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INTRODUCTION

Forests are vital ecosystems rich in biodiver-
sity and offer numerous ecological, environmen-
tal, as well as socioeconomic benefits, including 
climate regulation, air and water purification, 

and soil erosion prevention (Jhariya et al., 2019; 
Ritchie and Roser, 2021; FAO, 2022). They sup-
port local communities by providing resources 
like firewood, timber, and medicinal remedies, 
contributing to local economies (Brandt and 
Buckley, 2018; Bastin et al., 2019). However, 
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ABSTRACT
Tracking changes in forest composition, structure, and distribution over time is essential for developing effective 
conservation strategies and sustainable management practices in these ecologically sensitive regions. In this study, 
the objective was to conduct a diachronic analysis, comparing land cover and vegetation status in the Timekssa-
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period (July) of 1999 and 2020, was utilized to provide a detailed observation of changes over time and space. Ad-
ditionally, machine learning modeling using random forest (RF) was implemented to further explore the dynamics 
of change in the forest. The RF models developed achieved reasonable to good predictive performance, with AUC 
scores of between 0.67 and 0.80. The obtained findings revealed a concerning regression, with both the diachronic 
(59% of the forest area) and RF (35%) approaches highlighting extensive regression of the forest, particularly in 
the cork oak formations at 9%, with notable de-densification across density classes between 1999 and 2020, a 
diachronic study. Dense cork oak and moderately dense strata were particularly affected, experiencing regressions 
of 455 ha and 1204 ha, respectively, during this period. Conversely, open and sparse strata expanded, primarily 
sourced from the dense and moderately dense strata, resulting in an overall regression rate of 60 ha/year. The dense 
cork oak strata were prevalent on steep slopes with deep, slightly acidic soil, while scattered and clear strata were 
observed in low-lying areas with shallow soils and a pH range from neutral to slightly basic. Autumn precipitation 
and amplified overgrazing intensity emerged as the pivotal factors influencing the categorization of forest forma-
tions in the study forest, impacting tree density levels and posing a significant threat to forest regeneration.
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deforestation, excessive logging, and climate 
change are threatening their ability to provide 
these services, especially in developing coun-
tries (Erbaugh et al., 2020; Dudley et al., 2014). 
Both natural and human-induced factors, such 
as fires, pests, deforestation, and reforestation, 
affect forest dynamics, influencing species com-
position and biodiversity (Busing, 1991; For-
rester, 2014). These dynamics are further shaped 
by species migration, fragmentation, and climate 
change impacts, leading to a significant decline 
in forest area worldwide (Ghazoul et al., 2015; 
Taubert et al., 2018).

Recognizing and understanding the spatial 
dynamics of forests is essential for effective, sus-
tainable forest management and the long-term 
preservation of biodiversity (Huang et al., 2016; 
Noumonvi et al., 2017). Indeed, knowledge of the 
distribution of different elements within a forest 
as it evolves can be crucial to developing targeted 
conservation strategies, by identifying critical 
habitats. In addition, it can help assess the ca-
pacity of a forest to provide vital ecosystem ser-
vices, enabling planners to balance human needs 
while promoting sustainability. Furthermore, this 
knowledge facilitates proactive adaptation to cli-
mate change, ensuring the well-being of local 
communities who often depend on forests.

Various techniques allow for the compre-
hensive assessment of forest evolution dynam-
ics. One of the most popular is the use of remote 
sensing (Da Ponte et al., 2017; Erfanifard et al., 
2020; Gao et al., 2020), which incorporates data 
from sensors associated with satellite systems, 
such as Landsat, Advanced Spaceborne Ther-
mal Emission and Reflection Radiometer (AS-
TER), Moderate Resolution Imaging Spectrora-
diometer (MODIS), Sentinel and Satellite Pour 
l’Observation de la Terre (SPOT), among others. 
The sensors on these satellites capture differ-
ent spectral bands of the electromagnetic spec-
trum, notably in the visible, infrared and thermal 
ranges, which can be used to detect the health of 
vegetation and classify land cover (Seiler et al., 
2014; Lausch et al., 2016; Dallahi et al., 2023). In 
addition, the integration of geographic informa-
tion systems (GIS) with remote sensing data in 
combination with the data collected in the field 
can enable comprehensive spatial analysis, sup-
porting data-driven decisions for sustainable for-
est management.

One of the most effective methods for as-
sessing forest evolution is diachronic analysis 

based on the use of remotely-sensed satellite data 
(Armaş et al., 2014; Salvati and Tombolini, 2014; 
Barbache et al., 2018). This method consists of 
a temporal approach that uses satellite data to 
systematically observe and analyze changes in 
forest ecosystems over several periods. This is 
achieved by exploiting historical satellite imag-
ery to detect and quantify changes in forest cov-
er, structure and composition. These images can 
be used to identify trends in forest stands, assess 
the impact of forest management and disturbanc-
es such as deforestation or pest epidemics, and 
monitor recovery processes (Lescuyer, 2013). By 
comparing images taken at different times, dia-
chronic analysis provides a dynamic perspective 
on forest evolution.

Furthermore, complementing diachronic 
analysis with machine learning (ML), the inter-
pretation of complex satellite data can be sig-
nificantly improved, particularly in data-scarce 
regions such as Moroccan ecosystems. ML algo-
rithms efficiently process extensive satellite im-
agery, uncovering patterns and trends that tradi-
tional methods can overlook (Phan et al., 2022). 
This approach makes it possible to accurately 
assess forest evolution, detecting subtle changes 
in cover or structure that may indicate larger eco-
system transformations (Zhao et al., 2024). Rely-
ing on satellite data, ML can produce snapshots 
of forest condition, even with limited field data, 
identifying trends and risks such as deforestation 
or pest outbreaks, in order to intervene in a timely 
manner. This data-driven strategy optimizes for-
est management and conservation efforts, en-
hancing sustainable ecosystem management and 
resilience (Raihan, 2023).

Moroccan forests boast exceptional floristic 
richness, resulting in a diversity of ecosystems 
and forest formations intricately linked to the 
country’s varied geographical, climatic, and eco-
logical conditions (Taleb and Fennane, 2019). 
Historically, they have served as a multifunc-
tional space, helping conserve the biological bal-
ance of nature, meeting the demands for wood 
products, creating employment opportunities, 
and acting as a substantial reserve for grazing 
lands. However, forest resources have long been 
subjected to intense exploitation, including log-
ging, clearing, fires, overgrazing, and bark har-
vesting, among others (Benabid, 2019; Malki et 
al., 2022). Consequently, this has led to chronic 
decline and alarming degradation of these eco-
systems (Ikraoun et al., 2022). Indeed, this is true 
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for forests in the Central Plateau region, which 
play vital role in the socio-economic life of the 
local population. 

