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INTRODUCTION 

Water is of vital and critical importance to 
ecosystems and human societies (Liu et al., 2023). 
The effects of human activities on land and water 
are now extensive. These reflect physical changes 
to the environment. Global changes such as ur-
banization, population growth, socioeconomic 
change, evolving energy needs, and climate 
change have exerted unprecedented pressure on 
water resources systems. It is argued that achiev-
ing global water security is the key to sustainable 
development (Diansyukma, 2021; Mishra et al., 

2021). International concern about the security of 
the global water supply has grown over the past 
two to three decades, and there is a need for a 
more comprehensive strategy to produce sustain-
able solutions that meet the escalating problems 
with water management (Falconer, 2022). Access 
to safe water sources and sanitation for every-
one is one of the sustainable development goals 
(SDGs), which the United Nations (UN) has de-
clared a human right. About 70% of the Earth’s 
surface is covered in water, with about 97.5% 
of that water being salty or seawater. The sad 
thing is that only about 2.5% of this freshwater is 
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usable by humans, with the remainder still exist-
ing in the form of frozen water from glaciers and 
underground water (Hotloś, 2008).

The amount of water in an area on the Earth’s 
surface will always be the same from time to 
time. The only difference is the hydrological 
process that takes place in that area. The hydro-
logical cycle is when water moves from the atmo-
sphere to the earth and back again. This cycle is 
vital in the relationship between groundwater and 
surface water. LULC can affect the watershed’s 
water balance by affecting the amount of surface 
runoff, interflow, base flow, and evapotranspira-
tion (Sulamo et al., 2021). If LULC has many ele-
ments that make the water that falls to the ground 
more absorbed into the soil, there will be more 
water in the soil basin. However, if in the process 
LULC has less media to absorb water, then the 
water will become surface water or water flowing 
on the ground (Pan et al., 2018). 

Land cover change refers to permanent land 
characteristics, such as vegetation type and soil 
condition. Land cover change is a term used to 
describe permanent land characteristics, such as 
vegetation type and soil condition. Meanwhile, 
LULC change refers to the changes in the way 
humans utilize or manage a piece of land under 
a planning concept (Nedd et al., 2021). Increased 
agriculture, urbanization, deforestation, and hu-
man activity all contribute to changes in LULC 
throughout time and space, while changes in land 
cover affect the pattern of water availability and 
water balance (Jamal and Ahmad, 2020).

The Pasi watershed is crucial in supporting 
the ecosystem and life on Pasi Gusung Island. 
The water that flows through this watershed sup-
ports agriculture and fisheries and is a significant 
source of drinking water supply. However, chal-
lenges include limited access to clean water, fluc-
tuations in water quality, as well as the threat of 
pollution and climate change that can affect water 
availability. This study aimed to bridge the gap 
in understanding the relationship between land 
cover change and groundwater availability. In 
previous studies, LULC affected water supply at 

the watershed scale. These systemic changes will 
have compounding effects on water availability 
(Martin, 2021). This study hypothesized that land 
cover change significantly affects groundwater dis-
charge, with additional contributions from climatic 
factors, population growth, and human activities 
leading to increased water deficits yearly. LULC 
changes were captured and predicted using CA 
analysis using an ANN on the Molusce plugin in 
QGIS. Water availability and balance are evaluated 
using the QSWAT feature in the QGIS application. 
The land cover used as the present is the land cover 
in 2023, and the land cover used as a future predic-
tion is the land cover prediction in 2033. This com-
prehensive approach provides a more holistic and 
strategic overview for developing and sustaining 
community-based water supply systems.

MATERIALS AND METHODS

Pasi Gusung Island is a small island located 
within the Pasi watershed. Pasi Gusung Island is an 
island in the Bontoharu sub-district of Selayar Is-
lands Regency with an area of approximately 2.306 
hectares. Pasi Gusung Island is administratively lo-
cated in Bontoharu Sub-district and consists of 3 
villages: Bontoborusu Village, Kahu-Kahu Village 
and Bontolebang Village (Table 1). Geographically, 
Pasi Gusung Island is located at 120°23’32.03”–
120°25’59.87” East Longitude and 6°6’18.46”–
6°12’32.52” South latitude (Government of Selayar 
Islands Regency, 2023). The island’s geographical 
location within the Pasi watershed provides unique 
challenges and opportunities for water resources 
management, particularly in providing adequate 
water to the local population (Figure 1).

