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INTRODUCTION 

Accurately predicting rainfall is a cornerstone 
of meteorology, essential for managing agricul-
ture, water resources, and disaster preparedness. 
The need for reliable forecasting is particularly 
evident in regions where rainfall patterns critically 
influence water supply and flood risks (Mozikov 
et al. 2023). Climate change has exacerbated the 
unpredictability of rainfall, adding complexity to 
traditional forecasting methods found by Wilks 
(2019). Conventional statistical and physical 
models often fall short in handling the intricate 
and dynamic nature of meteorological data.

Over the past two decades, machine learn-
ing techniques have demonstrated significant 
promise in rainfall prediction. random for-
est (RF), introduced by Breiman (2001), has 
been particularly impactful due to its ability to 
handle complex datasets and model non-linear 

relationships. Liaw and Wiener (2002) vali-
dated RF’s superiority over traditional regres-
sion models, highlighting its ability to address 
missing data and capture interactions between 
variables like temperature, humidity, and wind 
speed. More recent studies, such as Wang et 
al. (2023), Putra (2024), have further dem-
onstrated RF’s effectiveness in managing di-
verse meteorological attributes and improving 
prediction accuracy. These studies underscore 
the potential of ML to enhance meteorological 
forecasts in regions facing climate variability.

Other machine learning (ML) models have 
contributed to advancements in rainfall predic-
tion. Support vector machines (SVMs) have 
proven effective in binary “rain-or-not” clas-
sifications (Chattopadhyay et al., 2015), while 
artificial neural networks (ANNs), particularly 
multi-layer perceptron (MLPs), have excelled 
in modeling non-linear relationships between 
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meteorological variables (Jain et al., 2014). 
Deep learning models, such as convolutional 
neural networks (CNNs) (Singh et al., 2018) 
and long short-term memory (LSTM) networks 
(Abdel-Aal et al., 2019), have further enhanced 
prediction accuracy by capturing temporal de-
pendencies in weather data. Gradient Boosting 
methods, like XGBoost (Chen and Guestrin, 
2016), have also shown promise in mitigating 
overfitting and boosting prediction precision. 
Despite these advancements, RF remains a pre-
ferred choice for many meteorological studies 
due to its balance of accuracy, computational 
efficiency, and interpretability. Rahman et al. 
(2023) highlighted the potential of ensemble 
methods in improving rainfall prediction ac-
curacy in subtropical regions. Meanwhile, Tor-
res et al. (2024) explored the integration of RF 
with satellite data, demonstrating enhanced pre-
dictive performance in urban and rural settings. 
Similarly, Fatoni and Putra (2024) emphasized 
optimizing RF for diverse climatic conditions, 
showing its adaptability in predicting rainfall in-
tensity across different geographical areas How-
ever, Existing precipitation forecasting models 
may not be well-suited to the Mediterranean’s 
unique climatic characteristics. Many of these 
models are designed for broader or different re-
gions and might fail to accurately represent the 
specific factors influencing rainfall in the Medi-
terranean, such as localized weather patterns and 
the interaction of various environmental factors 
(MacLeod et al., 2021; Alessandri et al., 2018)

This  study has two  major  objectives:  first-
ly,  to identify the most  influential  meteorologi-
cal factors  in  rainfall intensity in Beirut using 
decision tree analysis. The paper seeks to apply 
and optimize  an  RF model  for  the  prediction 
of daily rainfall intensity in pursuit of high preci-
sion, recall, F1-score, and low mean squared er-
ror. This would, hopefully, increase the local rain-
fall  prediction  accuracy  and  support  decision-
making  processes  toward  water resource man-
agement and disaster mitigation in Beirut. Also, 
this study expects that decision tree analysis will 
uncover key dependencies among meteorological 
variables, thus offering deeper insight into the fac-
tors that drive rainfall in Beirut. Ultimately, this 
study  will  bridge a critical gap in the literature 
by demonstrating how machine learning models 
can improve weather forecasting in subtropical 
Mediterranean regions  with  increasing climate 
variability and urbanization.

