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INTRODUCTION 

The rapid and often unplanned growth of cit-
ies in areas vulnerable to natural disasters has 
significantly increased the risk of flooding, pos-
ing serious challenges for urban management and 
public safety (Beshir and Song, 2021; Eini et al., 
2020). Floods lead to widespread social, econom-
ic, and environmental consequences, including 
damage to critical infrastructure, loss of personal 
property, and long-term impacts on affected com-
munities (Alipour et al., 2020; Chen et al., 2015). 
Effective water resource management is critical 

in urban settings where rapid development and 
climate change exacerbate flood risks (Abdrabo 
et al., 2020; Almouctar et al., 2024; Antzoulatos 
et al., 2022). As a result, proactive and integrated 
flood risk management strategies are essential 
to minimize immediate damages and mitigate 
broader socioeconomic impacts (Arabameri, Pal, 
et al., 2021; Taromideh et al., 2022).

Sustainable development frameworks, partic-
ularly those incorporating nature-based solutions 
(NBS), are gaining recognition in flood man-
agement. Initiatives such as urban reforestation 
and flood mitigation reservoirs demonstrate the 
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potential of NBS to regulate water flow and re-
duce peak flood events (Pirone et al., 2024). Les-
sons from Brazil’s Cantareira system further em-
phasize the importance of sustainable water and 
soil management in mitigating flood risks (Lense 
et al., 2023). These combined approaches not 
only enhance flood resilience but also strength-
en ecosystem adaptability in the face of climate 
change (Anaya-Romero et al., 2015; Mahmoud 
and Gan, 2018). 

In 2019, the Council of Beni Mellal initiated 
a pivotal partnership aimed at enhancing flood 
protection measures for the city, allocating a bud-
get of approximately $7.8 million. This project 
underscores the city’s commitment to proactive 
and integrated flood management, combining 
practical improvements with a forward-thinking 
approach to safeguarding its residents. Such ef-
forts highlight the pressing need for innovative 
strategies that address both short-term risks and 
long-term sustainability.

Advances in technology, especially geograph-
ic information systems (GIS), remote sensing, and 
geophysical methods, have revolutionized flood 
risk management. For example, UAV-captured 
multispectral imagery has been used to assess 
riparian vegetation’s role in streamflow regula-
tion (Crimaldi and Lama, 2021). while geophysi-
cal techniques and hydrochemical analyses have 
aided in monitoring coastal aquifers (Bechkit et 
al., 2024). Emerging tools, such as fisheye lenses 
for assessing the leaf area index (LAI), provide 
deeper insights into vegetation’s influence on 
local hydrology (Ismaili et al., 2024). Together, 
these technological advancements facilitate more 
accurate flood predictions and detailed hazard 
mapping, which are critical for preemptive risk 
management (Rahmati et al., 2016). 

However, despite these advancements, tra-
ditional hazard mapping methods face persis-
tent challenges, including limitations in data 
quality, difficulty accounting for climate change 
and rapid urbanization, and computational inef-
ficiencies (Cea and Costabile, 2022). Machine 
learning techniques, such as random forest, have 
shown promise in addressing these challenges 
by improving flash flood susceptibility mapping 
in complex environments, as demonstrated in 
the Assaka watershed in southwestern Morocco 
(Talha et al., 2025). Additionally, urban and ag-
ricultural activities in flood-prone zones disrupt 
natural hydrological patterns, further complicat-
ing risk mitigation efforts (Ismaili et al., 2023; 

Soussa, 2010). Case studies from vulnerable re-
gions like the Middle East underscore the need 
for resilient, multidisciplinary approaches that in-
tegrate advanced and traditional techniques (Sa-
limi and Al-Ghamdi, 2020).

Given these challenges, it is clear that flood 
hazard mapping techniques must evolve to in-
tegrate both traditional statistical methods and 
advanced machine learning approaches. This 
study evaluates the complementary roles of the 
frequency ratio (FR) method and the XGBoost 
machine learning algorithm in flood hazard map-
ping. The FR method, a simple statistical ap-
proach that uses historical data, provides intuitive 
and interpretable insights into flood-contributing 
factors, making it suitable for broad-scale as-
sessments with limited computational resources. 
XGBoost, on the other hand, is a state-of-the-art 
machine learning algorithm known for its ability 
to handle complex datasets and model nonlinear 
interactions, offering higher precision in identify-
ing critical flood zones.

This research compares these two comple-
mentary methods of flood hazard mapping using 
the same dataset, composed of environmental 
variables derived from Sentinel-2 and Landsat 8 
satellite imagery, a digital elevation model, and 
geological and soil maps. The goal is to assess 
their effectiveness in quantifying flood risks in ur-
ban environments. Specifically, it aims to:
1. Establish the complementarity of statistical 

and machine learning methods for flood hazard 
assessment.

2. Develop a robust framework that integrates 
interpretability (from FR) and precision (from 
XGBoost) to improve flood risk prediction.

3. Provide a reliable flood hazard assessment 
methodology tailored to urban environments in 
semi-arid regions like Beni Mellal.

This study hypothesizes that XGBoost will 
surpass the FR method in predictive accuracy, 
given its capacity to model nonlinear interactions 
and handle large datasets. However, the FR meth-
od is expected to offer valuable insights into the 
direct contributions of flood-conditioning factors, 
making it an effective tool for strategic planning. 
By combining these methods, the research seeks 
to enhance both the understanding of flood dy-
namics and the reliability of flood risk mapping 
in semi-arid urban areas. The findings will inform 
resilient urban planning in Beni Mellal and con-
tribute to global efforts toward sustainable flood 
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risk management in similar regions facing in-
creasing climate risks.

MATERIALS AND METHODS

Study area and data description

The research site is situated in the city of Beni 
Mellal, a metropolitan area located in the central 
region of Morocco. The study area extends ap-
proximately between 32°18’30”N to 32°22’50”N 
latitude and 6°27’0”W to 6°18’20”W longitude 
(Figure 1) encompassing an area of 53.32 km². 
This city holds significant economic, cultural, 
and social significance in the area. Beni Mellal 
is distinguished by its expanding urban growth 
and a clustering of population, infrastructure, ag-
ricultural, and industrial pursuits. This expansion 
has presented difficulties in managing natural 
resources and adapting to severe weather events 
like flooding (Barakat et al., 2020).