Cellular automata (CA) analysis using artificial 
neural network (ANN) 

Before looking at current and future water 
availability, the authors first considered land cov-
er and land use on Pasi Gusung Island in 2023 and 
predicted LULC for 2033. LULC change detection 

Table 1. Territory and area of Pasi Gusung Island
District Sub-district/Village Area (Ha) Percentage (%)

Bontoharu
Bontoborusu 1245.68 54.02

Bontolebang 451.74 19.59

Kahu-Kahu 608.59 26.39

Total 2306.01 100.00
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and forecasting are essential factors to guide plan-
ning, land resources, and sustainable development 
management (Degerli and Çetin, 2022). The land 
cover prediction simulation model is an effective 
and repeatable technique to evaluate the causes 
and impacts of past, present and future scenarios 
in various situations (Abbas et al., 2021). For the 
projection of land cover, the CA analysis method 
with ANN is used, which uses the Modules for 
LULC Change Evaluation (MOLUSCE) plugin 
from the QGIS application (Indhanu et al., 2025; 
Setiawan and Nandini, 2022).

The stages and data requirements for the CA 
analysis method with ANN using the MOLUSCE 
plugin from the QGIS application are as follows:

Land cover data: land cover data for 2014, 
2019, and 2023 taken from Landsat 8–9 OLI/
TIRS C2 L2 (Dibs et al., 2023) were obtained 
from the USGS Earth Explorer website (https://

earthexplorer.usgs.gov/) imagery using bands 
6,5,4 to view land cover with false color or false 
combination bands used to display objects with 
spectra invisible to the human eye. With these 
various band combinations, it is possible to ana-
lyze satellite images for multiple purposes such 
as land, vegetation, water, or urbanization analy-
sis. One commonly used combination is the com-
bination for analyzing vegetation and landscapes. 
Historical data is a reasonable basis for predic-
tion, but the more land cover data from the past, 
the more accurate the prediction can be. Consis-
tent land cover data from multiple time points is 
required to train the prediction model.

Driving factors: in the MOLUSCE plugin, 
there are so-called driving factors, which are 
variables or factors that influence and drive land 
cover change over time. These factors are used 
to model and predict future LULC change by 

Figure 1. Map of the Pasi Gusung Island research site within the PASI watershed catchment area



304

Ecological Engineering & Environmental Technology 2025, 26(3), 301–314

accounting for environmental, social, and eco-
nomic influences on land cover dynamics. The 
driving factors consist of three categories: natural 
factors, built-up land factors, and socio-economic 
factors (Kim and Newman, 2020). The following 
Table 2 shows the variables of each class.

This study used data on population density 
per ha as the driving factor. This factor measures 
the influence of population on land change. The 
areas with high population density usually expe-
rience faster change, for example into residential 
areas (Table 3).

The method used in the MOLUSCE plugin 
with ANN: MOLUSCE calculates land change 
from time A to time B by comparing two LULC 
maps from different periods. This data is analyzed 
to find the relationship between driving factors 
and land change (Degerli and Çetin, 2022). Vali-
dation of the MLP-ANN model is critical. There-
fore, validation between the QGIS MOLUSCE 
extension and the Cellular Automata model re-
sulted in kappa coefficients. The kappa coefficient 
(or Kappa statistic, often called Cohen’s Kappa) 
is a statistical measure used to assess the degree 
of agreement or consistency between two ob-
servers or models, considering the possibility of 
agreement occurring by chance. It is often used 
in spatial classifications (such as land use maps) 
or reliability testing in categorical data studies 
(Tong and Feng, 2020).

The general scale of kappa interpretation:
 • 0.81–1.00 : excellent category,
 • 0.61–0.80 : good category,
 • 0.41–0.60 : medium category,
 • 0.21–0.40 : weak category,

 • 0.01–0.20 : very weak category,
 • ≤ 0 : no category or worse than random.

In the context of LULC change modeling 
(such as MOLUSCE), the kappa coefficient is 
used to evaluate how well the predictive model 
(e.g., cellular automata) matches the actual obser-
vational data, giving an idea of the accuracy of 
the simulation results to reality. 

After projecting the land cover for the next 
10 years to 2033 using CA analysis with ANN, a 
SWAT model analysis can be carried out for the 
2023 land cover and 2033 land cover predictions. 
In addition, the projected population of Pasi Gu-
sung Island for the next 10 years was obtained 
from the average population growth data pub-
lished by the Central Statistics Agency of Bon-
toharu District, Selayar Islands Regency. This 
method is used to compare water availability in 
2033 and the population in that year, whether it is 
still sufficient or insufficient.

SWAT model analysis

The soil and water assessment tool (SWAT) 
model was first developed by the United States 
Department of Agriculture (USDA), an execu-
tive department of the U.S. federal government 
charged with making and implementing govern-
ment policies on agriculture, forestry, and food. 
USDA in the early 1990s to assess the impacts 
of alternative management practices on the re-
sources of a watershed, particularly concerning 
water, sediment, nutrients, and pollution enter-
ing streams or water bodies within the watershed. 
SWAT is a hydrological model used to predict 
the effects of land management on water yield, 
sediment, pesticide loads, and agrochemicals 
(Gassman et al., 2014; Ikhwali et al., 2022).