Research methodology 

The research methodology for this study in-
volves the use of a decision tree algorithm to pre-
dict rainfall intensity in Beirut, Lebanon, based 
on an 11-year dataset (2013–2023) that includes 
key meteorological variables such as, tempera-
ture, wind direction, soil temperature, pressure, 
humidity, wind speed, and dewpoint. The data 
was sourced from reliable weather stations in the 
region, ensuring its accuracy and relevance for 
predicting rainfall patterns.

Figure 1 clearly shows in first step in the meth-
odology involved preprocessing the dataset by han-
dling missing values, removing outliers, and nor-
malizing the variables to prepare them for the mod-
eling process. After data preparation, feature selec-
tion techniques were employed to identify the most 

significant attributes that reflect directly on 
rainfall intensity based on Decision tree algo-
rithm (DT3) this to ensure that the model focused 
on the most relevant variables for accurate pre-
diction. Then the random forest algorithm was 
then implemented to develop a predictive model 
for rainfall intensity. random forest, a powerful 
ensemble learning method, was chosen due to its 
ability to handle complex, non-linear relation-
ships between variables and its robustness in 
predicting outcomes in large datasets after split-
ting our data set to 90% training and 10% test-
ing. The model’s performance was evaluated us-
ing several metrics, including MSE, AUC, and 

Figure 1. Research methodology flow chart 
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its accuracy and reliability in rainfall prediction. 
10-fold Cross-validation techniques were applied 
into the two models (Decision tree and random 
forest) to minimize overfitting and ensure the 
model’s generalizability to unseen data. The re-
sults were then analyzed to provide insights into 
the impact of the selected meteorological vari-
ables on rainfall intensity in the region.

Place and data of study 

The research study is said to be conducted in 
Beirut, the capital city of Lebanon and the Medi-
terranean coast. This country, Lebanon, has a Med-
iterranean type of climate with hot dry summers 
and short mild wet winters. Rain is abundant in 
the country yet the rainfall variation is well pro-
nounced in between them, between November 
and March Tamer et al. (2014). During summer 
months, the rainfall occurrences are less compara-
tively, while substantial rainy conditions charac-
terize the winter with regard to the major water 
supply of the region (Maqdisi and Hmoud, 2015). 
Flooding is a further issue in the city of Beirut; and 
as such, complete rainfall prediction becomes sig-
nificant in terms of efficient resource management 
and disaster avoidance (Fattal and Salameh, 2017). 
This study relies on an 11-year database between 
2013 and 2023 from Lebanese official meteoro-
logical databases, including the Lebanese Meteo-
rological Institute (LMI) and global weather plat-
forms. The dataset collected key meteorological 
variables maximum daily temperature (TMAXF), 
maximum relative humidity (UMAXF), maximum 
wind speed (MWSF), wind direction (MWDF) and 
atmospheric pressure (AP) maximum wind speed 
(WSF), dewpoint temperature (TDF) and Soil tem-
perature (ST). The predicted variable (rainfall) is 
classified as follows: Target 0 (no rainfall), Target 
1 (< 20 mm/d with medium rainfall), and Target 2 
(> 20 mm/d with high rainfall). In addition, Rain-
fall in Beirut varies a lot, the average annual rain-
fall representing a range from 800 mm to 1.200 
mm Fakhry, and Khouri (2019) (Figure 2).

Applying decision tree algorithm 

Decision trees (DT3) are powerful tools for 
finding the high priority of attributes by analyzing 
how different factors influence the outcome. They 
are not only easy to construct but also straightfor-
ward to interpret, making them a reliable choice 
for accurate predictions. At each branch of the 

tree, the algorithm evaluates how each input af-
fects the target variable (Mahyat et al., 2013).

Decision tree is one of the most widely used 
classification algorithms. It was developed by J. 
Ross Quinlan in the late 1970s and early 1980s, 
building upon his earlier ID3 algorithm (Quinlan, 
1986). The core concept of the ID3 algorithm is to 
construct a decision tree through a top-down ap-
proach, where attributes are tested at each node 
using the Information Gain criterion. This process 
divides the training examples based on their tar-
get classifications. To calculate Information Gain, 
entropy must first be determined. Entropy E is a 
measure characterizing the impurity of an arbitrary 
(Sitanggang et al.2013). Its formula is as follows:
	 𝐸𝐸 = − ∑ 𝑝𝑝(𝑐𝑐𝑐𝑐)log2𝑝𝑝(𝑐𝑐𝑐𝑐)c

i = 1  (1) 

 (2) 

 (3)  
 

	 (1)
where:	c is the set of classes, P (ci) is the portion 

of the number of elements in class c to the 
number of elements in Set S.