Geographically, the Beni Mellal region is 
mountainous, with elevations ranging from 470 
m to 2247 m, the highest point being Tassemit. 
The area’s climate is labeled as continental, with 
an average temperature of approximately 18 °C. 
Annual rainfall averages 490 mm, with July be-
ing the driest month and March the wettest, with 
an average precipitation of 79 mm. The study 
area’s geographical, geological, topographical, 

and climatic features create conditions favorable 
to flooding. Moreover, uncontrolled urban growth, 
changes to water systems, and population expan-
sion have all played a role in altering the area’s 
natural water flow. As a result, the frequency and 
severity of flooding events have changed, caus-
ing disruptions to residents’ daily lives and putting 
strain on sanitation and stormwater systems (Cea 
and Costabile, 2022).

Methodology

The methodology of the research includes 
three major steps: data collection and prepara-
tion, model development and training, and eval-
uation and mapping. Slope, land use, TWI, and 
NDVI environmental factors were obtained from 
Sentinel-2 and Landsat 8 images, a DEM, and 
geological and soil maps of the study area. The 
flood inventory was developed by applying the 
Normalized Difference Flood Index (NDFI) to 
Sentinel-2 images. The dataset was preprocessed, 
standardized, and split, allocating 70% for train-
ing and 30% for testing.

The machine learning model XGBoost and 
the FR statistical method were trained and tested. 
Their performance was evaluated using metrics 
such as AUC, Kappa, RMSE, MAE, and accu-
racy. The output of this process generated a flood 
susceptibility map, highlighting high-risk zones 
within the study area (Figure 2).

Figure 1. The geographical localization of the study area in Moroccan and regional context
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Urban flood inventories 

To forecast locations susceptible to flooding, 
it is essential to examine areas that have previ-
ously experienced flooding. To compiling the 
inventory for this research, Sentinel-2 satellite 
imagery was utilized to collect sample points 
during the flood event (Figure 3). These sample 
points were extracted from both peak flood and 
post-flood images. Water pixels were identi-
fied through the application of the normalized 

difference flood index (NDFI), which was com-
puted from images available in Google Earth En-
gine (GEE). The index values were derived us-
ing the equation established by Boschetti et al. 
(2014). A threshold of ‘0’ was implemented to 
mask pixels with values exceeding zero. This im-
age thresholding method resulted in the genera-
tion of a binary map that visually distinguishes 
between flooded and non-flooded regions. Areas 
at risk of flooding were designated as “1,” while 
non-flooded areas were labeled as “0,” based on 

Figure 2. Flow chart of methodology developed in this study

Figure 3. Historical flood events recorded between January 1, 2002, and December 1, 2020, which were tracked 
using the Sentinel-2 and Landsat satellites: (A) Distribution of training inventories; 

(B) Distribution of testing inventories
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binary maps and a specific cut-off criterion. A 
flood inventory map was produced utilizing 2512 
flood points. The dataset was then divided into 
two distinct categories: training and testing. Our 
literature review indicated that approximately 
70% (2178 points) of a random subset was allo-
cated for training and calibration purposes, while 
the remaining 30% (934 points) was reserved for 
validation (Figure 4).

Conditioning factors 

Several factors related to flooding were incor-
porated into the creation of predictive models to 
assess flood hazard, including geology, soil com-
position, NDVI, land use, slope, aspect, stream 
density, topographic position index (TPI), topo-
graphic wetness index (TWI), proximity to rivers, 
normalized difference built-up index (NDBI), and 
distance to roads (DRO).

Geology

The examination of geology, which includes 
both the soil and the underlying rock types, has a 
significant influence on the flooding of watershed 
basins (Yang et al., 2020). This is primarily due to 
its direct effect on permeability and surface runoff. 
Figure 5i, depicting the geology map of the study 
area (Fig. 5I), was created using the 1:100,000 
geological map of Beni Mellal, Morocco. The 
area’s geology was classified into multiple units, 
such as pink-brown carbonated cement powders, 
travertines, Paleocene beige limestone, Middle 
Quaternary scree spreading, Recent Quaternary 

piedmont cones (encrusted), and Middle Quater-
nary Tadla silts (Barakat et al., 2020).

Soil

Soil moisture plays a critical role in predict-
ing flood characteristics, especially in the sum-
mer months (Luong et al., 2021). The soil types 
map (Fig. 5m) within our study area is sourced 
from the esteemed soil map of Morocco, created 
by Vladimir Cavallar, also known as Kavaleridzé. 
Professor-Doctor Cavallar, a renowned expert in 
pedology from the Ukrainian Agronomic Insti-
tute, carried out this task on behalf of the National 
Center for Scientific Research (Centre National 
de la Recherche Scientifique) and the Agricultural 
Research Center of Morocco (Centre de Recher-
ches Agronomiques du Maroc). This comprehen-
sive map showcases the diverse range of soils in 
our region, including podzolic soils, podzolized 
red and brown soils, red soils, brown soils, and 
humus-carbonate soils found in forested areas.

NDVI 

The normalized difference vegetation index 
(NDVI), holds significant importance in evaluat-
ing vegetation, where positive values signify the 
presence of dense vegetation (Fig. 5e). This as-
sessment is essential in understanding the effects 
of floods, as dense vegetation, identified by high 
NDVI values, plays a crucial role in mitigating 
flood risks by promoting water infiltration and 
minimizing surface runoff. Moreover, it serves as 
a safeguard against erosion and aids in fortifying 

Figure 4. Photos illustrating the floods and small watersheds crossing the city of Beni Mellal 
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riverbanks (Atefi and Miura, 2022). The NDVI 
is determined through the following Equation 1 
below: 

 

  
  

𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 = 𝑁𝑁𝑁𝑁𝑁𝑁 − 𝑁𝑁
𝑁𝑁𝑁𝑁𝑁𝑁 + 𝑁𝑁 

 

(1) 

 
  

𝑇𝑇𝑇𝑇𝑁𝑁 = 𝑇𝑇0 − ∑(𝑛𝑛−1)𝑇𝑇𝑛𝑛 
 

(2) 

  

 
 

𝑇𝑇𝑇𝑇𝑁𝑁 =  𝑙𝑙𝑙𝑙(𝐴𝐴 − 𝑡𝑡𝑡𝑡𝑙𝑙(𝑏𝑏𝑏𝑏𝑡𝑡𝑡𝑡)) 
 

(3) 

 
  

𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 =  𝑆𝑆𝑇𝑇𝑁𝑁𝑁𝑁 −  𝑁𝑁𝑁𝑁𝑁𝑁
𝑆𝑆𝑇𝑇𝑁𝑁𝑁𝑁 +  𝑁𝑁𝑁𝑁𝑁𝑁 

 

(4) 

 
  