The SWAT model has become one of the most 
widely used water quality and quantity and water-
shed assessment models worldwide and is used for 
a wide range of hydrological and environmental 
issues. The worldwide use of SWAT can be attrib-
uted to its ability to address water resources issues, 
which has been trained through many training 

Table 2. Classification of driving factors for land 
cover projection with the MOLUSCE plugin in QGIS

Classification Driving factors

Natural factors
Slope

Distance to river

Buildable land factor
Distance to road

Residential

Socio-economic factors Population density

Table 3. Classification of density at Pasi Gusung Island
Sub-district/village Population Area (ha) Population density (people/ha) Category

Bontobarusu 1,642.00 1,245.68 1.32 Low population

Kahu-Kahu 2,055.00 608.59 3.38 Low population

Bontolebang 982.00 451.74 2.17 Low population
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workshops and international conferences over the 
past decades. It includes extensive supporting doc-
uments and software, as well as open-source code 
that can be customized by model users for specific 
application needs (Gassman et al., 2014).

The SWAT model divides a watershed into 
several sub-watersheds to improve calculation 
efficiency. This approach is beneficial when ar-
eas within a watershed have different land uses 
and soil types, which uniquely affect hydrology. 
Each subwatershed has inputs grouped into cat-
egories such as climate, hydrologic response units 
(HRUs), ponds/wetlands, groundwater, primary 
channels, and subwatershed drainage. HRUs are 
the minor land units within a Subwatershed that 
have unique land cover, soil type, and manage-
ment or a combination of all three (Hidayat, 2023).

This study used a variety of data sources, 
including climate projections, historical hydro-
logical and meteorological data, as well as geo-
graphical data (Zhao et al., 2022), all of which are 
explained below:
 • Aster digital elevation model (DEM) map data 

with 30 × 30 m (Rostami et al., 2022) obtained 
from Japan Space Systems (gdemdl.aster.
jspacesystems.or.jp).

 • The prepared climate data consisted of daily 
rainfall, daily maximum-minimum tempera-
ture, humidity, daily minimum and maximum 
temperature, sunshine duration, and daily 
average wind speed (Zhao et al., 2022). For 
2015–2023, the climate data was obtained from 
https://power.larc.nasa.gov/data-access-viewer/

 • Soil data (Zhao et al., 2022) was obtained 
from the land system data of the Regional 
Physical Planning Project or Transmigration 
(RePPProt) of the National Survey and Map-
ping Coordination Agency in 1987.

 • Ministry of Environment and Forestry land 
cover map data 2023.

 • Data analysis in this study was aimed at the 
QSWAT simulation process following the pro-
cess below:

Subwatershed boundary delineation

Watershed delineation aims to produce water-
shed model data, as well as sub-watersheds and 
river networks. The threshold method is used in 
the watershed delineation process. The thresh-
old amount determines the formation and num-
ber of significant river networks and tributaries. 
On the basis of the river network, the number of 

sub-watersheds formed in the watershed will be 
determined (Molina-Navarro et al., 2018). The 
stages carried out in the watershed delineation 
process consist of: DEM data input (add DEM 
grid), determination of the river network (stream 
definition), outlet determination (outlet and inlet 
definition), watershed outlet determination (wa-
tershed outlet selection and definition), and cal-
culation of sub-watershed parameters (calculate 
subbasin parameters).

Establishment of HRU

The HRU is a hydrologic analysis unit based 
on specific soil characteristics, land use, and slope 
class. HRU analysis defines input data through 
overlaying land use maps, soil maps, and slope 
classes (Landuse/Soil/Slope definition). At this 
stage, an overlay was made between the results of 
DEM data, land use data, and soil data. HRU cre-
ation consists of slope intervals, land raster maps 
and soil raster maps in UTM (Universal Trans-
verse Mercator) projection coordinate system for-
mat (Molina-Navarro et al., 2018).