While numerous studies (Barbero et al., 
1990; Quézel, 1999; Mazzoleni et al., 2004) have 
sought to assess the evolution of Mediterranean 
ecosystems on a peri-Mediterranean scale, dia-
chronic and cartographic studies on the evolu-
tion of forest ecosystems in the Central Plateau 
region remain limited. In this context, this study 
aimed to assess the evolution of vegetation cover 
in the Timekssaouine forest using a diachronic 
method to help understand the dynamics and 
distribution of stratum transfers in this forest be-
tween 1999 and 2020, using a confusion matrix 
to explain the different losses and gains in for-
est stratum area. In addition, an ML approach, 
relying on the random forest algorithm to model 
forest evolution, was employed. Specifically, 
the study aimed to predict current forest trends 
(progression, regression or no change), as well 
as evaluate site factors to identify those with the 
greatest influence on forest degradation. It was 
anticipated that the findings of this study would 
provide forest managers and local authorities 
with reliable, up-to-date information on the state 
of these ecosystems. This, in turn, would enable 
informed decision-making based on reliable data 
for the effective management of not only the con-
text of the forest, but also as a valuable reference 
for other ecosystems in the region.

MATERIALS AND METHODS

Overview of the study area

The study area (Figure 1) extends over the 
entire Timekssaouine forest, covering around 
10.000 hectares, and is located in the Central 
Plateau region of Morocco, 5 km from Khémis-
set and around 60 km from Rabat. The forest is 
marked by an altitudinal variation that ranges 
from 250 m in the lowest areas to 950 m on the 
highest peaks. Notably, the dominant elevation of 
the terrain lies between 400 and 800 m, cover-
ing almost 90% of the forest area. The climate is 
characterized by annual precipitation of between 
400 and 500 mm, with a rainy season concentrat-
ed from October to April. Temperature variations 
are typified by maximum temperatures reaching 
34 °C, while minimum temperatures are recorded 
at around 4 °C. The dominant seasonal trend is 
a hot summer, accentuated by the arid footprints 
characteristic of the region. Form a bioclimatic 
standpoint, the study area features a semi-arid 
mantle, accentuated by a temperate variant that 
further contributes to the climatic complexity.

Geologically, the forest has a Paleozoic sub-
stratum composed mainly of pelites, sandstones, 
and quartzites, while the pedological composi-
tion includes rough mineral soils and weakly 
evolved soils. The forest vegetation is diverse: 
cork oaks occupy 42% of the landscape, Barbary 

Figure 1. Geographic location of the Timekssaouine forest in the Central Plateau region of Morocco
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thuja (Tetraclinis articulata) 25%, and reforested 
enclaves of pine (Pinus spp.). Alongside, there 
is a mix of secondary species including mastic 
tree (Pistacia lentiscus), wild olive (Olea euro-
paea var. oleaster), fan palm (Chamaerops hu-
milis), Cistus salviifolius, Arbutus unedo, Rhus 
pentaphylla, among others. While the biological, 
ecological, biogeographical, and socioeconomic 
values of the Timekssaouine forest make it of 
crucial importance to the region’s development, 
it faces challenges from the cumulative effects of 
anthropogenic pressures and unfavorable envi-
ronmental conditions. It is therefore imperative to 
conduct studies aimed at assessing its evolution, 
as they would provide a valuable knowledge base 
that could help address and mitigate the current 
challenges, as well as potential future ones.

Data collection

Remote sensing data

To analyze the evolution of vegetation cover, 
Landsat 5 Thematic Mapper (TM) and Landsat 8 
Operational Land Imager/Thermal Infrared Sen-
sor (OLI/TIRS) images from July 1999 and July 
2020, respectively, were selected for this study. 
Landsat 5 TM, operational from 1984 to 2013, 
had seven bands, including blue, green, red, near-
infrared, shortwave infrared 1 and 2, and thermal 
infrared. Landsat 8, launched in 2013, carries the 
OLI sensor with eight bands covering ultraviolet 
to shortwave infrared and a panchromatic band, as 
well as the TIRS sensor with two thermal infrared 
bands. All images were acquired during the dry 
season to ensure the comparison of data from con-
sistent seasonal conditions. The Landsat images, 
retrieved from the Earth Explorer USGS database 
(https://earthexplorer.usgs.gov/), had a resolution 
of 30 meters. Prior to analysis, the images, which 
were already geometrically corrected, underwent 
radiometric and atmospheric pre-processing to 
mitigate the impact of atmospheric effects and 
viewing angles on image quality. Various color 
compositions were created during the study, with 
the (B2-B3-B4) color composition identified as 
most effective for distinguishing vegetation for-
mations. This color combination aided in select-
ing control areas for classification assessment. 
The preprocessed and composited remote sensing 
data formed the basis for the subsequent analysis 
of vegetation dynamics in the study area. In addi-
tion, SPOT imagery was acquired from the Euro-
pean Space Agency SPOT archive (https://earth.

esa.int/eogateway/catalog/spot1-5-esa-archive) 
to help refine the subsequent map of vegetation 
types for July 2020. SPOT images are composed 
of four bands (green, red, near-infrared, and mid-
infrared) and one panchromatic band with a spa-
tial resolution of 1.5 m. They are renowned for 
providing detailed information about land cover 
and use, thus allowing for a more precise charac-
terization of different vegetation formations.

Field survey data

Homogeneous forest stands were chosen as 
sampling points for field data collection at 39 
sites across the study forest. For each selected 
point, precise coordinates were determined and 
projected onto the study area layer to establish 
training and control zones for classification. 
These data aimed to recognize and define the 
distinct vegetation formations present in the for-
est area, while also serving as a validation tool 
to verify the results obtained through visual in-
terpretation of satellite imagery, particularly in 
the areas where interpretation was challenging. 
Additionally, the data was collected to provide 
supplementary information that may not be eas-
ily extracted from satellite images, such as the 
stratification of different vegetation formations. 
Moreover, soil samples were collected at a depth 
of 30 cm at each of these sites for subsequent soil 
analyses aimed at determining both physical and 
chemical properties.

Methodology

Inventory technique

The inventory approach employed in this 
study was both stratified and systematic, consist-
ing of a selection of 39 plots in the field to fa-
cilitate a comprehensive analysis of the changes 
in stand conditions concerning based on environ-
mental parameters and factors in the forest. The 
stratification, which involves dividing the study 
area into distinct strata or classes based on spe-
cific characteristics, was to allow for a targeted 
and representative sampling of different forest 
types (Barbary thuja, cork oak, pine and euca-
lyptus plantations, and secondary tree species), 
while the systematic inventory, characterized 
with sampling rates tailored to each forest type, 
was conducted to ensure a balanced and unbiased 
representation across the forest. Accordingly, the 
sampling rates were set at 0.2% for Barbary thuja 
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and cork oak, 0.5% for pine and eucalyptus refor-
estations, and 0.03% for secondary species. Each 
plot was standardized at 10 ares, representing one 
plot per 50 hectares for Barbary thuja and cork 
oak, 5 ares with one plot per 10 hectares for re-
forestation (eucalyptus and pine), and 2 ares with 
one plot per 67 hectares for secondary species.

Soil analyses

A comprehensive soil investigation was 
carried out at each of the 39 inventory plots, 
involving the excavation of soil profiles and 
subsequent on-site descriptions of various soil 
horizons. This process entailed identifying the 
depth, color, and permeability of each horizon. 
Additionally, assessments were made for the 
classification of soil types, surface permeability, 
structure, and porosity. Following the field as-
sessments, laboratory analyses were conducted 
to determine various soil physical and chemi-
cal properties. Granulometry analysis was em-
ployed to determine soil texture, indicated by 
the fractions of clay, fine and coarse silt, and fine 
and coarse sand. The content of soil carbon and, 
consequently, organic matter was quantified us-
ing the Walkley-Black method. Soil pH levels 
were assessed utilizing the pH-water method, 
while total and active limestone contents were 
analyzed through standard laboratory methods.