𝐹𝐹𝑁𝑁 = 𝑇𝑇𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑏𝑏𝑙𝑙𝑡𝑡𝑡𝑡𝑃𝑃𝑏𝑏 𝑃𝑃𝑜𝑜 𝑜𝑜𝑙𝑙𝑃𝑃𝑃𝑃𝑜𝑜(𝑇𝑇𝑃𝑃)
𝑇𝑇𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑏𝑏𝑙𝑙𝑡𝑡𝑡𝑡𝑃𝑃𝑏𝑏 𝑃𝑃𝑜𝑜 𝑡𝑡ℎ𝑏𝑏 𝑃𝑃𝑙𝑙𝑡𝑡𝑐𝑐𝑐𝑐 𝑃𝑃𝑜𝑜 𝑏𝑏𝑡𝑡𝑃𝑃ℎ 𝑃𝑃𝑃𝑃𝑙𝑙𝑐𝑐𝑐𝑐𝑡𝑡𝑐𝑐𝑃𝑃𝑙𝑙𝑐𝑐𝑙𝑙𝑃𝑃 𝑜𝑜𝑡𝑡𝑃𝑃𝑡𝑡𝑃𝑃𝑃𝑃(𝑇𝑇𝑁𝑁) 

(5) 

 
 

𝐹𝐹𝑙𝑙𝑃𝑃𝑃𝑃𝑐𝑐 𝐻𝐻𝑡𝑡𝐻𝐻𝑡𝑡𝑃𝑃𝑐𝑐 (𝐹𝐹𝑁𝑁) =  𝐹𝐹𝑁𝑁𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 ×  𝐴𝐴𝑐𝑐𝐴𝐴𝑏𝑏𝑃𝑃𝑡𝑡+𝐹𝐹𝑁𝑁𝑆𝑆𝑆𝑆𝑆𝑆𝐴𝐴𝐴𝐴 𝑆𝑆𝑙𝑙𝑃𝑃𝐴𝐴𝑏𝑏 + 𝐹𝐹𝑁𝑁𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐴𝐴𝐶𝐶𝐶𝐶𝐴𝐴 ×
𝐶𝐶𝑃𝑃𝑃𝑃𝐶𝐶𝑡𝑡𝑡𝑡𝑃𝑃𝑃𝑃𝑏𝑏 + 𝐹𝐹𝑁𝑁𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 × 𝑆𝑆𝑃𝑃𝑐𝑐𝑙𝑙 + 𝐹𝐹𝑁𝑁𝑇𝑇𝑇𝑇𝑇𝑇 × 𝑇𝑇𝑇𝑇𝑁𝑁 + 𝐹𝐹𝑁𝑁𝑇𝑇𝑇𝑇𝑇𝑇 × 𝑇𝑇𝑇𝑇𝑁𝑁 + 𝐹𝐹𝑁𝑁𝐷𝐷𝑆𝑆𝐴𝐴𝐴𝐴𝐶𝐶𝑛𝑛𝐴𝐴𝐴𝐴 𝐴𝐴𝑆𝑆 𝐶𝐶𝑆𝑆𝐶𝐶𝐴𝐴𝐶𝐶𝐴𝐴 ×

𝑁𝑁𝑐𝑐𝑐𝑐𝑡𝑡𝑡𝑡𝑙𝑙𝑃𝑃𝑏𝑏 𝑡𝑡𝑃𝑃 𝑃𝑃𝑐𝑐𝐶𝐶𝑏𝑏𝑃𝑃𝑐𝑐 + 𝐹𝐹𝑁𝑁𝐿𝐿𝐶𝐶𝑛𝑛𝐿𝐿 𝑈𝑈𝐴𝐴𝐴𝐴 × 𝑃𝑃𝑡𝑡𝑙𝑙𝑐𝑐 𝑈𝑈𝑐𝑐𝑏𝑏 + 𝐹𝐹𝑁𝑁𝑆𝑆𝐴𝐴𝐶𝐶𝐴𝐴𝐶𝐶𝑆𝑆 𝐷𝐷𝐴𝐴𝑛𝑛𝐴𝐴𝑆𝑆𝐴𝐴𝐷𝐷 ×  𝑆𝑆𝑡𝑡𝑃𝑃𝑏𝑏𝑡𝑡𝑆𝑆 𝑁𝑁𝑏𝑏𝑙𝑙𝑐𝑐𝑐𝑐𝑡𝑡𝐷𝐷 + 
𝐹𝐹𝑁𝑁𝐺𝐺𝐴𝐴𝑆𝑆𝑆𝑆𝑆𝑆𝐺𝐺𝐷𝐷 × 𝐺𝐺𝑏𝑏𝑃𝑃𝑙𝑙𝑃𝑃𝑃𝑃𝐷𝐷+𝐹𝐹𝑁𝑁𝑁𝑁𝐷𝐷𝑁𝑁𝑇𝑇 × 𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁+𝐹𝐹𝑁𝑁𝑁𝑁𝐷𝐷𝑁𝑁𝑇𝑇 × 𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁+𝐹𝐹𝑁𝑁𝐷𝐷𝐷𝐷𝐷𝐷 × 𝑁𝑁𝑁𝑁𝐷𝐷 

 

(6) 

 
 

𝐴𝐴𝑈𝑈𝐶𝐶 =
(𝛴𝛴𝑇𝑇𝑇𝑇 + 𝛴𝛴𝑇𝑇𝑁𝑁)

𝑇𝑇 + 𝑁𝑁  
 

(7) 

 
  

𝑀𝑀𝐴𝐴𝑀𝑀 = 1
𝑛𝑛 ∑ ∣ 𝐷𝐷𝑆𝑆 − �̂�𝐷𝑆𝑆

𝑛𝑛
𝑆𝑆=1 ∣

 
(8) 

 
 

𝑁𝑁𝑀𝑀𝑆𝑆𝑀𝑀 = √1
𝑙𝑙 ∑ (𝐷𝐷𝑆𝑆 − �̂�𝐷𝑆𝑆)2

𝑛𝑛

𝑆𝑆=1
 (9) 

 
  

𝑘𝑘 = 𝐴𝐴0 − 𝐴𝐴𝐴𝐴
1 − 𝐴𝐴𝐴𝐴

 

 

(10) 

 
  

𝐴𝐴𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑡𝑡𝑃𝑃𝐷𝐷 = 𝑇𝑇𝑇𝑇 + 𝑇𝑇𝑁𝑁
𝑇𝑇𝑇𝑇 + 𝑇𝑇𝑁𝑁 + 𝐹𝐹𝑇𝑇 + 𝐹𝐹𝑁𝑁 

 

(11) 

 (1)

where: NIR and R are the spectral reflectance 
of the near infrared and red bands, 
respectively.

