyses be used 
for hydrological modeling? Journal of Hydrometeo-
rology 17(7), 1929–1950. https://doi.org/10.1175/
JHM-D-15-0138.1

17. Gebremicael, T.G., Mohamed, Y.A., Zaag, P. van 
der, Gebremedhin, A., Gebremeskel, G., Yazew, 
E., Kifle, M. 2019. Evaluation of multiple satellite 
rainfall products over the rugged topography of 
the Tekeze-Atbara basin in Ethiopia. International 
Journal of Remote Sensing 40(11), 4326–4345. 
https://doi.org/10.1080/01431161.2018.1562585

18. Greff, K., Srivastava, R.K., Koutník, J., Steunebrink, 
B.R., Schmidhuber, J. 2016. LSTM: A search space 
odyssey. IEEE transactions on neural networks and 
learning systems 28(10), 2222–2232. https://doi.
org/10.48550/arXiv.1503.04069

19. Hashemi, R., Brigode, P., Garambois, P.A., Javelle, 

P. 2022. How can we benefit from regime informa-
tion to make more effective use of long short-term 
memory (LSTM) runoff models? Hydrology and 
Earth System Sciences 26(22), 5793–5816. https://
doi.org/10.5194/hess-26-5793-2022

20. Hochreiter, S., Schmidhuber, J. 1997. Long 
Short-Term Memory. Pakistan Journal of Zool-
ogy 9(8), 1735–1780. https://doi.org/10.1162/
neco.1997.9.8.1735

21. Huang, X., Lu, K., Wang, S., Lu, J., Li, X., Zhang, R. 
2024. Understanding remote sensing imagery like 
reading a text document: What can remote sensing 
image captioning offer? International Journal of Ap-
plied Earth Observation and Geoinformation 131, 
103939. https://doi.org/10.1016/j.jag.2024.103939

22. Inan, C.A., Maoui, A., Lucas, Y., Duplay, J. 2024. 
Multi-Station Hydrological Modelling to Assess 
Groundwater Recharge of a Vast Semi-Arid Ba-
sin Considering the Problem of Lack of Data: A 
Case Study in Seybouse Basin, Algeria. Water 
(Switzerland) 16(1), 160. https://doi.org/10.3390/
w16010160

23. Irvem, A., Ozbuldu, M. 2018. Accuracy of satellite-
based solar data to estimate solar energy potential 
for Hatay province, Turkey. Bitlis Eren Üniversi-
tesi Fen Bilimleri Dergisi 7(2), 361–369. https://doi.
org/10.17798/bitlisfen.428757

24. Kassem, Y., Camur, H., Preala, T.A. 2024. Assess-
ment of Wind Energy Potential for achieving Sus-
tainable Development Goal 7 in the Rural Region of 
Jeje, Nigeria. Engineering, Technology & Applied 
Science Research 14(4), 14977–14987. https://doi.
org/10.48084/etasr.7311

25. Khaled, W., Authority, E.M., Afandi, G.S. El. 
2014. Evaluation of Ncep / Cfsr Solar Data Against 
Ground Observation Over MENA. Open Journal of 
Atmospheric and Climate Change 1, 1–12.  https://
doi.org/10.15764/ACC.2014.02001

26. Khanal, S., Kushal, K.C., Fulton, J.P., Shearer, S., 
Ozkan, E. 2020. Remote sensing in agriculture—ac-
complishments, limitations, and opportunities. Re-
mote Sensing 12(22), 1–29. https://doi.org/10.3390/
rs12223783

27. Khatibi, A., Krauter, S. 2021. Validation and perfor-
mance of satellite meteorological dataset merra-2 
for solar and wind applications. Energies 14(4), 882. 
https://doi.org/10.3390/en14040882

28. Lazri, M., Labadi, K., Brucker, J.M., Ameur, S. 
2020. Improving satellite rainfall estimation from 
MSG data in Northern Algeria by using a multi-clas-
sifier model based on machine learning. Journal of 
Hydrology 584, 124705. https://doi.org/10.1016/j.
jhydrol.2020.124705

29. Lees, T., Buechel, M., Anderson, B., Slater, L., 
Reece, S., Coxon, G., Dadson, S.J. 2021. Bench-
marking data-driven rainfall-runoff models in Great 



418

Ecological Engineering & Environmental Technology 2025, 26(2), 407–419

Britain: A comparison of long short-term memory 
(LSTM)-based models with four lumped concep-
tual models. Hydrology and Earth System Sci-
ences 25(10), 5517–5534. https://doi.org/10.5194/
hess-25-5517-2021

30. Levesque, G. 2022. Evaluation of the use of ERA5 
and ERA5-Land reanalysis data for evapotranspira-
tion modelling (in french). Doctoral dissertation, 
École de technologie supérieure. https://espace.
etsmtl.ca/id/eprint/3085