Image processing and analyses

Following the acquisition of cloud-free satel-
lite images, a color composite image was gener-
ated by combining three spectral bands (B2-B3-
B4) using a color composition technique. The 

resulting images were then subjected to classifi-
cation based on ancillary data, including ground 
observations and existing maps, to produce de-
tailed forest stand maps. To assess forest den-
sity, the normalized difference vegetation index 
(NDVI) was calculated to provide an estimate of 
vegetation abundance (Figure A1). Consequently, 
the integration of these maps, in particular the in-
tersection in a GIS environment between forest 
type maps and density maps, was carried out to 
facilitate obtaining density information for each 
forest type. All analyses were carried out using 
ESRI’s ArcGIS 10.8 program.

Classification of forest stands – To accurately 
categorize and map different land cover classes 
within the Timekssaouine forest, a supervised 
classification method leveraging the maximum 
likelihood technique was employed. This method 
involves selecting representative training samples 
for the classes of interest and applying a classifi-
cation algorithm that, based on statistical rules, 
assigns each pixel in the image to a predefined 
class. The maximum likelihood classification al-
gorithm calculates a multidimensional probabil-
ity function to determine the likelihood of each 
pixel belonging to one of the predefined catego-
ries corresponding to spectral signatures. Thus, in 
this study, the five exploitable classes were rep-
resented as follows: Ta (Barbary thuja), Qs (cork 
oak), Es (secondary species), Rb (eucalyptus and 
pine plantations), and V (bare land). Their spatial 
distribution across the forest in 1999 and 2020 is 
illustrated in Figure A2.

Limit cleaning classification – To further re-
fine the land cover classification, a limit cleaning 
classification using the “majority filter” tool was 

Figure A1. Comparison of the spatial distribution of NDVI in the Timekssaouine forest 
between the years 1999 and 2020
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employed. This tool is particularly useful when 
the initial classification result includes numer-
ous small regions. The process involves merging 
smaller adjacent class regions into larger, more 
coherent regions. For instance, where the classi-
fication may yield small and fragmented regions, 
the majority filter tool helps in producing a clean-
er and more coherent land cover map. In addition 
to this, the high-resolution SPOT image acquired 
for July 2020 was utilized for further refinement. 
Overlaying the resulting maps was done to facili-
tate the creation of confusion matrices, outlining 
six main classes: regression, progression (indicat-
ing a resurgence of the species in the area), un-
changed zone, weak de-densification, moderate 
de-densification, and strong de-densification.

Spatial dynamics assessment

To assess the spatial dynamics of the Timek-
oussine Forest, the diachronic method was used 
to the degradation and regression of forest cover 
for the period between 1999 and 2020. This ap-
proach involves comparing the composition and 
extent of forest formations at two or more differ-
ent dates. A crucial component of this method is 
the creation of a confusion matrix, also known as 
a change matrix, which systematically provides 
information on the transfer of surface area from 
one forest formation to another between the se-
lected dates. Essentially, the change matrix helps 
determine the gains and losses of different popu-
lation types, illustrating the breakdown of these 
transfers. The distribution of the forest was deter-
mined by establishing vegetation density classes 
through a comparative analysis between on-the-
ground observations (Google Earth imagery) and 
the NDVI data. The pixel values calculated from 

Table 1. Classes of vegetation density based on NDVI
Classes NDVI 1999 NDVI 2020

Bare -0.03–0.09 -0.03–0.18

Spares 0.09–0.13 0.18–0.22

Clear 0.13–0.18 0.22–0.27

Moderately dense 0.18–0.23 0.27–0.30

Dense 0.23–0.41 0.30–0.47

the NDVI data were broadly categorized into five 
distinct classes (Table 1).

To determine the composition of forest stand 
types (Figure A2) and their respective densities, 
an approach relying on the integration of vegeta-
tion formation and site data and leveraging the 
intersection function within ArcGIS were ad-
opted. The method involved overlaying map lay-
ers that represent each specific forest stand type 
with layers characterizing forest density for the 
years 1999 and 2020. This was carried out to al-
low the identification of common spatial elements 
between these layers. 

Data analyses

Both correlation analysis and principal com-
ponent analysis (PCA) were employed to examine 
the relationships and patterns within the site data 
pertaining to cork oak populations. The Pearson 
correlation matrix was utilized to explore the in-
terdependence between various environmental 
factors, such as organic matter content, pH lev-
els, substrate composition, topography, exposure, 
pruning practices, incidence of delinquency, and 
socio-economic context, and the condition of cork 
oak stands. Additionally, PCA was implemented 
as a dimensionality reduction technique to trans-
form the extensive set of variables into a more 

Figure A2. Identification and characterization of vegetation types in the Timekssouine forest 
between 1999 and 2020
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manageable subset while retaining the essential in-
formation. Consequently, matrices were computed 
to project the variables into a new space, to help 
reveal the degree of similarity between them and 
to highlight the underlying patterns that contribute 
significantly to the overall variation in the dataset.

Modeling of forest change using ML

Overview of the random forest algorithm 
– RF is an ensemble learning technique widely 
used for classification and regression tasks that 
operates by constructing multiple decision trees 
during training and aggregating their predictions. 
Each tree is built using a random subset of the 
training data and a random selection of features, 
promoting diversity among the trees and reduc-
ing the risk of overfitting common in single tree 
models (Breiman, 2001). The final output is de-
termined by the majority vote (for classification) 
or the average prediction (for regression) of all 
trees, enabling RF to effectively capture complex 
patterns in high-dimensional datasets. RF is par-
ticularly valued for its robustness, interpretability, 
and ability to handle missing values and large da-
tasets, making it a popular choice in ecology and 
environmental management.

Modeling of forest stand evolution – to model 
forest stand evolution, 23,000 points were ex-
tracted from a forest stand evolution map, supple-
mented by data on climatic, edaphic, topograph-
ic, and human impact variables (Supplementary 
Figures 1–5). For modeling the probability of 
infractions, 139 plots with observed infractions 
were identified as presence points (Supplemen-
tary Figure 1), alongside 139 generated absence 
points. A total of 75 soil samples were collected 
from 41 unique plots (Figure 3), from which soil 
properties, including depth, pH, organic matter 
(SOM), and texture, were analyzed. Additional 
data on climatic, topographic, and human impact 
factors were also utilized. Data preprocessing 
was conducted to handle missing values, outliers, 
and inconsistencies, followed by normalization to 
ensure uniformity across datasets.

Feature selection, critical for enhancing 
model interpretability and avoiding overfitting, 
was applied to edaphic factors, where 11 vari-
ables from SoilGrids V2.0 (Poggio et al., 2021) 
were evaluated as potential predictors (Figure 4). 
The stats package was used for Pearson correla-
tion analysis based on a correlation coefficient 
threshold of ± 0.15 (Figure A6). For infraction 
probability modeling, the predictors are outlined 

in Figure 2. Datasets were randomly divided into 
training (75%) and validation (25%) subsets. The 
random forest package was used to implement 
the RF algorithm in an R environment, building 
both regression and classification models. RF was 
used as a regressor for soil depth, carbon, pH, and 
organic matter, and as a classifier for soil texture, 
forest infractions, and forest stand evolution cat-
egories. Hyperparameters were optimized using 
caret with grid search techniques combined with 
cross-validation to enhance model robustness.