Land use

Land use and its extent play a significant 
role in influencing surface water flow, infiltration 
rates, and evapotranspiration processes within a 
given region (Rahman et al., 2021). These fac-
tors, in turn, directly or indirectly affect the likeli-
hood of flooding. Using supervised classification 
of Landsat 8 data, the study area was categorized 
into four distinct land use and land cover types: 
Built-up, Arboriculture, Agricultural Land and 
Bare ground (Fig. 5k).

Slope

Another important physical factor influenc-
ing flooding is slope. Generally, the steepness of 
a slope affects the speed of water movement and 
discharge (Nguyen et al., 2020). This factor was 
derived from the digital elevation model (DEM) 
and categorized into five segments (Fig. 5i).

Aspect 

The orientation of a slope affects several en-
vironmental elements, such as the distribution 
of rainfall, soil moisture, and exposure to solar 
radiation, which ultimately have an indirect im-
pact on surface runoff (Peng et al., 2020). Slope 
Aspect refers to the direction that a terrain sur-
face inclines towards and is measured in degrees, 
rotating clockwise from 0° (north) to 360° (north 
again) (Pham et al., 2019). For the purpose of this 
analysis, slope aspects are categorized into flat, 
north, northeast, east, southeast, south, south-
west, west, and northwest (Fig. 5a).

Curvature

Curvature (Fig. 5f) is defined as the rate at 
which the slope gradient changes and can be cate-
gorized as either profile curvature or plan curvature 
(Raja et al., 2017). Profile curvature has an impact 
on the speed changes of flow across a surface, in-
fluencing erosion and deposition activities. On the 
other hand, plan curvature affects the convergence 

and divergence of flow, impacting the flow path and 
water accumulation. The mean curvature, which 
combines profile and plan curvature, can reflect 
important topographic features such as ridge lines, 
valley lines, platform edges, and wide valley edges.

Stream density

The stream density (Fig. 5c) was established 
by computing the combined length of all streams 
and dividing it by the drainage basin’s area (Bo-
gale, 2021). Typically, an elevated stream density 
signifies a heightened risk of flooding caused by 
greater surface runoff. This is due to the fact that 
regions with high stream density expedite the 
flow of surface runoff, making them more vulner-
able to flooding incidents.

TPI

The topographic position index (TPI), also 
known as relative topography, measures the vari-
ation in elevation between a central cell and the 
surrounding cells on the terrain surface (Avand et 
al., 2022). A positive TPI indicates that the cell 
is located at a higher elevation than its surround-
ings, indicative of features such as ridges (Fig. 
5j), while negative values suggest that it is lower, 
characteristic of valleys. The TPI is calculated us-
ing Equation 2 below: 
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where: T0 represents the elevation of the cell 
being evaluated, Tn refers to the elevation values 
of the surrounding grid cells, and ‘n’ denotes the 
total number of cells in the specified neighbor-
hood around the cell under evaluation.

TWI

The TWI (Figure 5d) quantifies the distribu-
tion of soil moisture across landscapes by com-
bining slope and the area contributing upstream 
to comprehend the dynamics of water dispersal 
(Winzeler et al., 2022).The TWI is calculated us-
ing Equation 3 below: 
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where: A denotes the area of the local upslope 
contributing to drainage at a specific 
point, measured per unit of contour 
length, referred to as the specific catch-
ment area or upstream contributing area; 
tan(beta) is the tangent of the slope angle 
(beta), indicating the terrain’s steepness.
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Distance to rivers 

The distance from the river was determined 
using the GIS software’s distance tool, as shown 
in (Fig. 5h). This important measure indicates 
the distance between different land areas and the 
nearest body of water, which is significant for un-
derstanding the potential impact of water courses 
and resulting floods(Ibrahim et al., 2024). Addi-
tionally, the river network was obtained through 
the DEM processing using the Euclidean function 
within the GIS environment.

NDBI

The normalized difference built-up index 
(NDBI) (Fig. 5b) makes use of the near in-
frared (NIR) and short-wave infrared (SWIR) 
bands to emphasize urban or built-up areas. 
In these areas, as well as in bare soil regions, 
there is greater reflection in the SWIR band 
compared to the NIR band. Conversely, water 
bodies, which do not reflect well in the infra-
red spectrum, are easily distinguishable from 
built-up areas when using this index (Khan et 

Figure 5. Flood influencing factors considered in the present study: (a) aspect, (b) NDBI, (c) stream density, 
(d) TWI, (e) NDVI, (f) curvature, (g) distance to rivers, (h) distance to roads (DRO), (i) SLOPE, (j) TPI, 

(k) land use, (l) GEOLOGY, (m) SOIL
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al., 2021). This index is frequently utilized to 
evaluate the presence and extent of built-up ar-
eas, which may contribute to increased flood 
hazard due to impervious surfaces reducing 
water infiltration. NDBI is calculated using 
Equation 4:
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The values of the NDBI fall within a range of 
-1 to +1. A negative NDBI value is indicative of 
water bodies, whereas higher values are indica-
tive of built-up areas. Vegetation usually demon-
strates low NDBI values.

Distance to road (dro)

The proximity of roads plays a crucial role 
in contributing to flood hazard, as depicted in 
(Fig. 5h). This is due to the impervious sur-
faces commonly found on roads, which inten-
sify runoff and reduce the soil’s capacity to ab-
sorb water, consequently elevating the risk of 
flooding (Rahman et al., 2021).

Model selection and training

Frequency ratio

The frequency ratio model measures the con-
nection between the spatial distribution of floods 
and their contributing environmental variables 
(Allouche et al., 2006; Tehrany et al., 2019).The 
frequency ratio for variables like elevation or 
slope is calculated by dividing the proportion of 
flood occurrences by the area proportion of each 
variable, according to Equation 5. A higher bivar-
iate probability (greater than 1) indicates a stron-
ger association between flood occurrences and 
the contributing factors, whereas a lower proba-
bility (less than 1) indicates a weaker association 
(Yalcin et al., 2011). The flood hazard map of FR 
model is generated by the following Equation 6 in 
ESRI ArcGIS:10.8 software.

XGBoost

In the XGBoost is boosting ensemble learn-
ing methods (Ren et al., 2024). It is a variation 
of Gradient Boosting Trees that enhances the 
gradient boosting algorithms capabilities while 
improving computing efficiency and accuracy. 
The XGBoost method has numerous novel fea-
tures based on decision tree algorithms, such as 
automatically altering the order in which decision 
trees are constructed to reduce errors. It also em-
ploys regularization approaches to reduce overfit-
ting and increase the model generalizability. The 
XGBoost algorithm has several changeable pa-
rameters, including the learning rate, tree depth, 
and regularization parameters, requiring some 
tuning skill. The XGBoost technique is highly 
computationally efficient.