Climate data processing

Climate data in QSWAT simulation consists 
of rainfall and temperature data at stations repre-
senting watershed areas and Weather Generator 
data in the form of solar radiation, wind speed, 
temperature, rainfall, and dew point. After input-
ting climate data, the running process was con-
tinued by utilizing the QSWAT Simulation menu. 
The climate data required is in the form of daily 
data on rainfall, maximum and minimum tem-
peratures, solar radiation and wind speed. Each 
daily data for 10 years is processed in the WGN 
database (Tan et al., 2021) which requires 14 pa-
rameters, including:
 • TMPMX average of the maximum tempera-

ture (°C),
 • TMPMN, average of the minimum tempera-

ture (°C),
 • TMPSTDMX standard deviation of daily 

maximum temperature (°C),
 • TMPSTDMN standard deviation of daily min-

imum temperature (°C),
 • PCPMM average rainfall (mm),
 • PCPSTD standard deviation of daily rainfall 

(mm/day),
 • PCPSKW skew coefficient for rainfall in one 

month,
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 • PR_W1 comparison of possible wet days – 
dry days in one month,

 • PR_W2 comparison of possible wet days – 
wet days in one month,

 • PCPD average number of rainy days in a 
month,

 • RAINHHMX maximum 0.5 hour rainfall 
(mm),

 • SOLARAV average daily solar irradiation in 
one month (MJ/m2/day),

 • DEWPT daily average dew point temperature 
in one month (°C),

 • WINDAV daily average wind speed in one 
month (m/s),

 • SWAT model run.

After the watershed delineation stage, HRU 
formation, and climate data processing, the last 
step is to run the model and simulate it. SWAT 
simulation is done after all input data is filled in 
completely. The SWAT run mode can be select-
ed according to the time range to be simulated. 
Then, SWAT setup is carried out and SWAT is 
run. Saving the output data of simulation re-
sults is done by selecting read SWAT output.

SWAT analysis was carried out twice, name-
ly for LULC 2023 and the prediction of LULC 
2033. After obtaining the results of groundwa-
ter availability through SWAT analysis for 2023 
and prediction of water availability in 2033, a 
comparison calculation of water availability 
with the total water demand for 1 year was car-
ried out with the following formula:

 
𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤 𝑤𝑤𝑎𝑎𝑤𝑤𝑎𝑎𝑎𝑎𝑤𝑤𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑤𝑤𝑎𝑎 𝑎𝑎𝑖𝑖 𝑤𝑤ℎ𝑤𝑤 𝑃𝑃𝑤𝑤𝑃𝑃𝑎𝑎 𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑃𝑃ℎ𝑤𝑤𝑒𝑒

𝑤𝑤ℎ𝑤𝑤 𝑐𝑐𝑐𝑐𝑤𝑤𝑤𝑤𝑤𝑤𝑖𝑖𝑤𝑤 𝑝𝑝𝑝𝑝𝑝𝑝𝑐𝑐𝑎𝑎𝑤𝑤𝑤𝑤𝑎𝑎𝑝𝑝𝑖𝑖 𝑝𝑝𝑜𝑜 𝑃𝑃𝑤𝑤𝑃𝑃𝑎𝑎 𝐺𝐺𝑐𝑐𝑃𝑃𝑐𝑐𝑖𝑖𝐺𝐺 𝐼𝐼𝑃𝑃𝑎𝑎𝑤𝑤𝑖𝑖𝑒𝑒 × 60 𝑙𝑙
𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝

𝑑𝑑𝑑𝑑𝑑𝑑

   (1) 

 
 

𝑟𝑟 = (𝑃𝑃𝑖𝑖−𝑃𝑃0)
𝑃𝑃0 × 𝑖𝑖    (2) 

 

 (1)

RESULTS AND DISCUSSION

Results of cellular automata analysis with 
artificial neural network

In the CA analysis with ANN used is Land-
sat 8-9 OLI/TIRS C2 L2 image data (accessed on 
October 19, 2024) using bands 6,5,4 to see differ-
ences in land cover with false color combination, 
which is a technique that changes the original 
color of the image to show details that are usu-
ally not visible in natural colors. This technique 
is often used in satellite image analysis or remote 
sensing to observe vegetation, water, and land 
use. In determining land use classification, the 
supervised classification method is used by first 

selecting the land cover through the digitization 
process. The digitation process in remote sensing 
is a technique to convert information from analog 
images or raster maps into digital data in vector 
form that can be analyzed further.

Land cover prediction modeling using the 
Mollusce plugin in the QGIS application includes 
several stages, including:

Inputs

The input data is previously digitized land 
cover raster data, 2014 land cover as initial data 
and 2019 land cover as final data. The driving 
data is the 2023 population density data, which 
has been processed into a spatial format (.Shp 
form) and then converted into a raster map en-
tered into the spatial variables column. Next, a 
geometry check was performed to evaluate the 
match between the driving factor raster data and 
the land cover data. 

Evaluating correlations

In this stage, there are three types of correla-
tion evaluation: Pearson’s correlation, Cramer’s 
coefficient, and joint information uncertainty. This 
research used Pearson’s correlation method to de-
termine the relationship between driving factors.