Model performance evaluation was task-
specific, with the coefficient of determination 
(R²) used for regression, where it quantified the 
explanatory power of the models. For classifica-
tion, area under the curve (AUC) values were lev-
eraged using pROC to assess the discrimination 
capability and, thus, validate the effectiveness of 
the RF models. Additionally, variable importance 
was assessed using the mean-decrease accuracy 
(MDA) metric from the random Forest package, 
to highlight the predictive power of the selected 
predictors throughout the modeling process.

RESULTS

Assessment of changes in forest stands

The results of the confusion matrix depict-
ing the dynamic redistribution of strata within the 
Timekssaouine forest between 1999 and 2020, are 
presented in Table 2. Notably, there was a sub-
stantial decline in cork oak stands across varying 
densities. The total area diminished from 4549 ha 
in 1999 to 4045 ha in 2020, reflecting an 11.08% 
reduction during this period. Similarly, Barbary 
thuja, covering 2735 ha in 1999, experienced a de-
crease to 2391 ha in 2020, representing a 12.58% 
regression over the same timeframe. Concurrent-
ly, secondary species benefited from the degrada-
tion of these stands, gaining an additional area of 
approximately 537 ha (27.88%), equivalent to an 
annual increase of 1.68% (30 ha). Barren lands ex-
hibited an expansion of 187 ha at an annual growth 
rate of approximately 15%, while reforested areas, 
particularly those featuring eucalyptus and pines, 
showed a progression of around 32%, translating 
to a yearly increase of 1.8%.

Considerable changes occurred in the cork 
oak and Barbary thuja stands between 1999 and 
2020 (Figure 2). Cork oak stands demonstrated 
significant regression, particularly in the dense 
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and moderately dense strata, with reductions of 
36.23% (455 ha) and 45.68% (1204 ha), respec-
tively, constituting an approximate 2% annual de-
cline in area. These losses were compensated by 
noteworthy progressions in the clear and sparse 
stands, with clear stands experiencing a substan-
tial increase of 112.05% (595 ha), and sparse 
stands expanding by 448% (560 ha) compared 

to the extents in 1999. Similarly, Barbary thuja 
stands experienced a considerable regression in 
the dense stratum, diminishing by 45.92% (535 
ha) over the period. Moderately dense stands also 
regressed by 29.38% (179 ha). However, the clear 
and sparse strata displayed positive trends, with 
gains of 25.30% (166 ha) and 66.89% (204 ha), re-
spectively. Comparatively, while both underwent 

Table 2. Confusion matrix of the spatial dynamics of Timekssaouine forest stands between 1999 and 2020

Strata Pa3 Pa4 Qs1 Qs2 Qs3 Qs4 Rb Ta1 Ta2 Ta3 Ta4 Es V Total 
2020

Pa3 2 0 0 0 0 0 0 0 0 0 0 0 0 2

Pa4 0 43 0 0 0 0 0 0 0 0 0 0 0 43

Qs1 0 0 779 0 22 0 0 0 0 0 0 0 0 801

Qs2 0 0 147 1286 0 0 0 0 0 0 0 0 0 1433

Qs3 0 0 166 695 265 0 0 0 0 0 0 0 0 1126

Qs4 0 0 146 283 131 125 0 0 0 0 0 0 0 685

Rb 0 0 0 0 0 0 366 0 0 0 0 142 0 508

Ta1 0 0 0 0 0 0 0 630 0 0 0 0 0 630

Ta2 0 0 0 0 0 0 0 215 215 0 0 0 0 430

Ta3 0 0 0 0 0 0 0 159 165 498 0 0 0 822

Ta4 0 0 0 0 0 0 0 143 162 78 126 0 0 509

Es 0 0 11 295 72 0 16 4 63 76 174 1753 0 2464

V 0 0 7 78 41 0 2 14 4 4 5 32 68 255

Total 1999 2 43 1256 2637 531 125 384 1165 609 656 305 1927 68 9708

Figure 2. Comparison of the spatial evolution of species density classes in the Timekssaouine forest 
between the years 1999 and 2020
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regression in their denser stands, the cork oak 
stands experienced more extensive changes, char-
acterized by a collectively higher degree of regres-
sion in the dense and moderately dense strata.

The prevailing trend in the dynamics within 
the Timekssaouine forest area was a regression, 
accounting for 59% of the observed changes, par-
ticularly pronounced in the lower half of the forest 
(Figure 3). In contrast, progressions were more 
commonly observed in the northern sections, 
constituting 27% of the overall changes. Notably, 
the western part of the forest was characterized by 
the areas that remained generally unchanged, rep-
resenting 14% of the observed dynamics. Overall, 
this spatial differentiation in stand changes indi-
cated a heterogeneous nature of the evolution of 
the forest, with the southern and northern regions 
exhibiting contrasting trends.

The analysis of stand dynamics in the Time-
kssaouine forest between 1999 and 2020 reveals 
notable trends. The predominant pattern, observed 
in 60% of the forest area (5872 ha), is character-
ized by unchanged areas, particularly in the west 
(Figure 4), marking the most prevalent state dur-
ing the study period. Forest progression, observed 
solely in cork oak stands and plantations, consti-
tutes a minimal proportion, accounting for less 
than 2% of the total forest area. Conversely, forest 
regression is a more prominent trend, represent-
ing 11% of forest area (1.041 ha), particularly in 
cork oak and Barbary thuja stands. In compari-
son, cork oak presents a higher rate of regression, 
with associated stands representing 6% of forest 
area. On the other hand, stand densification pat-
terns are mainly marked by low de-densification, 
particularly under cork oak stands, which account 
for 8.40% of forest area compared with 6.60% for 

Figure 3. Map of the spatial distribution of changes in the Timekssaouine forest stands between 1999 and 2020

Table 3. Changes in stand dynamics across the Timekssaouine Forest from 1999 to 2020. The main figures denote 
area in ha, with percentages in parentheses representing their proportion relative to the total forest area

Trend
Stand

Total
QS TA PLA SEC

Progression 24 (0.25) - 121 (1.25) - 145 (1.49)

Regression 606 (6.24) 364 (3.75) 5 (0.05) 66 (0.68) 1041 (10.71

De-densification

816 (8.40) 640 (6.59) - - 1456 (14.99)

Moderate 425 (4.37) 444 (4.57) - - 869 (8.94)

High 201 (2.07) 132 (1.36) - - 333 (3.43)

Unchanged 5872 (60.44)
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Barbary thuja stands. Moderate de-densification, 
observed in around 4% of the forest for both spe-
cies, collectively represents less than 10% of the 
total area. The least observed de-densification 
trend is high de-densification, which represents 
less than 4% (333 ha) of the forest area, with a 
slightly higher prevalence in cork oak stands over 
the study timeframe.