Training and validation 

Validation and optimization are essential in 
predictive modeling to ensure reliable and con-
sistent results (Bouramtane et al., 2022). Without 
proper validation, the outputs of machine learn-
ing models hold limited practical significance 
(Arabameri et al., 2021). 

In this study, we used RStudio to assess mod-
el performance through metrics such as AUC/
ROC, Cohen’s Kappa, RMSE, MAE, and accu-
racy. The dataset was divided into training (70%) 
and testing (30%) subsets to train and evaluate the 
models effectively. The FR statistical method and 
the XGBoost machine learning algorithm were 
applied separately to compare their strengths.

XGBoost was trained using standardized con-
trols with 10-repeated 10-fold cross-validation, 
excelling in binary logistic classification. The 
FR method relied on historical flood data and 
environmental variable correlations to identify 
flood-prone areas. Both approaches demonstrated 
promising results for urban flood prediction, each 
showcasing unique strengths in reliability and 
precision (Table 1).
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𝑇𝑇𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑏𝑏𝑙𝑙𝑡𝑡𝑡𝑡𝑃𝑃𝑏𝑏 𝑃𝑃𝑜𝑜 𝑡𝑡ℎ𝑏𝑏 𝑃𝑃𝑙𝑙𝑡𝑡𝑐𝑐𝑐𝑐 𝑃𝑃𝑜𝑜 𝑏𝑏𝑡𝑡𝑃𝑃ℎ 𝑃𝑃𝑃𝑃𝑙𝑙𝑐𝑐𝑐𝑐𝑡𝑡𝑐𝑐𝑃𝑃𝑙𝑙𝑐𝑐𝑙𝑙𝑃𝑃 𝑜𝑜𝑡𝑡𝑃𝑃𝑡𝑡𝑃𝑃𝑃𝑃(𝑇𝑇𝑁𝑁) 

(5) 

 
 

𝐹𝐹𝑙𝑙𝑃𝑃𝑃𝑃𝑐𝑐 𝐻𝐻𝑡𝑡𝐻𝐻𝑡𝑡𝑃𝑃𝑐𝑐 (𝐹𝐹𝑁𝑁) =  𝐹𝐹𝑁𝑁𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 ×  𝐴𝐴𝑐𝑐𝐴𝐴𝑏𝑏𝑃𝑃𝑡𝑡+𝐹𝐹𝑁𝑁𝑆𝑆𝑆𝑆𝑆𝑆𝐴𝐴𝐴𝐴 𝑆𝑆𝑙𝑙𝑃𝑃𝐴𝐴𝑏𝑏 + 𝐹𝐹𝑁𝑁𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐴𝐴𝐶𝐶𝐶𝐶𝐴𝐴 ×
𝐶𝐶𝑃𝑃𝑃𝑃𝐶𝐶𝑡𝑡𝑡𝑡𝑃𝑃𝑃𝑃𝑏𝑏 + 𝐹𝐹𝑁𝑁𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 × 𝑆𝑆𝑃𝑃𝑐𝑐𝑙𝑙 + 𝐹𝐹𝑁𝑁𝑇𝑇𝑇𝑇𝑇𝑇 × 𝑇𝑇𝑇𝑇𝑁𝑁 + 𝐹𝐹𝑁𝑁𝑇𝑇𝑇𝑇𝑇𝑇 × 𝑇𝑇𝑇𝑇𝑁𝑁 + 𝐹𝐹𝑁𝑁𝐷𝐷𝑆𝑆𝐴𝐴𝐴𝐴𝐶𝐶𝑛𝑛𝐴𝐴𝐴𝐴 𝐴𝐴𝑆𝑆 𝐶𝐶𝑆𝑆𝐶𝐶𝐴𝐴𝐶𝐶𝐴𝐴 ×

𝑁𝑁𝑐𝑐𝑐𝑐𝑡𝑡𝑡𝑡𝑙𝑙𝑃𝑃𝑏𝑏 𝑡𝑡𝑃𝑃 𝑃𝑃𝑐𝑐𝐶𝐶𝑏𝑏𝑃𝑃𝑐𝑐 + 𝐹𝐹𝑁𝑁𝐿𝐿𝐶𝐶𝑛𝑛𝐿𝐿 𝑈𝑈𝐴𝐴𝐴𝐴 × 𝑃𝑃𝑡𝑡𝑙𝑙𝑐𝑐 𝑈𝑈𝑐𝑐𝑏𝑏 + 𝐹𝐹𝑁𝑁𝑆𝑆𝐴𝐴𝐶𝐶𝐴𝐴𝐶𝐶𝑆𝑆 𝐷𝐷𝐴𝐴𝑛𝑛𝐴𝐴𝑆𝑆𝐴𝐴𝐷𝐷 ×  𝑆𝑆𝑡𝑡𝑃𝑃𝑏𝑏𝑡𝑡𝑆𝑆 𝑁𝑁𝑏𝑏𝑙𝑙𝑐𝑐𝑐𝑐𝑡𝑡𝐷𝐷 + 
𝐹𝐹𝑁𝑁𝐺𝐺𝐴𝐴𝑆𝑆𝑆𝑆𝑆𝑆𝐺𝐺𝐷𝐷 × 𝐺𝐺𝑏𝑏𝑃𝑃𝑙𝑙𝑃𝑃𝑃𝑃𝐷𝐷+𝐹𝐹𝑁𝑁𝑁𝑁𝐷𝐷𝑁𝑁𝑇𝑇 × 𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁+𝐹𝐹𝑁𝑁𝑁𝑁𝐷𝐷𝑁𝑁𝑇𝑇 × 𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁+𝐹𝐹𝑁𝑁𝐷𝐷𝐷𝐷𝐷𝐷 × 𝑁𝑁𝑁𝑁𝐷𝐷 

 

(6) 

 
 

𝐴𝐴𝑈𝑈𝐶𝐶 =
(𝛴𝛴𝑇𝑇𝑇𝑇 + 𝛴𝛴𝑇𝑇𝑁𝑁)

𝑇𝑇 + 𝑁𝑁  
 

(7) 

 
  

𝑀𝑀𝐴𝐴𝑀𝑀 = 1
𝑛𝑛 ∑ ∣ 𝐷𝐷𝑆𝑆 − �̂�𝐷𝑆𝑆

𝑛𝑛
𝑆𝑆=1 ∣

 
(8) 

 
 

𝑁𝑁𝑀𝑀𝑆𝑆𝑀𝑀 = √1
𝑙𝑙 ∑ (𝐷𝐷𝑆𝑆 − �̂�𝐷𝑆𝑆)2

𝑛𝑛

𝑆𝑆=1
 (9) 