The aim of decision tree in our study is to find 
the most important attributes that influence the 
rainfall intensity and then apply the most impor-
tant attribute in random forest model. The decision 
tree (see Figure 3) process indicates that Class 0 
is ascribed to high humidity but low temperature, 
while an opposite Class 2 (high rainfall) is linked 
to much increased humidity, plus dewpoint. The 
Gini impurity keeps decreasing while many more 
features are used in classification improvement. 
Decision tree shows that the most influential attri-
butes that affects the rainfall intensity are: humidity 

Figure 2. Distribution of mean annual rainfall in 
Lebanon 
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(Gini = 0.66), dewpoint (Gini = 0.62), wind speed 
(Gini = 0.6), and temperature (Gini = 0.57) while 
atmospheric pressure, wind direction and soil tem-
perature recorded a very low index < 0.1. 

Figure 4 shows the pair plot in some major 
correlations established between the meteorol-
ogy elements and rainfall intensity. Temperature 
(TMAXF) proved negative with rainfall intensity 
since it was conditionally categorized whereby 
higher temperatures associated with Target 0 (no 
rainfall) are opposed to lower temperatures, which 
fit with Targe 2 (high rainfall) in meaning. Humid-
ity (UMAXF) was much important among Class 1 
(medium rainfall) and Class 2, which was an impli-
cation of higher humidification typically associat-
ed with increased rainfall. Wind speed (WSF) very 
little differentiates, over the rainfall classes, so that 
somewhat associated with the moderate rainfall is 
the higher wind speed. Dewpoint (TDF) is very 

much demonstrated to have a strong correlation 
with rainfall intensity whereby Target 2 boasts the 
highest dewpoints, followed by target 1

Such correlation would also emerge from 
scatterplots, where the first represents a negative 
association between temperature and humidity 
while the second shows a strong association by 
battering temperature and dewpoint. Although 
wind speed and humidity positively trend on 
average, they do not distinctly differentiate the 
rainfall classes. Temperature and humidity, along 
with dewpoint, are the most significant predictor 
variables for rainfall while wind speed is less im-
portant for determining levels of rainfall.

Applying random forest model 

Random forest is known for its common abili-
ty to process categorical and continuous variables 

Figure 3. Decision tree

Figure 4. Pair plot of best meteorological features 
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simultaneously (Berk and Bleich, 2018). This 
makes a progressive model type even for differ-
ent types of data sets, including those pertaining 
to severe fields of meteorology. This shows up 
clearly when the relationship between the predic-
tors and the dependent variable is nonlinear and 
entails intricate interactions, which is largely the 
case in environmental and weather prediction ac-
tivities. It considers at each split random subsets 
of features to cover this type of relationship from 
overfitting with the generalization of the model 
for unseen data (Breiman, 2001; Liaw and Wie-
ner, 2002). A recursive procedure splits the data 
based on the feature variable where it checks its 
gain or impurity at each step so as to reach the 
final node in the decision tree. The Gini Index or 
Entropy is an important impurity measure used 
in the decision tree (Kursa and Rudnicki, 2010). 

	

𝐸𝐸 = − ∑ 𝑝𝑝(𝑐𝑐𝑐𝑐)log2𝑝𝑝(𝑐𝑐𝑐𝑐)c
i = 1  (1) 

 (2) 

 (3)  
 

	 (2)

where:	pi​ is the probability of an object being 
classified into class i at node t and C is the 
number of classes. 

Random forest can compute the importance of 
each feature, which helps identify which features 
contribute most to the model’s predictions. One com-
mon method for calculating feature importance is 
mean decrease impurity (MDI) Loupp et al. (2018).