Relationships between vegetation formations 
and site characteristics

Relationship between site variables

Figure A3 illustrates the correlation analysis 
conducted to investigate the connections among 

various observation parameters or variables. Giv-
en the intrinsic relationship between carbon and 
organic matter (R² = 0.93; not shown), both vari-
ables were considered redundant in the dataset, 
as one could be derived through linear regression 
in relation to the other, consequently retaining 
organic matter. Among the noteworthy relation-
ships uncovered, a moderate-weak positive cor-
relation (R² = 0.43) between organic matter and 
altitude was identified. This suggests that as el-
evation increase, the organic matter content tends 
to increase in the area. Additionally, a moderate-
weak negative correlation was observed between 
pH and both soil depth (R² = -0.41) and slope 
(R² = -0.53), indicating an inverse relationship 
between these variables. In other words, as soil 

Figure 4. Map of the spatial evolution of the Timekssaouine forest between 1999 and 2020

Figure A3. Correlation test assessing the relationship between site variables
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depth and slope increase, the pH tends to decrease 
in the study area.

Assessment of variability and variable 
contributions of principal components

The dataset is illuminated through the PCA 
analysis (Figure 5), revealing that the first two axes 
capture a significant 61.3% of the total variability. 
This surpasses the statistically significant reference 
value of 58.59%, signifying the efficacy of these 
dimensions in portraying the intricate relationships 
within the environmental and site variables. Slope, 
soil depth, and pH strongly contribute to the con-
struction of dimension 1, with significance ranging 
between 50 and 70%. Organic matter and elevation 
contribute to the construction of dimension 2, with 
significance ranging between 40 and 70%, where-
as the distance from villages (douars) contributes 
weakly while more prominently influencing di-
mension 3. On the basis of these eigenvalues, two 

dimensions are sufficient to explain the construc-
tion of the principal components.

Evaluation of representation quality of variables 
and contribution to dimensions

The evaluation of variable representation, 
based on cos² values, is illustrated in Figure 6. 
Proximity to the correlation circle signifies the 
significance of a variable on the factorial map; 
those closer are pivotal for interpretation, while 
those near the center wield less influence in ear-
ly components. Organic matter, slope, and soil 
depth exhibited high cos², indicating robust rep-
resentation, placing variables near the circumfer-
ence. Conversely, distance to villages presented 
low cos², suggesting imperfect representation. 
The analysis demonstrated a positive correlation 
between soil depth and slope, and organic matter 
and elevation. Notably, negative correlation was 
observed between pH and slope.

Figure 5. Variability assessment and choice of dimensions

Figure 6. Representation quality of variables (cos2) and their contribution to dimensions
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The analysis of variable contributions reveals 
distinct patterns in the representation of dimen-
sions (Figure A4). Dimension 1 is primarily 
shaped by pH, soil depth, and slope, whereas di-
mension 2 is predominantly influenced by organ-
ic matter and elevation, with a partial contribution 
from distance to villages. Notably, dimension 3 
places a more prominent emphasis on the vari-
able of distance to villages. The construction of 
the two principal components in the PCA is nota-
bly driven by pH, organic matter, and slope.

Cluster analysis

Clustering the variables into groups on the 
basis of their correlation levels (Figure 7) reveals 
a spatially distinct arrangement of three groups: 
organic matter, distance from villages and eleva-
tion; slope and soil depth; and pH as an individual 
entity. These clusters highlight the spatial rela-
tionships and patterns inherent in the variables, 
indicating specific groups, the behaviors of which 
are correlated. Systematic grouping underlines 
the homogeneous interactions between variables, 
typified by the cohesive nature of organic mat-
ter, distance from villages and elevation in one 
group, the interdependent dynamics of slope and 
soil depth in another, and the stand-alone posi-
tioning of pH.

Interpretation according to the graph of 
individuals and variables 

The critical probability of the Wilks test (p 
= 0.004) indicated the variable the modalities of 
which best separated individuals on the plane. 
The most influential qualitative variable for illus-
trating distances between individuals on the plane 
was the grazing (parc) variable. The synthetic il-
lustration (Figure 8) of individuals revealed that 
dimension 1 opposed individuals such as p42, 
p74, p36, p52, p39, p77, p50, p73, characterized 

Figure A4. Contribution of variables to the construction of dimensions in PCA

Figure 7. Clustering of environmental and site 
variables
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by strongly positive coordinates on the axis, to in-
dividuals like p38, p24, p33, p43, p47, p34, p71, 
p55, characterized by strongly negative coordi-
nates on the axis.

The group to which individuals p42, p74, p36, 
p52, p39, p77, p50, p73 belonged were typically 
characterized by the steepest slopes and deepest 
soils, from the most extreme to the least extreme, 
and lowest pH and organic matter content (Figure 
9). This suggested that the observed changes in 
cork oak formations in this group, dominated by 
dense to moderately dense strata (QS1 and QS2), 
were primarily conditioned by the aforementioned 

factors. These forest formations relied on deep 
soil, favoring robust root development, and were 
situated on steep slopes with acidic soil conditions 
(pH ≤ 6.5), a factor limiting cork oak formations. 

Conversely, the group to which individuals 
p38, p24, p33, p43, p47, p34, p71, p55 belonged 
presented medium to high values for pH and 
slope, soil depth and elevation. These individu-
als belonged to formations composed mainly of 
light to sparse cork oak strata (QS4 and QS3). 
The changes observed in this group were mainly 
conditioned by low slopes, between 20 and 25%, 
low elevations, around 600 m, and shallow soils. 
The forest formations in this group are limited by 
the soil typology, which is generally neutral or 
basic in pH. It should be noted that the modalities 
of grazing (parc_F and parc_M) were strongly 
correlated with this dimension, suggesting that 
they could summarize dimension 1 on their own. 
Grazing was less frequent in dense to moderately 
dense forest strata and more frequent in sparse 
and open strata. 

Individuals in dimension 2 stand out in par-
ticular, forming a group characterized by high 
organic matter content and greater elevation. 
This group can be explained by the fact that the 
dominant forest strata are located far from vil-
lages (3 to 4 km), on steep slopes (35%) and on 
shallow soils. This explains why this group stands 
out from the others, as it is mainly influenced by 

Figure 8. Illustration of grazing variable for showing 
distances between individuals

Figure 9. Principal components by grouped site and environmental variables
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distance from villages, which contributes strong-
ly to dimensions 2 and 3.

Factor analysis for mixed data (FAMD)

Grazing was found to be explanatory for the 
typology of forest formations between moderately 
dense to dense groups and those of clear to sparse 
density. Figures 10 and 11 show the distribution 
of the modalities according to the forest stratum 
on the two dimensions of the FAMD. Considering 
the variables on both dimensions, organic sub-
stances, logging incidents, and distance from the 
villages contribute to dimension 1, while aspect 
alone could explain dimension 2 (Figure A5). The 
investigation of variable contributions to dimen-
sions reveals a strong correlation on dimension 1 
with clear to sparse cork oak formations (QS3 and 
QS4). These formations are strongly correlated 
with the second dimension and are conditioned 
by dominant warm slopes (ZC) and very frequent 

logging incidents (TF). They rest on shallow non-
climatic soils without calcareous reserves and 
with a modal type of soil (SPENCSRCM). On the 
same dimension, they contrast with dense forma-
tions (QS1), characterized by infrequent logging 
incidents (PF) and dominated by slightly evolved 
and brownified soils (CSPEB). The dimension 
shows a correlation with grazing intensity in the 
weak modality. This weakness is attributed to the 
significant distance from villages, providing an 
explanatory factor.