Cellular automata simulation

This stage is where the land cover prediction 
modeling process is performed. At the cellular au-
tomata simulation stage in MOLUSCE, multiples 
apply. The initial year is 2014 and the final year is 
2019, then the prediction results are simulation data 
in 2023. To predict 2033, 3 iterations are needed.

Validation

This validation uses the image of the 2023 
classification results as the referenced map and 
the 2023 simulation results as the simulated map. 
From the simulation results, the kappa (overall) 
value is 0.75, kappa (histo) is 0.79 and kappa 
(loc) is 0.95, where the kappa value obtained is 
included in the “excellent” category.

Land cover projection 2033

The 2033 land cover prediction results 
in 6 land classifications (Figure 2) including 
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secondary mangrove forests, residential, plan-
tations, dry land agriculture, mixed dry land 
agriculture and water expanse. The following 
distribution of the existing land cover area 
in 2023 and the 2033 prediction results can 
be seen in the Tables 4 and 5, as well as the 
land use change and land cover maps above 
show spatial distribution of each category over 
2014, 2019, 2023, and projected 2033. The 
most significant changes are in mixed dryland 
agriculture areas, which tend to decrease and 
convert to dryland agriculture and water bod-
ies. Meanwhile, settlement areas remain fixed, 
with a slight expansion inland. The increase 
in dryland farming areas reflects the pressure 
on natural resources, such as deforestation for 
agricultural expansion. A decrease in mixed 
dryland farming could be due to changes in 

farming practices or conversion to other uses, 
such as residential areas or water bodies. 

Result of SWAT analysis

Sub-watershed delineation

Delineation of sub-watershed boundaries 
is the initial stage carried out for SWAT analy-
sis using 30-meter resolution DEMNAS data, as 
shown below in Figure 4. Slope class maps were 
automatically generated from DEM maps using 
the multiple slope method to produce five slope 
classes with slope classes of 0–8% (flat), 8–15% 
(gentle), 15–25% (moderately steep), 25–45% 
(steep), > 45% (very steep).

Sub-watershed delineation in the SWAT mod-
el is done automatically using DEM data, which 
results in watershed boundaries, sub-watershed 

Figure 2. Land cover with 6 classifications on Pasi Gusung Island in 2014, 2019, 2023, and projected in 2033

Table 4. Land cover change

Clasifications
Area (ha) Selisih

Note
Existing land cover (2023) Land cover predictions (2033) ha %

Secondary mangrove forests 75.75 75.13 0.61 0.81 Reduce

Residential 39.16 40.22 -1.07 2.66 Increase

Plantations 11.68 11.71 -0.03 0.26 Increase

Dry land agriculture 1680.53 1822.46 -141.92 7.79 Increase

Mixed dry land agriculture 460.20 285.07 175.14 38.06 Reduce

Water expanse 21.10 53.83 -32.73 60.80 Increase

Total 2288.42 2288.42
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Table 5. Comparison of land cover change

Land cover 
classifications

2033 (ha)

TotalSecondary 
mangrove 

forests
Residential Plantations Dry land 

agriculture
Mixed dry land 

agriculture
Water 

Expanse

2023 
(ha)

Secondary 
mangrove forests 74.76 0.07 0.22 0.35 0.30 0.05 75.75

Residential 39.16 39.16

Plantations 0.14 11.37 0.17 11.68
Dry land 

agriculture 0.01 1645.43 1.34 33.76 1680.53

Mixed dry land 
agriculture 0.78 176.12 283.07 0.24 460.20

Water expanse 0.38 0.07 0.12 0.56 0.35 19.62 21.10

Total 75.13 40.22 11.71 1822.46 285.07 53.83 2288.42

Note: unchanged.

Figure 3. Contour and topography maps of PASI Island

boundaries, and river networks (Figure 3). This 
watershed delineation uses a 10 ha threshold to 
cover the entire river network in the Pasi water-
shed. Through delineation, watershed boundaries 
were formed with a total area of 1,705.07 ha and 

90 sub-watersheds. The sub-watershed delinea-
tion can be seen in Table 6 and Figure 5. On the 
basis of the results of the delineation of PASI sub-
watershed boundaries, the sub-watershed that has 
the most significant area is sub-basin 44 with an 



309

Ecological Engineering & Environmental Technology 2025, 26(3), 301–314

Table 6. Sub-watershed division based on delineation results

Sub Watershed
Area

(ha) (%)