 
  

𝑘𝑘 = 𝐴𝐴0 − 𝐴𝐴𝐴𝐴
1 − 𝐴𝐴𝐴𝐴

 

 

(10) 

 
  

𝐴𝐴𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑡𝑡𝑃𝑃𝐷𝐷 = 𝑇𝑇𝑇𝑇 + 𝑇𝑇𝑁𝑁
𝑇𝑇𝑇𝑇 + 𝑇𝑇𝑁𝑁 + 𝐹𝐹𝑇𝑇 + 𝐹𝐹𝑁𝑁 

 

(11) 

 (6)

flood
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Auc/roc

Before creating the models, we evaluated 
the performance of different prediction methods 
using the receiver operating characteristic-area 
under the curve (ROC-AUC) metric on test data. 
The ROC curve is a key tool in spatial modeling 
that visually demonstrates the balance between 
specificity and sensitivity. Here’s a simplified 
breakdown of its main elements:
 • Specificity: Plotted on the x-axis, it shows 

how well the model correctly identifies areas 
that are not prone to flooding. It’s calculated as 
the percentage of true negatives (correctly pre-
dicted non-flood points) out of all non-flood 
observations.

 • Sensitivity: Plotted on the y-axis, it’s also 
called recall or the true positive rate. This 
measures how effectively the model identifies 
flood-prone areas, showing the proportion of 
actual flood locations correctly predicted.

 • Area under the curve (AUC): This is a single 
value that summarizes the ROC curve’s ability 
to separate flood-prone and non-flood-prone 
areas. AUC values range from 0 to 1, with 
higher values indicating better model perfor-
mance in distinguishing between the two cat-
egories, where:
− 0 represents a model with no discriminative 

ability,
− 0.5 suggests a performance no better than 

random chance,
− 1 indicates perfect classification.

The AUC is calculated using Equation 7 
below:

 

  
  

𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 = 𝑁𝑁𝑁𝑁𝑁𝑁 − 𝑁𝑁
𝑁𝑁𝑁𝑁𝑁𝑁 + 𝑁𝑁 

 

(1) 

 
  

𝑇𝑇𝑇𝑇𝑁𝑁 = 𝑇𝑇0 − ∑(𝑛𝑛−1)𝑇𝑇𝑛𝑛 
 

(2) 

  

 
 

𝑇𝑇𝑇𝑇𝑁𝑁 =  𝑙𝑙𝑙𝑙(𝐴𝐴 − 𝑡𝑡𝑡𝑡𝑙𝑙(𝑏𝑏𝑏𝑏𝑡𝑡𝑡𝑡)) 
 

(3) 

 
  

𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 =  𝑆𝑆𝑇𝑇𝑁𝑁𝑁𝑁 −  𝑁𝑁𝑁𝑁𝑁𝑁
𝑆𝑆𝑇𝑇𝑁𝑁𝑁𝑁 +  𝑁𝑁𝑁𝑁𝑁𝑁 

 

(4) 

 
  

𝐹𝐹𝑁𝑁 = 𝑇𝑇𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑏𝑏𝑙𝑙𝑡𝑡𝑡𝑡𝑃𝑃𝑏𝑏 𝑃𝑃𝑜𝑜 𝑜𝑜𝑙𝑙𝑃𝑃𝑃𝑃𝑜𝑜(𝑇𝑇𝑃𝑃)
𝑇𝑇𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑏𝑏𝑙𝑙𝑡𝑡𝑡𝑡𝑃𝑃𝑏𝑏 𝑃𝑃𝑜𝑜 𝑡𝑡ℎ𝑏𝑏 𝑃𝑃𝑙𝑙𝑡𝑡𝑐𝑐𝑐𝑐 𝑃𝑃𝑜𝑜 𝑏𝑏𝑡𝑡𝑃𝑃ℎ 𝑃𝑃𝑃𝑃𝑙𝑙𝑐𝑐𝑐𝑐𝑡𝑡𝑐𝑐𝑃𝑃𝑙𝑙𝑐𝑐𝑙𝑙𝑃𝑃 𝑜𝑜𝑡𝑡𝑃𝑃𝑡𝑡𝑃𝑃𝑃𝑃(𝑇𝑇𝑁𝑁) 

(5) 

 
 

𝐹𝐹𝑙𝑙𝑃𝑃𝑃𝑃𝑐𝑐 𝐻𝐻𝑡𝑡𝐻𝐻𝑡𝑡𝑃𝑃𝑐𝑐 (𝐹𝐹𝑁𝑁) =  𝐹𝐹𝑁𝑁𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 ×  𝐴𝐴𝑐𝑐𝐴𝐴𝑏𝑏𝑃𝑃𝑡𝑡+𝐹𝐹𝑁𝑁𝑆𝑆𝑆𝑆𝑆𝑆𝐴𝐴𝐴𝐴 𝑆𝑆𝑙𝑙𝑃𝑃𝐴𝐴𝑏𝑏 + 𝐹𝐹𝑁𝑁𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐴𝐴𝐶𝐶𝐶𝐶𝐴𝐴 ×
𝐶𝐶𝑃𝑃𝑃𝑃𝐶𝐶𝑡𝑡𝑡𝑡𝑃𝑃𝑃𝑃𝑏𝑏 + 𝐹𝐹𝑁𝑁𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 × 𝑆𝑆𝑃𝑃𝑐𝑐𝑙𝑙 + 𝐹𝐹𝑁𝑁𝑇𝑇𝑇𝑇𝑇𝑇 × 𝑇𝑇𝑇𝑇𝑁𝑁 + 𝐹𝐹𝑁𝑁𝑇𝑇𝑇𝑇𝑇𝑇 × 𝑇𝑇𝑇𝑇𝑁𝑁 + 𝐹𝐹𝑁𝑁𝐷𝐷𝑆𝑆𝐴𝐴𝐴𝐴𝐶𝐶𝑛𝑛𝐴𝐴𝐴𝐴 𝐴𝐴𝑆𝑆 𝐶𝐶𝑆𝑆𝐶𝐶𝐴𝐴𝐶𝐶𝐴𝐴 ×