Moderately dense cork oak formations (QS2) 
are strongly correlated with the first dimension. 
The variation in forest strata is primarily condi-
tioned by variables related to organic substances, 
logging incidents, and distance from the villages. 
These formations are conditioned by low log-
ging incidents (F) and are found on shallow non-
climatic soils without calcareous reserves with 
brownified modal (SPENCSRCMB). They are 
also influenced by cool and intermediate slopes 

Figure A5. Contribution of variables to the construction of dimensions in FAMD

Figure 10. Illustration of the positioning of individual data points representing environmental 
and site variables in FAMD
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Figure 11. Variable contribution, quality of representation and FAMD synthesis according to grazing 
and aspect factors

(ZF and ZI). The intensity of grazing is correlated 
with this dimension, with a moderate modality, in-
dicating that this formation is distant from human 
habitation. Dominant aspect also conditions the 
typology of the forest stratum, with sparse density 
strata generally found on warm slopes, clear and 
dense strata on cool slopes, and moderately dense 
strata on slopes ranging from cool to intermediate.

Modeling of change in the study forest

The performance evaluation of the RF models 
developed to predict the various forest parameters 
showed generally effective performance (Figure 
12). The model for the probability of infraction 
occurrence achieved an AUC of 0.70, indicating 
reasonable predictive capability, while the model 
for soil texture attained the highest AUC at 0.80, 
demonstrating strong performance. In compari-
son, the RF model for overall stand change had 
the lowest AUC of 0.67, though still suggesting 
reasonable effectiveness. Overall, these achieved 
scores show that the three models exhibited ad-
equate to strong predictive power. Furthermore, 
for edaphic factors, the RF model for soil depth 
achieved an R² of 0.89, indicating a high degree 
of correlation between predicted and observed 
values and suggesting that the model accounts 
for a substantial portion of variance. In contrast, 
soil pH modeling achieved a more moderate R² 
of 0.50, reflecting considerable unexplained 

variance, suggesting a relationship not fully cap-
tured by the predictor variables.

The variable importance assessment the RF 
model identified autumn precipitation, distance 
from roads, occurrence of infractions, and dis-
tance from Douars, in that order (Figure A7), as 
the most influential factors in predicting forest 
change in the study area. Other important vari-
ables included pH, carbon, annual precipitation, 
slope, and spring precipitation. The results sug-
gest that precipitation patterns, proximity to in-
frastructure and human activities, as well as soil 
and terrain characteristics, are critical drivers of 
forest dynamics in the region. In general, climatic 
variables exhibited the greatest influence, with 
autumn precipitation and annual precipitation 
being by far the most influential factors. Human-
related variables, including forest infractions 
and distance from douars, were also identified as 
important drivers of change in the forest. In con-
trast, edaphic variables were generally the least 
contributors to forest change.

The spatial distribution of the predicted likeli-
hood of forest infractions (Figure 13) indicates a 
predominance (54.38%) of areas with a low-to-
moderate probability, dispersed throughout the 
forest landscape. In contrast, the regions with a 
high-to-very high likelihood collectively cover 
22.98% of the forest area and are primarily con-
centrated in the southern and northern zones, with 
some scattered in central parts. Nonetheless, the 
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Figure A6. Correlation matrix between edaphic variables measured at plots and SoilGrids interpolated variables

Figure 12. Performance evaluation scores based on ROCAUC for the RF models developed for each case

Figure A7. Variable importance assessment of the 
predictor variables used to model stand evolution in 

the study forest

areas with a very high susceptibility to infractions 
make up the smallest portion (3.78%) of the for-
est, with these sections primarily restricted to the 
southwestern edges of the study area.

The analysis of forest stand dynamics re-
vealed substantial regression across the forest 
area over time (Figure 15). Notably, 35.40% of 
the total forest area, approximately 3.400 ha, 
was predicted to show signs of regression, with 
occurrences spread throughout the forest, though 
more concentrated in the southwestern regions. 
In contrast, about 9.64% of the area, around 
930 ha, was predicted to display progression, 
primarily located in the north, with some scat-
tered patches extending southward into central 
zones. Predictions from the RF model indicate 
that the majority of the forest area, representing 
54.96%, will remain stable throughout the study 
period. The extensive areas undergoing regres-
sion point to issues such as deforestation or deg-
radation, likely driven by human pressures, as 
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Figure 13. Probability of infraction occurrence prediction by the RF model

suggested by the predicted distribution of for-
est infractions. A comparison with forest change 
estimates obtained through statistical methods 
(Figure 3) reveals a tendency for this approach 
to overestimate both regressive and progres-
sive changes relative to ML results. Specifically, 
the areas projected to undergo regression cover 
nearly 60% of the forest area with the statisti-
cal method, compared to just over one-third in 

ML predictions. Likewise, the areas anticipated 
to show forest growth account for 27% of the 
forest area according to the statistical method, 
whereas ML predicts less than 10%. In contrast, 
the regions expected to remain stable are sig-
nificantly underestimated by the statistical ap-
proach, which predicts them at only 14% com-
pared to more than half of the forest area as fore-
casted by ML.

Figure 14. Distribution of edaphic factors across the study area predicted by the RF model 
(a: soil depth; b: soil pH; c: SOM; d: soil texture)
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The results of assessment of the relationship 
between predicted stand evolution and environ-
mental, site, and human factors highlight the spe-
cific roles of the latter on the likelihood of regres-
sion or progression in forest area in the region 
(Figures 6–10). For the areas predicted to under-
go regression, the majority were associated with 
a silty-clay soil texture type, comprising 20.15% 
of the total area where regression is anticipated. 
Similarly, regression was predicted to be promi-
nent in the areas (30.02%) with soil depth under 
25 cm and SOM levels around 4.0 (24.34%). Fur-
thermore, the areas with a soil pH between 6.4 
and 6.8 account for 21.44% of the total regression 
area. Interestingly, regression is mostly projected 
in the areas with low to medium probability of 
forest infractions, making up 18.70% of the total 
area with predicted regression (35.40%), which 
contrasts with the areas experiencing high to very 
high predicted levels of forest infractions, consti-
tuting only 10.22% in these regions. In contrast, 
progression is most likely to occur in the areas 
with silty-clay soil texture (6.03%) and is least 
likely in the areas with silty-sand texture (0.64%). 
Progression is highest in the regions with shal-
low soil depth, particularly below 18 cm (4.45%), 
and lowest in the areas where soil depth exceeds 
42 cm (0.26%). The areas with SOM between 
3.0 and 4.0 dg/kg exhibit the greatest progression 
(3.53%), while the regions with SOM between 

4.9 and 6.6 show minimal progression (0.28%). 
Additionally, progression is lowest in the areas 
with a soil pH above 7. Finally, progression is 
least frequent in the areas of high probability of 
forest infractions (0.32%).