1 2.49 0.15

2 11.87 0.70

3 3.54 0.21

4 15.22 0.89

5 20.10 1.18

6 3.73 0.22

7 4.98 0.29

8 23.55 1.38

9 17.61 1.03

10 0.96 0.06

11 9.67 0.57

12 22.40 1.31

13 23.83 1.40

14 4.79 0.28

15 19.14 1.12

16 31.97 1.87

17 3.35 0.20

18 40.77 2.39

19 4.50 0.26

20 0.48 0.03

21 2.87 0.17

22 26.32 1.54

23 6.41 0.38

24 29.48 1.73

25 11.96 0.70

26 10.82 0.63

27 10.53 0.62

28 18.47 1.08

29 36.37 2.13

30 27.28 1.60

31 15.98 0.94

32 10.82 0.63

33 52.83 3.10

34 12.06 0.71

35 20.87 1.22

36 13.50 0.79

37 27.85 1.63

38 28.81 1.69

39 46.23 2.71

40 15.41 0.90

41 38.19 2.24

42 29.19 1.71

43 13.40 0.79

44 80.50 4.72

45 22.49 1.32

46 20.67 1.21

47 25.84 1.52

48 20.20 1.18

49 14.45 0.85

50 18.95 1.11

51 19.05 1.12

52 13.11 0.77

53 12.44 0.73

54 29.86 1.75

55 24.22 1.42

56 36.47 2.14

57 11.29 0.66

58 16.18 0.95

59 19.81 1.16

60 23.74 1.39

61 11.20 0.66

62 11.77 0.69

63 13.21 0.77

64 22.68 1.33

65 24.31 1.43

66 13.30 0.78

67 20.67 1.21

68 12.06 0.71

69 10.91 0.64

70 28.43 1.67

71 13.21 0.77

72 28.81 1.69

73 14.64 0.86

74 11.20 0.66

75 10.72 0.63

76 20.96 1.23

77 40.39 2.37

78 15.89 0.93

79 13.78 0.81

80 20.10 1.18

81 12.54 0.74

82 14.07 0.83

83 45.85 2.69

84 16.46 0.97

85 10.05 0.59

86 16.94 0.99

87 14.26 0.84

88 10.62 0.62

89 12.25 0.72

90 13.88 0.81

Total 1,705.07 100.00
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Figure 4. Sub-watershed maps

area of 80.50 ha (4.72%) and the smallest sub-
watershed is sub-basin 20 with an area of 0.48 ha 
(0.03%).

Establishment of HRUs

The hydrology response unit (HRU) is the 
smallest unit of analysis in the SWAT model used 
for hydrological calculations. HRU formation is 
done through an overlay process between the land 
cover map, soil type map, and slope class. HRU 
analysis requires input data in the form of spa-
tial and numerical data. Spatial data includes land 
cover maps, soil type maps, and slope classes, 
while numerical data includes soil characteristics, 
including its physical and chemical properties. 
The land cover map used was the 2023 map and 

the 2033 land cover projection results for the Pasi 
watershed. Soil numerical data were input into 
the SWAT database through the Edit SWAT Input 
mode. HRUs were formed based on the overlay 
results of the three types of input data. 

Climate data processing

Climate data was downloaded through the 
old site https://power.larc.nasa.gov/data-access-
viewer/ (accessed on October 26th, 2024) and 
sourced from the NASA/POWERCERES/MER-
RA-2 (Modern-era retrospective analysis for re-
search and applications, version 2) satellite. The 
number of rainfall stations used consists of 4 sta-
tions. The climate data used in this study is in the 
form of daily climate data for the last 10 years 
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(2014–2023). The climate data contains rainfall 
data (PRECTOTCORR), maximum temperature 
(T2M_MAX), minimum temperature (T2M_
MIN), relative humidity (RH2M), shortwave 
radiation (TOA_SW_DWN), and wind speed 
(WS2M). The station point of climate data maps 
can be seen in Figure 5.

SWAT analysis result

Following all the processes, the results of the 
analysis of groundwater discharge in the Pasi wa-
tershed can be seen in Tables 7 and 8 for ground-
water availability from 2014 to 2023, whereas the 
prediction of groundwater availability for the next 
10 years, namely 2024–2033 in Table 9 and 10, 
which is calculated from the predicted population 

for the next 10 years using the following expo-
nential growth formula.