𝑁𝑁𝑐𝑐𝑐𝑐𝑡𝑡𝑡𝑡𝑙𝑙𝑃𝑃𝑏𝑏 𝑡𝑡𝑃𝑃 𝑃𝑃𝑐𝑐𝐶𝐶𝑏𝑏𝑃𝑃𝑐𝑐 + 𝐹𝐹𝑁𝑁𝐿𝐿𝐶𝐶𝑛𝑛𝐿𝐿 𝑈𝑈𝐴𝐴𝐴𝐴 × 𝑃𝑃𝑡𝑡𝑙𝑙𝑐𝑐 𝑈𝑈𝑐𝑐𝑏𝑏 + 𝐹𝐹𝑁𝑁𝑆𝑆𝐴𝐴𝐶𝐶𝐴𝐴𝐶𝐶𝑆𝑆 𝐷𝐷𝐴𝐴𝑛𝑛𝐴𝐴𝑆𝑆𝐴𝐴𝐷𝐷 ×  𝑆𝑆𝑡𝑡𝑃𝑃𝑏𝑏𝑡𝑡𝑆𝑆 𝑁𝑁𝑏𝑏𝑙𝑙𝑐𝑐𝑐𝑐𝑡𝑡𝐷𝐷 + 
𝐹𝐹𝑁𝑁𝐺𝐺𝐴𝐴𝑆𝑆𝑆𝑆𝑆𝑆𝐺𝐺𝐷𝐷 × 𝐺𝐺𝑏𝑏𝑃𝑃𝑙𝑙𝑃𝑃𝑃𝑃𝐷𝐷+𝐹𝐹𝑁𝑁𝑁𝑁𝐷𝐷𝑁𝑁𝑇𝑇 × 𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁+𝐹𝐹𝑁𝑁𝑁𝑁𝐷𝐷𝑁𝑁𝑇𝑇 × 𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁+𝐹𝐹𝑁𝑁𝐷𝐷𝐷𝐷𝐷𝐷 × 𝑁𝑁𝑁𝑁𝐷𝐷 

 

(6) 

 
 

𝐴𝐴𝑈𝑈𝐶𝐶 =
(𝛴𝛴𝑇𝑇𝑇𝑇 + 𝛴𝛴𝑇𝑇𝑁𝑁)

𝑇𝑇 + 𝑁𝑁  
 

(7) 

 
  

𝑀𝑀𝐴𝐴𝑀𝑀 = 1
𝑛𝑛 ∑ ∣ 𝐷𝐷𝑆𝑆 − �̂�𝐷𝑆𝑆

𝑛𝑛
𝑆𝑆=1 ∣

 
(8) 

 
 

𝑁𝑁𝑀𝑀𝑆𝑆𝑀𝑀 = √1
𝑙𝑙 ∑ (𝐷𝐷𝑆𝑆 − �̂�𝐷𝑆𝑆)2

𝑛𝑛

𝑆𝑆=1
 (9) 

 
  

𝑘𝑘 = 𝐴𝐴0 − 𝐴𝐴𝐴𝐴
1 − 𝐴𝐴𝐴𝐴

 

 

(10) 

 
  

𝐴𝐴𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑡𝑡𝑃𝑃𝐷𝐷 = 𝑇𝑇𝑇𝑇 + 𝑇𝑇𝑁𝑁
𝑇𝑇𝑇𝑇 + 𝑇𝑇𝑁𝑁 + 𝐹𝐹𝑇𝑇 + 𝐹𝐹𝑁𝑁 

 

(11) 

 (7)

where: ΣTP (sum of true positives) – the total 
number of flood locations correctly identi-
fied as flood; ΣTN (sum of true negatives) 

– the total number of non-flood locations 
correctly identified as non-flood; P (posi-
tives) – the total number of actual flood 
locations (pixels with torrential phenom-
ena); N (negatives) – the total number of 
actual non-flood locations (pixels without 
torrential phenomena).

This equation effectively reflects the ratio of 
accurate outcomes (including both true positives 
and true negatives) relative to the overall number 
of cases assessed, offering an indication of the 
model’s precision in accurately classifying each 
pixel. This thorough assessment aids in identify-
ing the most efficient models to incorporate into 
an ensemble for enhanced predictive capabilities.

Mae (mean absolute error)

MAE is valuable when predicting quantita-
tive aspects of flooding, such as water levels or 
flow rates at specific gauge stations. It gives an 
average of the absolute errors between predicted 
values and observed values, providing a clear 
measure of prediction error in the same units as 
the prediction itself (Haghizadeh et al., 2017; 
Janizadeh et al., 2021).

The equation for MAE is:

 

  
  

𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 = 𝑁𝑁𝑁𝑁𝑁𝑁 − 𝑁𝑁
𝑁𝑁𝑁𝑁𝑁𝑁 + 𝑁𝑁 

 

(1) 

 
  

𝑇𝑇𝑇𝑇𝑁𝑁 = 𝑇𝑇0 − ∑(𝑛𝑛−1)𝑇𝑇𝑛𝑛 
 

(2) 

  

 
 

𝑇𝑇𝑇𝑇𝑁𝑁 =  𝑙𝑙𝑙𝑙(𝐴𝐴 − 𝑡𝑡𝑡𝑡𝑙𝑙(𝑏𝑏𝑏𝑏𝑡𝑡𝑡𝑡)) 
 

(3) 

 
  

𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 =  𝑆𝑆𝑇𝑇𝑁𝑁𝑁𝑁 −  𝑁𝑁𝑁𝑁𝑁𝑁
𝑆𝑆𝑇𝑇𝑁𝑁𝑁𝑁 +  𝑁𝑁𝑁𝑁𝑁𝑁 

 

(4) 

 
  

𝐹𝐹𝑁𝑁 = 𝑇𝑇𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑏𝑏𝑙𝑙𝑡𝑡𝑡𝑡𝑃𝑃𝑏𝑏 𝑃𝑃𝑜𝑜 𝑜𝑜𝑙𝑙𝑃𝑃𝑃𝑃𝑜𝑜(𝑇𝑇𝑃𝑃)
𝑇𝑇𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑏𝑏𝑙𝑙𝑡𝑡𝑡𝑡𝑃𝑃𝑏𝑏 𝑃𝑃𝑜𝑜 𝑡𝑡ℎ𝑏𝑏 𝑃𝑃𝑙𝑙𝑡𝑡𝑐𝑐𝑐𝑐 𝑃𝑃𝑜𝑜 𝑏𝑏𝑡𝑡𝑃𝑃ℎ 𝑃𝑃𝑃𝑃𝑙𝑙𝑐𝑐𝑐𝑐𝑡𝑡𝑐𝑐𝑃𝑃𝑙𝑙𝑐𝑐𝑙𝑙𝑃𝑃 𝑜𝑜𝑡𝑡𝑃𝑃𝑡𝑡𝑃𝑃𝑃𝑃(𝑇𝑇𝑁𝑁) 

(5) 

 
 