DISCUSSIONS

Spatiotemporal analysis of forest ecosystems 
holds crucial significance, especially in the Medi-
terranean region, where unique environmental 
challenges prevail. It enables a comprehensive 
understanding of the complex interplay between 
space and time, unveiling patterns of ecological 
dynamics and landscape transformations (Gratzer 
et al., 2004; Di Rita et al., 2018). In the Medi-
terranean region, characterized by a delicate bal-
ance of biodiversity, climate variability, and hu-
man activities, spatiotemporal analysis becomes 
instrumental in assessing the impacts of climate 
change, wildfires, and land-use practices on forest 
health (Vennetier et al., 2005; Sanz et al., 2013; 
Dallahi et al., 2017). By examining temporal 
trends and spatial distributions, it is possible to 
develop targeted conservation strategies, moni-
tor ecosystem resilience and implement informed 
sustainable management practices, ensuring the 
preservation of biodiversity and ecological integ-
rity in this ecologically sensitive region.

Figure 15. Evolution of the study forest predicted by the RF model



213

Ecological Engineering & Environmental Technology 2025, 26(3), 195–219

In the conducted study, the cork oak woodland 
formation in the Timekssouine forest, at different 
densities, was observed to have undergone spatial 
regression and a remarkable decrease in density. 
Indeed, the diachronic analysis revealed concern-
ing findings; the cork oak’s area decreased by 
about 9% between 1999 and 2020, and significant 
de-densification was recorded in various den-
sity classes at a rate of regression of 60 ha/year. 
Numerous studies (Fennane and Redjali, 2015; 
Alaoui et al., 2020; de Mahieu et al., 2020; Laar-
biya, 2023) have reported alarming rates of cork 
oak regression in Morocco. Notably, Fennane and 
Redjali (2015) have reported a worrisome shift 
in the cork oak landscape, with their findings re-
vealing that despite an initial coverage potential 
of about 300,000 hectares, the cork oak forma-
tions currently manifest as a scarce and reduced 
tree cover, extending less than 50,000 hectares. 
Furthermore, in the Maamora forest, a conducted 
inventory demonstrated a substantial decrease in 
the cork oak-covered area, indicating a decline of 
approximately 35% from 1952 to 2016 (Laarbiya, 
2023). The decline is attributed to anthropic pres-
sures, climatic shifts, pest attacks, and unsustain-
able practices, posing significant threats to the 
ecological integrity and sustainability of these 
vital ecosystems (Laaribya et al., 2021). This is 
manifested through cork harvesting, grazing, and 
soft acorn picking by local communities, which 
detrimentally impacts forest regeneration. These 
activities disrupt natural cycles, impeding the 
replenishment of younger trees. Consequently, 
these forests age beyond optimal harvesting con-
ditions, threatening ecological balance and the 
sustainability of cork oak ecosystems in the long 
term (Lahssini et al., 2015).

In the conducted study, cork oak forma-
tions exhibited a complex interdependence with 
environmental factors, prominently influenced 
by slope, soil depth, and pH. Thriving on steep 
slopes of 20 to 25%, these formations benefit 
from optimal drainage, preventing waterlogging 
and facilitating essential aeration, which ensures 
robust vegetation development owing to exten-
sive root establishment (Bagaram, 2016; Bou-
jraf et al., 2021). The deep soils on which these 
formations rest provide cork oaks with adequate 
space to establish a vigorous root system, an-
chor themselves firmly and access the nutrients 
and water they need. The acidic pH in these ar-
eas serves as a favorable condition for cork oaks, 
influencing nutrient availability and microbial 

activity (Serrasolses et al., 2009; Rossetti et al., 
2016). However, the shift in formations, charac-
terized by scattered or clear cork oaks, appeared 
to occur in response to gentle slopes below 20–
25%, particularly in low-lying areas with shallow 
soils. In these areas, this could be attributed to 
the limitations imposed by shallow soils, which 
prevent the development of a robust root system, 
affecting overall growth and survival. In addition, 
forest formations are limited in the areas where 
the soil typology presents a generally neutral or 
basic pH, as cork oaks are adapted to acid soils 
(Serrasolses et al., 2009).

On the basis of the consideration and analysis 
of both qualitative and quantitative variables in our 
the conducted, grazing intensity was revealed to 
serve as a key explanatory factor for the catego-
rization of forest formations in the Timekssouine 
forest. Grazing is a crucial determinant shaping the 
diverse typologies of Moroccan forest formations, 
contributing to the differentiation between areas 
with different levels of tree density (Bakkali et al., 
2000). Indeed, overgrazing poses a critical threat 
to cork oak regeneration, significantly impeding 
the natural recovery of these vital ecosystems. In-
deed, the study by Alaoui et al. (2020) has docu-
mented an overgrazing rate of approximately 80% 
in the cork oak forests of Sehoul, resulting in for-
est regression is twice as high as forest production. 
Furthermore, Laaribya et al. (2014) observed an 
excessive pastoral capacity of 6.4 units/year, sur-
passing the ecosystem productivity by more than 
fourfold, given the optimal capacity balance stands 
at 1.5. The continuous grazing pressure from live-
stock, often exceeding sustainable limits, hampers 
the growth of young cork oak saplings and limits 
the recruitment of new individuals (Benzyane, 
1996; Aronson et al., 2012). This can prevent the 
establishment of a diverse tree canopy, crucial for 
maintaining ecological balance (Mysterud, 2006; 
Bagella et al., 2013). Furthermore, overgrazing ex-
acerbates soil erosion and disrupts nutrient cycling, 
further hindering the favorable conditions neces-
sary for successful cork oak regeneration (Laouina 
et al., 2020; Bicho et al., 2022).

Indeed, local communities’ heavy dependence 
on forest resources for livelihood sustenance has 
created significant pressure on these ecosystems. 
The traditional agro-forest management practices, 
while historically sustainable, have become in-
creasingly strained due to population growth and 
changing economic demands, leading to over-
exploitation. Specifically, the intensification of 
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grazing practices has exceeded the natural regen-
erative capacity of the forest, with studies show-
ing grazing intensity often surpassing sustainable 
thresholds by 300–400% in Mediterranean regions 
(Roces-Díaz et al., 2021; Hammouyat et al., 2022; 
Solano et al., 2023). The economic pressures on 
local communities have led to increased forest 
resource extraction, particularly in vineyard and 
olive cropland areas where traditional land-use 
patterns are being altered to accommodate more 
intensive agricultural practices. In complex agro-
ecosystems of the Mediterranean basin, these pres-
sures are exacerbated by rural area depopulation 
and the consequent loss of traditional agricultural 
knowledge that historically helped maintain eco-
logical balance. Furthermore, the fragmentation 
of Mediterranean landscapes, resulting from long-
term settlement history and continuous socioeco-
nomic interactions, has created additional chal-
lenges for sustainable resource management. This 
fragmentation has particularly impacted tradition-
al agricultural systems like olive groves and vine-
yards, which serve as crucial elements in main-
taining landscape mosaic integrity and providing 
ecosystem services (Pausas et al., 2019; Forzieri et 
al., 2022). The formulation of practical guidelines 
aimed at counteracting soil degradation, water 
depletion, and rural area depopulation has become 
imperative, requiring a delicate balance between 
economic sustainability and medium-term eco-
logical benefits. The recovery and conservation of 
these agricultural resources are essential, as they 
provide positive externalities and social benefits 
at both local and regional levels, contributing to 
improved food security, land quality, and the pro-
vision of related ecosystem services.