 

𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤 𝑤𝑤𝑎𝑎𝑤𝑤𝑎𝑎𝑎𝑎𝑤𝑤𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑤𝑤𝑎𝑎 𝑎𝑎𝑖𝑖 𝑤𝑤ℎ𝑤𝑤 𝑃𝑃𝑤𝑤𝑃𝑃𝑎𝑎 𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑃𝑃ℎ𝑤𝑤𝑒𝑒
𝑤𝑤ℎ𝑤𝑤 𝑐𝑐𝑐𝑐𝑤𝑤𝑤𝑤𝑤𝑤𝑖𝑖𝑤𝑤 𝑝𝑝𝑝𝑝𝑝𝑝𝑐𝑐𝑎𝑎𝑤𝑤𝑤𝑤𝑎𝑎𝑝𝑝𝑖𝑖 𝑝𝑝𝑜𝑜 𝑃𝑃𝑤𝑤𝑃𝑃𝑎𝑎 𝐺𝐺𝑐𝑐𝑃𝑃𝑐𝑐𝑖𝑖𝐺𝐺 𝐼𝐼𝑃𝑃𝑎𝑎𝑤𝑤𝑖𝑖𝑒𝑒 × 60 𝑙𝑙

𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝
𝑑𝑑𝑑𝑑𝑑𝑑

   (1) 

 
 

𝑟𝑟 = (𝑃𝑃𝑖𝑖−𝑃𝑃0)
𝑃𝑃0 × 𝑖𝑖    (2) 

 
 (2)

On the basis of the SWAT analysis results in 
Tables 7 and 8, the annual water discharge from 
2014 to 2023 fluctuates significantly in water 
availability, with a peak in 2021 of 465,125.10 m³/
year or 465,125.100 liters/year and the lowest val-
ue in 2023 of 256,414.56 m³/year or 256,414.560 
liters/year. However, this water availability is ac-
companied by population growth, which contin-
ues to grow from 4,493 people in 2014 to 4,679 
people in 2023. As the population increases, the 
annual water demand increases from 98,396.700 
liters in 2014 to 102,470.100 liters in 2023. The 
table shows that water demand is much greater 

Figure 5. Rainfall station point map of Pasi watershed
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Table 7. SWAT analysis results for monthly water discharge for 2014–2023

Year

Debit (cm3/s)
Total 

(cm3/s)Month

1 2 3 4 5 6 7 8 9 10 11 12

2014 4.11 1.91 1.86 1.84 0.34 0.56 0.16 0.02 0.00 0.00 0.10 2.16 13.06

2015 2.36 1.81 1.26 1.03 0.13 0.22 0.02 0.00 0.00 0.00 0.03 2.00 8.87

2016 1.01 1.46 0.62 0.29 0.17 0.32 0.29 0.04 0.09 0.67 0.29 1.15 6.40

2017 1.87 1.41 0.79 0.60 0.21 1.20 0.33 0.16 0.07 0.08 0.77 2.31 9.81

2018 2.85 2.33 1.89 0.58 0.15 0.32 0.67 0.06 0.01 0.00 0.29 1.24 10.38

2019 2.35 0.85 1.33 1.14 0.16 0.16 0.03 0.00 0.00 0.00 0.01 0.35 6.38

2020 1.08 1.47 1.87 0.32 0.96 0.27 0.14 0.30 0.06 0.09 0.51 2.95 10.03

2021 3.85 1.68 2.21 1.16 0.31 0.27 0.24 0.30 0.35 0.17 1.40 2.81 14.75

2022 2.05 2.64 0.92 0.30 1.25 1.00 0.33 0.25 0.18 1.02 1.19 2.83 13.96

2023 2.00 3.44 1.07 0.66 0.14 0.19 0.25 0.02 0.01 0.00 0.12 0.24 8.13

Table 8. SWAT analysis results for monthly water discharge for 2014–2023 (continued)