31. Ma, L., Zhang, T., Li, Q., Frauenfeld, O.W., Qin, D. 
2008. Evaluation of ERA-40, NCEP-1, and NCEP-
2 reanalysis air temperatures with ground-based 
measurements in China. Journal of Geophysical 
Research Atmospheres 113, D15115. https://doi.
org/10.1029/2007JD009549

32. Mao, G., Wang, M., Liu, J., Wang, Z., Wang, K., 
Meng, Y., Zhong, R., Wang, H., Li, Y. 2021. Com-
prehensive comparison of artificial neural net-
works and long short-term memory networks for 
rainfall-runoff simulation. Physics and Chemistry 
of the Earth 123, 103026. https://doi.org/10.1016/j.
pce.2021.103026

33. McClean, F., Dawson, R., Kilsby, C. 2023. Inter-
comparison of global reanalysis precipitation for 
flood risk modelling. Hydrology and Earth System 
Sciences 27(2), 331–347.  https://doi.org/10.5194/
hess-27-331-2023

34. Meddi, H. 2015. Variability of annual rainfall 
in north-western Algeria (in french). Science et 
changements planétaires/Sécheresse 20(1), 57–65. 
https://doi.org/10.1684/sec.2009.0169

35. Muñoz-Sabater, J., Dutra, E., Agustí-Panareda, 
A., Albergel, C., Arduini, G., Balsamo, G., Bous-
setta, S., Choulga, M., Harrigan, S., Hersbach, H., 
Martens, B., Miralles, D.G., Piles, M., Rodríguez-
Fernández, N.J., Zsoter, E., Buontempo, C., Thé-
paut, J.N. 2021. ERA5-Land: A state-of-the-art 
global reanalysis dataset for land applications. Earth 
System Science Data 13(9), 4349–4383. https://doi.
org/10.5194/essd-13-4349-2021

36. Nash, J.E., Sutcliffe, J. V. 1970. River Flow Forecast-
ing Through Conceptual Models - Part I - A Discus-
sion of Principles. Journal of Hydrology 10, 282–290. 
https://doi.org/10.1016/0022-1694(70)90255-6

37. Netzband, M., Stefanov, W.L., Redman, C. 2007. Ap-
plied remote sensing for urban planning, governance 
and sustainability. Springer Science & Business Me-
dia.https://doi.org/10.1007/978-3-540-68009-3

38. Núñez, P.Á., Silva, B., Schulz, M., Rollenbeck, R., 
Bendix, J. 2021. Evapotranspiration estimates for 
two tropical mountain forest using high spatial reso-
lution satellite data. International Journal of Remote 
Sensing 42(8), 2940–2962. https://doi.org/10.1080/
01431161.2020.1864058

39. Okirya, M., Du Plessis, J. 2024. Trend and Variability 

Analysis of Annual Maximum Rainfall Using Ob-
served and Remotely Sensed Data in the Tropical 
Climate Zones of Uganda. Sustainability 16, 6081. 
https://doi.org/10.3390/su16146081

40. Olioso, A., Jacob, F., Olioso, A., Jacob, F., De, 
E., Olioso, A. 2002. Estimation of evapotrans-
piration from remote sensing measurements (in 
french). la houille blanche 88(1), 62–67. https://
doi.org/10.1051/lhb/2002008

41. Ravindra, B. 2018. Forecasting solar radiation 
during dust storms using deep learning. arXiv pre-
print arXiv:1808.10854. https://doi.org/10.48550/
arXiv.1808.10854

42. Renaud, O., Victoria-Feser, M.P. 2010. A robust 
coefficient of determination for regression. Journal 
of Statistical Planning and Inference 140(7), 1852–
1862. https://doi.org/10.1016/j.jspi.2010.01.008

43. Ritter, A., Muñoz-Carpena, R .2013. Performance 
evaluation of hydrological models: Statistical sig-
nificance for reducing subjectivity in goodness-of-
fit assessments. Journal of Hydrology 480, 33-45. 
https://doi.org/10.1016/j.jhydrol.2012.12.004

44. Sabzipour, B., Arsenault, R., Troin, M., Martel, J.L., 
Brissette, F., Brunet, F., Mai, J. 2023. Comparing a 
long short-term memory (LSTM) neural network 
with a physically-based hydrological model for 
streamflow forecasting over a Canadian catchment. 
Journal of Hydrology 627. https://doi.org/10.1016/j.
jhydrol.2023.130380