	

𝐸𝐸 = − ∑ 𝑝𝑝(𝑐𝑐𝑐𝑐)log2𝑝𝑝(𝑐𝑐𝑐𝑐)c
i = 1  (1) 

 (2) 

 (3)  
 

	 (3)

where:	ΔGj(f) represents the reduction in Gini 
impurity at tree j when feature f is used to 
split the node.

The following research on rainfall intensity 
prediction identified how Random forest can be 
put into good use by incorporating data from an 
11 years, along with such features as maximum 
temperature, humidity, wind speed and dew point. 
The data were preprocessed by handling missing 
handling  missing values,  selecting  relevant  fea-
tures  regarding  their  correlation  to  the  intensi-
ty of rainfall, and final normalization for consis-
tency. The data were split into training and testing 
sets, taking up to 90% for training the model.

The model was then trained using the ran-
dom forest algorithm by building multiple de-
cision trees, each trained on a subset of the 
data.  Hyperparameters  like the no. of trees 
and the limited depth of each tree were opti-
mized for model performance through 10 folds 

cross-validation. Beyond UMAXF, which is the 
predictor that initially splits the Decision Tree 
model for rainfall prediction, defining it is the 
most important variable for categorizing the in-
tensity of rainfall. Other parameters are also in-
cluded, among which are: Temperature directly 
associated with Class 2 because of high rainfall 
events and dewpoint which determines mostly 
a high rainfall event. Also, most importantly is 
wind speed under extreme humid conditions and 
extreme temperature conditions. 

Hybrid model results 

The random forest model applied to rain-
fall prediction in Beirut, Lebanon, demonstrated 
strong performance in classifying rainfall into 
three distinct categories: no rainfall (Class 0), me-
dium rainfall (Class 1), and high rainfall (Class 2). 
The model utilized key meteorological features, 
including maximum temperature, humidity, wind 
speed, and dewpoint, to make predictions. The 
performance metrics revealed an overall accuracy 
recorded 0.90, indicating that the model effective-
ly balanced precision and recall across all classes 
as shown in Figures 5 and 6.

Figure 5. Confusion matrix 

Figure 6. Overall accuracy results
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Additionally, the mean squared error (MSE) 
was 0.09, highlighting the model’s accuracy in 
predicting rainfall levels, while the area under the 
curve (AUC) reached 0.97 as an average between 
3 classes, demonstrating the model’s strong ability 
to discriminate between rainfall classes (Figure 7). 

These results underscore the robustness and 
efficiency of the random forest algorithm in rain-
fall prediction, especially in the Mediterranean 
climate of Beirut, where rainfall patterns are vari-
able and can be difficult to predict.

The hybrid model clearly shows how the fac-
tors interact before arriving at rain classification. 
Humidity was the most had as root node. Tem-
perature and dewpoint refined the classification 
further. Wind speed appeared less frequently in 
splits, though its role defining rainfall levels with 
humidity has been considered secondary to that 
of temperature and dewpoint. With high humidity 
and low dewpoint/temperature under dry condi-
tions, the reduced high accuracies with Class 0 
(no rainfall) were most effectively identified by 
the model. High rainfall indicated by a combina-
tion of high humidity and dewpoint but relatively 
low temperatures was attributed to Class 2 while 
Class 1 (medium rainfall) posed a challenge in 
classification as it could be attributed to Class 
0 and Class 2 with some overlap. According to 
atmospheric physics, Class 2 could easily be as-
cribed to high humidity in the absence of temper-
ature. On the contrary, increased humidity leads 
to probability of precipitation and temperature 
assigns more weight inversely to the intensity of 
rainfall. The model’s precision, recall, and AUC 
with overall high rating will ever make it use-
ful for predicting the occurrence of rainfall. This 

serves for the management of water resources, 
preparation against floods, and betterment in ag-
riculture practices.

It is clearly shows that hybrid model turned 
out to be an extremely powerful appliance in rain 
forecasting for Beirut, standing tall across all per-
formance metrics. The model uses the moisture 
status with temperature dewpoint dependency in 
classifying rainfall and so becomes an important 
tool to managers of water resources, flood fore-
casting, and agriculture.