Year cm3/s cm3/year L/year Total population Population demand 
per year

Difference between 
availability and demand

2014 0.0000131 413.12 413,124.54 4.493 98,396,700 -97,983,575.46

2015 0.0000089 279.57 279,574.51 4.555 99,754,500 -99,474,925.49

2016 0.0000064 202.36 202,361.01 4.543 99,491,700 -99,289,338.99

2017 0.0000098 309.34 309,344.40 4.587 100,455,300 -100,145,955.60

2018 0.0000104 327.26 327,255.30 4.601 100,761,900 -100,434,644.70

2019 0.0000064 201.10 201,097.54 4.632 101,440,800 -101,239,702.46

2020 0.0000100 317.19 317,185.22 4.682 102,535,800 -102,218,614.78

2021 0.0000147 465.13 465,125.10 4.682 102,535,800 -102,070,674.90

2022 0.0000140 440.37 440,366.72 4.680 102,492,000 -102,051,633.28

2023 0.0000081 256.41 256,414.56 4.679 102,470,100 -102,213,685.44

Table 9. SWAT analysis results for monthly water discharge for 2024–2033

Year

Debit (cm3/s)
Total 

(cm3/s)Month

1 2 3 4 5 6 7 8 9 10 11 12

2024 1.64 0.58 0.51 0.74 0.05 0.02 0.04 0.00 0.01 0.34 0.53 0.95 5.41

2025 2.37 3.53 1.89 1.18 0.24 0.44 0.10 0.01 0.00 0.00 0.16 1.85 11.77

2026 2.93 2.56 0.91 0.50 0.15 0.28 0.04 0.01 0.01 0.01 0.43 4.40 12.22

2027 2.71 4.85 1.53 0.57 0.19 0.10 0.05 0.01 0.01 0.10 1.11 2.29 13.51

2028 5.09 4.34 1.28 0.55 0.18 0.06 0.08 0.01 0.04 0.01 0.35 1.36 13.34

2029 3.31 1.83 1.03 0.55 0.94 0.80 0.61 0.32 1.38 0.68 0.68 3.63 15.76

2030 3.15 2.97 2.48 1.35 0.44 0.14 0.03 0.01 0.02 0.07 0.64 4.51 15.79

2031 2.20 2.12 3.95 0.48 0.39 0.13 0.26 0.02 0.01 0.02 0.10 1.53 11.20

2032 4.88 2.27 1.93 1.92 0.48 1.73 0.61 0.17 0.02 0.05 0.70 3.75 18.51

2033 4.79 2.27 1.98 1.83 0.38 0.65 0.20 0.03 0.01 0.00 0.10 2.18 14.42

than water availability yearly. This difference ex-
pressed in the column “Difference between Avail-
ability and Demand” is always negative, indicat-
ing an ongoing water deficit. The most significant 

deficit occurred in 2017 at -100,145,955.60 liters, 
while the smallest deficit occurred in 2021 at 
-102,007,674.90 liters, marking a slight increase 
in water availability in that year.
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Table 10. SWAT analysis results for monthly water discharge for 2024–2033 (continued)

Year cm3/s cm3/year L/year Total population Population 
demand per year

Difference between 
availability and demand

2024 0.000005406 170.96 170,964.74 4,700 102,931,215 -102,760,250.71

2025 0.000011767 371.09 371,094.56 4,721 103,393,185 -103,022,090.44

2026 0.000012224 386.56 386,558.42 4,742 103,855,155 -103,468,596.13

2027 0.000013514 426.16 426,162.55 4,763 104,317,124 -103,890,961.55

2028 0.000013342 420.76 420,756.28 4,784 104,779,094 -104,358,337.37

2029 0.000015762 497.07 497,072.90 4,806 105,241,063 -104,743,990.30

2030 0.000015794 499.46 499,456.74 4,828 105,725,031 -105,225,574.56

2031 0.000011204 353.32 353,318.45 4,850 106,208,999 -105,855,680.95

2032 0.000018510 583.73 583,731.86 4,872 106,692,968 -106,109,235.64

2033 0.000014423 454.85 454,852.41 4,894 107,176,936 -106,722,083.19

Tables 9 and 10 show the results of SWAT 
analysis on the results of land cover projections for 
2024-2033. The most minor discharge occurred 
in 2024 with 170,964.74 m³/year (170,964.740 
liters/year), while the most significant discharge 
was recorded in 2032 with 583,731.86 m³/year 
(583,731,860 liters/year). Overall, there will be 
an increasing trend in water availability from 
2024 to 2033, although this value will still be 
relatively small compared to demand. However, 
this is also in line with the projected population 
growth that continues to gradually increase from 
4.700 people in 2024 to 4.894 people in 2033. 
Along with the increase in population, water de-
mand continues to grow yearly. In 2024, water 
demand was 102,931.215 liters; in 2033, it in-
creased to 107,176.936 liters. Water demand far 
exceeds water availability yearly, resulting in a 
persistent deficit. The smallest deficit occurs in 
2024 at -102,760,250.71 liters, while the most 
significant deficit is projected to happen in 2033 
at -106,722,083.19 liters.

CONCLUSIONS

This study showed a close relationship be-
tween land use and land cover changes and fluc-
tuations in groundwater availability in the Pasi 
watershed. Analysis of land cover from 2014 to 
2023 and projections to 2033 show patterns of 
change that affect the area’s hydrology, includ-
ing groundwater discharge and the balance be-
tween water availability and demand. Land cover 
change dominated by the expansion of dryland 
agriculture and the reduction of secondary man-
grove forests contributes to the deficit in ground-
water availability. Continued population growth 

pressures already limited water resources, creat-
ing a growing annual water deficit. This research 
provides strategic insights for developing sustain-
able water supply systems in response to project-
ed land use change.

This research needs to be further explored 
and viewed from several additional aspects, such 
as socio-economic aspects, spatial distribution of 
land cover on water discharge and other factors 
related to hydrological processes in the Pasi wa-
tershed area. These shortcomings open opportu-
nities for more comprehensive in-depth research 
with a multidisciplinary approach to face future 
water resources management challenges.
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