45. Saha, S., Moorthi, S., Pan, H.L., Wu, X., Wang, 
Jiande, Nadiga, S., Tripp, P., Kistler, R., Woollen, 
J., Behringer, D., Liu, H., Stokes, D., Grumbine, 
R., Gayno, G., Wang, Jun, Hou, Y.T., Chuang, 
H.Y., Juang, H.M.H., Sela, J., Iredell, M., Treadon, 
R., Kleist, D., Van Delst, P., Keyser, D., Derber, 
J., Ek, M., Meng, J., Wei, H., Yang, R., Lord, S., 
Van Den Dool, H., Kumar, A., Wang, W., Long, C., 
Chelliah, M., Xue, Y., Huang, B., Schemm, J.K., 
Ebisuzaki, W., Lin, R., Xie, P., Chen, M., Zhou, 
S., Higgins, W., Zou, C.Z., Liu, Q., Chen, Y., Han, 
Y., Cucurull, L., Reynolds, R.W., Rutledge, G., 
Goldberg, M. 2010. The NCEP climate forecast 
system reanalysis. Bulletin of the American Me-
teorological Society 91(8), 1015–1057. https://doi.
org/10.1175/2010BAMS3001.1

46. Santhi, C., Arnold, J.G., Williams, J.R., Dugas, 
W.A., Srinivasan, R., Hauck, L.M. 2001. Validation 
of the SWAT model on a large river basin with point 
and nonpoint sources. Journal of the American Wa-
ter Resources Association 37(5), 1169–1188. https://
doi.org/10.1111/j.1752-1688.2001.tb03630.x

47. Shekar, P.R., Mathew, A., Yeswanth, P. V., Deival-
akshmi, S. 2024. A combined deep CNN-RNN net-
work for rainfall-runoff modelling in Bardha Water-
shed, India. Artificial Intelligence in Geosciences 5, 
100073. https://doi.org/10.1016/j.aiig.2024.100073



419

Ecological Engineering & Environmental Technology 2025, 26(2), 407–419

48. Ur Rahman, K., Shang, S., Shahid, M., Wen, Y. 
2020. Hydrological evaluation of merged satellite 
precipitation datasets for streamflow simulation us-
ing SWAT: A case study of Potohar Plateau, Paki-
stan. Journal of Hydrology 587, 125040. https://doi.
org/10.1016/j.jhydrol.2020.125040

49. Van Liew, M.W., Arnold, J.G., Garbrecht, J.D. 2003. 
Hydrologic simulation on agricultural watersheds: 
Choosing between two models. Transactions of the 
ASAE 46(6), 1539–1551. https://doi.org/https://doi.
org/10.13031/2013.15643

50. Vasiliou, A., Economides, A.A. 2006. MANETs 
for environmental monitoring. 2006 International 
Telecommunications Symposium, IEEE 813–818. 
https://doi.org/10.1109/ITS.2006.4433383

51. Wang, H., Zhang, J., Yang, J. 2024. Time series fore-
casting of pedestrian-level urban air temperature by 
LSTM: Guidance for practitioners. Urban Climate 56, 
102063. https://doi.org/10.1016/j.uclim.2024.102063

52. Wang, K., Xu, Q., Li, T. 2020. Does recent climate 
warming drive spatiotemporal shifts in functioning 
of high-elevation hydrological systems? Science 
of the Total Environment 719, 137507. https://doi.
org/10.1016/j.scitotenv.2020.137507

53. White, J.W., Hoogenboom, G., Stackhouse Jr, P.W., 
Hoell, J.M. 2008. Evaluation of NASA satellite-and 
assimilation model-derived long-term daily temper-
ature data over the continental US. agricultural and 
forest meteorology 148(10), 1574–1584.  https://doi.

org/10.1016/j.agrformet.2008.05.017
54. Wu, J., Chen, X.-Y., Zhang, H., Xiong, L.-D., Lei, 

H., Deng, S.-H. 2019. Hyperparameter optimiza-
tion for machine learning models based on Bayes-
ian optimization. Journal of Electronic Science and 
Technology 17(1), 26–40. https://doi.org/10.11989/
JEST.1674-862X.80904120

55. Yakubailik, O.E., Yakubalik, T. V. 2020. Analysis 
of accumulated precipitation based on satellite data 
in Central Siberia. IOP Conference Series: Earth 
and Environmental Science 548, 032025. https://
doi.org/10.1088/1755-1315/548/3/032025

56. Yilmaz, M. 2023. Accuracy assessment of tempera-
ture trends from ERA5 and ERA5-Land. Science 
of the Total Environment 856, 159182. https://doi.
org/10.1016/j.scitotenv.2022.159182

57. Yu, C., Hu, D., Shao, H., Dai, X., Liu, G., Wu, S. 
2024. Runoff simulation driven by multi-source 
satellite data based on hydrological mechanism 
algorithm and deep learning network. Journal of 
Hydrology: Regional Studies 52, 101720. https://
doi.org/10.1016/j.ejrh.2024.101720

58. Zhang, Y.-R., Shang, G.-F., Leng, P., Ma, C., Ma, J., 
Zhang, X., Li, Z.-L. 2023. Estimation of quasi-full 
spatial coverage soil moisture with fine resolution 
in China from the combined use of ERA5-Land re-
analysis and TRIMS land surface temperature prod-
uct. Agricultural Water Management 275, 107990. 
https://doi.org/10.1016/j.agwat.2022.107990