Hybrid model validation with real scenario 

To verify and validate the accuracy of the 
hybrid model, a comprehensive dataset was col-
lected from the Lebanese meteorological system. 
This dataset included data for 40 days from Oc-
tober and 10 days from December 2024, offering 
a representative sample of the rainfall patterns 
during these months. The precipitation values 
in the dataset varied within a range from 0 to 24 
millimeters per day, reflecting the diverse weather 
conditions experienced in the region during this 
period. By analyzing these data points, the perfor-
mance of the hybrid model in predicting rainfall 
intensity can be assessed, ensuring that the model 
accurately captures the variability and trends of 
precipitation in Lebanon’s climate. This valida-
tion process is crucial for determining the mod-
el’s robustness and its ability to provide reliable 
predictions in real-world scenarios.

Figure 8 illustrates the real-world scenario 
of rainfall intensity distribution as a function 
of wind speed, humidity, temperature, and dew 
point during November and the first 10 days of 

Figure 7. Area under curve for three classes
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December 2024. To validate our study against ac-
tual rainfall cases, our hybrid model categorizes 
rainfall intensity into three classes: Class 0 rep-
resents no rainfall (Rainfall = 0 mm/day), Class 
1 corresponds to medium rainfall (0 < Rainfall ≤ 
20 mm/day), and Class 2 indicates high rainfall 
intensity (Rainfall > 20 mm/day). 

In addition, Figure 8 illustrates that the total 
record of no rainfall was 23 days, and 24 days 
with medium rainfall intensity and 3 days when 
rainfall > = 20 mm/days (Figure 9).

This classification enables a detailed com-
parison of the model’s predictions with observed 
data, enhancing the reliability of the study. 

After analyzing and comparing the real-
world data with the simulated results, the recall 
of our hybrid model was calculated using the 
following equation:
	 Recall = True positive + 	
	 + False postive/True negative	 (4) 

In our analysis, the true positive rate was re-
corded at 90.2%, while the false negative rate 

accounted for 9.8%. Consequently, the overall re-
call of the model was found to be approximately 
90%, demonstrating its effectiveness in predict-
ing rainfall intensity. This indicates that the hybrid 
model has high accuracy in identifying actual rain-
fall events while minimizing missed cases. Fur-
thermore, the false positive rate, which refers to in-
stances where rainfall was incorrectly predicted, is 
limited to 10%, further confirming the reliability of 
the model. Such robust performance underscores 
the potential of this approach for accurate rainfall 
intensity classification and its applicability in me-
teorological forecasting and related studies.

CONCLUSIONS 

In conclusion, this study highlights the criti-
cal importance of accurately predicting rainfall 
intensity, particularly in climate-sensitive regions 
like the Mediterranean. By developing a hybrid 
model combining decision tree and random forest 

Figure 8. Rainfall distribution in function most influential attributes

Figure 9. Rainfall intensity simulation 
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algorithms, we effectively classified rainfall into 
three categories: no rainfall, medium rainfall, and 
high rainfall. The study also sheds light on the 
key meteorological factors that influence rainfall 
intensity, offering valuable insights into their rela-
tive importance. With impressive performance 
metrics with accuracy 0.90, a low mean squared 
error of 0.09, and an area under the curve of 0.9. 
Our hybrid model demonstrates the significant 
potential of machine learning for improving rain-
fall forecasting. This research not only advances 
the understanding of rainfall prediction but also 
underscores the role of such models in enhancing 
climate adaptation strategies, disaster manage-
ment, and informed decision-making in regions 
facing increasing climate risks and variability.

The model has proven to be remarkably good 
with such promising potential in handling com-
plications that rainfall forecasting presents on 
regions with varying climate patterns. Also, this 
study not only demonstrates the effectiveness of 
the hybrid model in rainfall prediction but also 
provides valuable insights into improving the ac-
curacy and applicability of weather forecasting 
models in Mediterranean climates using the most 
affected attributes. The potential applications of 
this research are vast, offering significant contri-
butions to environmental management, agricul-
tural planning, and disaster preparedness in Leba-
non and similar regions around the world.
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