Furthermore, the conducted study builds on the 
growing trend of using ML models to effectively 
analyze forest change dynamics across Mediter-
ranean landscapes (Praticò et al., 2021; Chafik et 
al., 2021; Aziz et al., 2024), leveraging their robust 
predictive capabilities. Notably, in the conducted 
study, RF was shown to be effective in assessing 
changes in forest cover, as has been the detailed 
in these regions in other studies (Zerouali et al., 
2023;). Indeed, Aziz et al. (2024) found that RF 
outperformed neural network models such as ar-
tificial neural networks (ANN) in monitoring and 
predicting land use changes, particularly in for-
ested areas affected by agricultural and urban en-
croachment, as seen in the considered study area. 
This effectiveness is attributed to the RF ability to 
capture complex, non-linear relationships among 

variables, allowing it to accurately identify pat-
terns in forest change (Zhao et al., 2018; Mush-
agalusa et al., 2024). In addition, the scalability of 
RF to large regional datasets gives it an advantage 
over traditional statistical methods, which may 
struggle with such complexity (Almeida et al., 
2022; Suárez-Muñoz et al., 2023). In Morocco and 
surrounding regions, the use of RF offers a promis-
ing approach to assess climate change impacts on 
forest ecosystems, particularly given the region’s 
often-limited data availability. While traditional 
statistical approaches may falter with incomplete 
or inconsistent datasets, the RF capacity to handle 
missing data and integrate multiple data sources 
helps address these common challenges in dynam-
ic environments (Zhao et al., 2018).

While RF demonstrated robust performance 
in the conducted study, several important limi-
tations warrant careful consideration. Temporal 
bias may arise from reliance on historical data for 
training samples, leading to underrepresentation 
of rare forest conditions in harder-to-access areas 
(Hengl et al., 2018; Senthilkumar et al., 2022). 
Additionally, the ‘black box’ nature of RF compli-
cates the interpretation of ecological mechanisms 
behind predicted changes, hindering direct causal 
inferences, while variable selection may priori-
tize data availability over ecological relevance, 
potentially overlooking significant unmeasured 
factors (Rigatti, 2017; Giodotti et al., 2018). Sen-
sitivity to class imbalance can affect accuracy for 
less common forest density classes, and insuf-
ficient temporal resolution may fail to capture 
critical extreme events or short-term fluctuations 
impacting forest dynamics. Lastly, spatial auto-
correlation among ecological data can inflate ac-
curacy metrics due to similarities between nearby 
locations, emphasizing the need to complement 
RF results with expert knowledge, field valida-
tion, and alternative modeling approaches for in-
formed forest management decisions (Sekulić et 
al., 2020; Tepe, 2024). These limitations highlight 
the importance of combining RF results with ex-
pert knowledge, field validation, and complemen-
tary modeling approaches, especially when ap-
plying findings to forest management decisions.

Climatic variables, notably autumn and annual 
precipitation, were identified as paramount in pre-
dicting forest change, in line with similar findings 
in the region affirming the central role of precipita-
tion in ecological dynamics (Linares et al., 2012; 
de Waroux and Lambin, 2012; El-Bouhali et al., 
2024). Indeed, in Moroccan forest ecosystems, 
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precipitation is a key predictor of forest change 
and water availability is a crucial limiting factor 
in this region characterized by episode of drought 
especially in the summer (Linares et al., 2012; Ez-
zine et al., 2023). Research in the Middle Atlas 
highlights that variability in autumn rainfall sig-
nificantly affects the regeneration of forests, with 
dry periods leading to lower regeneration rates and 
heightened drought vulnerability (Benabid, 2019; 
Benhssaine et al., 2024). Similarly, studies in the 
High Atlas indicate that annual precipitation pat-
terns are closely linked to shifts in forest cover and 
biomass, with even minor changes impacting for-
est health and biodiversity (Serbouti et al., 2023; 
Saddik et al., 2024). In addition, the importance of 
anthropogenic indicators, such as forest infractions 
and proximity to dwellings, highlighted the extent 
to which human pressures, particularly overgraz-
ing, which was identified using the statistical ap-
proach, are a key factor in forest regression. This 
is consistent with global observations that human 
activities, particularly those that facilitate access 
to forests and increase exploitation, often exacer-
bate forest degradation. The regression patterns 
observed, particularly in the areas with soil char-
acteristics such as silty-clay texture and shallow 
depth, and characterized by moderate likelihoods 
of infraction, demonstrate the complex interac-
tions between biophysical conditions and human 
disturbance.

However, climatic data, which serve as criti-
cal predictors in understanding forest changes, 
can exhibit variability that may not be fully cap-
tured or accurately recorded. In the regions prone 
to extreme weather conditions, such as droughts 
or erratic rainfall patterns, characteristic of Mo-
rocco, the available precipitation data might be 
insufficiently detailed or complete, potentially 
misrepresenting the true climatic impacts on for-
est ecosystems (Pelletier et al., 2015; Merchant 
et al., 2017). These can complicate the correla-
tion between observed changes in forest cover 
and climatic variables, leading to incomplete 
conclusions about the drivers of ecological dy-
namics (Radke et al., 2020). Moreover, remote 
sensing data, while invaluable for monitoring for-
est changes, can be influenced by factors such as 
atmospheric conditions, sensor limitations, and 
variations in land surface characteristics. The 
presence of cloud cover, for instance, can ob-
struct satellite observations, leading to gaps that 
compromise data continuity and accuracy (Chen 
et al., 2015; Mitchell et al., 2017). These factors 

can affect the interpretation of forest health and 
change over time, particularly in terms of assess-
ing the extent of regression or recovery of cork 
oak formations. Thus, it is essential to account for 
these uncertainties in data collection and analysis, 
as they could significantly impact results, inter-
pretations, and subsequent management strate-
gies aimed at forest conservation and restoration.

CONCLUSIONS

The conducted diachronic analysis of the 
Timekssaouine forest in Morocco, spanning two 
decades, highlights the alarming regression of 
cork oak formations, particularly in the dense and 
moderately dense strata. The observed decline of 
9% raises concerns about the overall health and 
sustainability of the forest ecosystem. Grazing 
intensity emerged as a crucial factor influencing 
these changes, underlining the need for targeted 
conservation efforts and sustainable management 
practices to mitigate degradation. The expan-
sion of open and sparse strata, coupled with the 
decrease in dense cork oak areas, highlights the 
complex relationship between land use dynamics 
and environmental variables such as topography 
and soil characteristics. The incorporation of an 
RF-based ML approach has complemented this 
analysis, providing a practical means of more 
effectively identifying and quantifying the influ-
ence of these key factors, where climatic vari-
ables, particularly precipitation, have emerged as 
the most important in shaping the forest structure. 
ML improves understanding of forest change 
dynamics by overcoming some of the limita-
tions associated with traditional approaches. The 
combination of diachronic analysis and RF-based 
modeling allows for improved monitoring and 
assessment of forest transformations, providing 
a comprehensive strategy that can be adapted to 
this specific region. Future conservation strate-
gies should adopt this integrative approach, tak-
ing advantage of continuous monitoring and ad-
vanced remote sensing technologies to overcome 
the limitations of temporal and spatial resolu-
tion in capturing complex ecological processes. 
Broadening the scope to include socio-economic 
factors and community involvement will enable 
a more complete understanding of the human-
nature dynamics influencing forest ecosystems, 
thereby supporting the sustainable management 
and resilience of the Timekssaouine forest.
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