𝐹𝐹𝑙𝑙𝑃𝑃𝑃𝑃𝑐𝑐 𝐻𝐻𝑡𝑡𝐻𝐻𝑡𝑡𝑃𝑃𝑐𝑐 (𝐹𝐹𝑁𝑁) =  𝐹𝐹𝑁𝑁𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 ×  𝐴𝐴𝑐𝑐𝐴𝐴𝑏𝑏𝑃𝑃𝑡𝑡+𝐹𝐹𝑁𝑁𝑆𝑆𝑆𝑆𝑆𝑆𝐴𝐴𝐴𝐴 𝑆𝑆𝑙𝑙𝑃𝑃𝐴𝐴𝑏𝑏 + 𝐹𝐹𝑁𝑁𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐴𝐴𝐶𝐶𝐶𝐶𝐴𝐴 ×
𝐶𝐶𝑃𝑃𝑃𝑃𝐶𝐶𝑡𝑡𝑡𝑡𝑃𝑃𝑃𝑃𝑏𝑏 + 𝐹𝐹𝑁𝑁𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 × 𝑆𝑆𝑃𝑃𝑐𝑐𝑙𝑙 + 𝐹𝐹𝑁𝑁𝑇𝑇𝑇𝑇𝑇𝑇 × 𝑇𝑇𝑇𝑇𝑁𝑁 + 𝐹𝐹𝑁𝑁𝑇𝑇𝑇𝑇𝑇𝑇 × 𝑇𝑇𝑇𝑇𝑁𝑁 + 𝐹𝐹𝑁𝑁𝐷𝐷𝑆𝑆𝐴𝐴𝐴𝐴𝐶𝐶𝑛𝑛𝐴𝐴𝐴𝐴 𝐴𝐴𝑆𝑆 𝐶𝐶𝑆𝑆𝐶𝐶𝐴𝐴𝐶𝐶𝐴𝐴 ×

𝑁𝑁𝑐𝑐𝑐𝑐𝑡𝑡𝑡𝑡𝑙𝑙𝑃𝑃𝑏𝑏 𝑡𝑡𝑃𝑃 𝑃𝑃𝑐𝑐𝐶𝐶𝑏𝑏𝑃𝑃𝑐𝑐 + 𝐹𝐹𝑁𝑁𝐿𝐿𝐶𝐶𝑛𝑛𝐿𝐿 𝑈𝑈𝐴𝐴𝐴𝐴 × 𝑃𝑃𝑡𝑡𝑙𝑙𝑐𝑐 𝑈𝑈𝑐𝑐𝑏𝑏 + 𝐹𝐹𝑁𝑁𝑆𝑆𝐴𝐴𝐶𝐶𝐴𝐴𝐶𝐶𝑆𝑆 𝐷𝐷𝐴𝐴𝑛𝑛𝐴𝐴𝑆𝑆𝐴𝐴𝐷𝐷 ×  𝑆𝑆𝑡𝑡𝑃𝑃𝑏𝑏𝑡𝑡𝑆𝑆 𝑁𝑁𝑏𝑏𝑙𝑙𝑐𝑐𝑐𝑐𝑡𝑡𝐷𝐷 + 
𝐹𝐹𝑁𝑁𝐺𝐺𝐴𝐴𝑆𝑆𝑆𝑆𝑆𝑆𝐺𝐺𝐷𝐷 × 𝐺𝐺𝑏𝑏𝑃𝑃𝑙𝑙𝑃𝑃𝑃𝑃𝐷𝐷+𝐹𝐹𝑁𝑁𝑁𝑁𝐷𝐷𝑁𝑁𝑇𝑇 × 𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁+𝐹𝐹𝑁𝑁𝑁𝑁𝐷𝐷𝑁𝑁𝑇𝑇 × 𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁+𝐹𝐹𝑁𝑁𝐷𝐷𝐷𝐷𝐷𝐷 × 𝑁𝑁𝑁𝑁𝐷𝐷 

 

(6) 

 
 

𝐴𝐴𝑈𝑈𝐶𝐶 =
(𝛴𝛴𝑇𝑇𝑇𝑇 + 𝛴𝛴𝑇𝑇𝑁𝑁)

𝑇𝑇 + 𝑁𝑁  
 

(7) 

 
  

𝑀𝑀𝐴𝐴𝑀𝑀 = 1
𝑛𝑛 ∑ ∣ 𝐷𝐷𝑆𝑆 − �̂�𝐷𝑆𝑆

𝑛𝑛
𝑆𝑆=1 ∣

 
(8) 

 
 

𝑁𝑁𝑀𝑀𝑆𝑆𝑀𝑀 = √1
𝑙𝑙 ∑ (𝐷𝐷𝑆𝑆 − �̂�𝐷𝑆𝑆)2

𝑛𝑛

𝑆𝑆=1
 (9) 

 
  

𝑘𝑘 = 𝐴𝐴0 − 𝐴𝐴𝐴𝐴
1 − 𝐴𝐴𝐴𝐴

 

 

(10) 

 
  

𝐴𝐴𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑡𝑡𝑃𝑃𝐷𝐷 = 𝑇𝑇𝑇𝑇 + 𝑇𝑇𝑁𝑁
𝑇𝑇𝑇𝑇 + 𝑇𝑇𝑁𝑁 + 𝐹𝐹𝑇𝑇 + 𝐹𝐹𝑁𝑁 

 

(11) 

| (8)

where: n is the number of observations; yi is the 
actual (observed) value for the i-th obser-
vation; 

  
  

𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 = 𝑁𝑁𝑁𝑁𝑁𝑁 − 𝑁𝑁
𝑁𝑁𝑁𝑁𝑁𝑁 + 𝑁𝑁 

 

(1) 

 
  

𝑇𝑇𝑇𝑇𝑁𝑁 = 𝑇𝑇0 − ∑(𝑛𝑛−1)𝑇𝑇𝑛𝑛 
 

(2) 

  

 
 

𝑇𝑇𝑇𝑇𝑁𝑁 =  𝑙𝑙𝑙𝑙(𝐴𝐴 − 𝑡𝑡𝑡𝑡𝑙𝑙(𝑏𝑏𝑏𝑏𝑡𝑡𝑡𝑡)) 
 

(3) 

 
  

𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 =  𝑆𝑆𝑇𝑇𝑁𝑁𝑁𝑁 −  𝑁𝑁𝑁𝑁𝑁𝑁
𝑆𝑆𝑇𝑇𝑁𝑁𝑁𝑁 +  𝑁𝑁𝑁𝑁𝑁𝑁 

 

(4) 

 
  

𝐹𝐹𝑁𝑁 = 𝑇𝑇𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑏𝑏𝑙𝑙𝑡𝑡𝑡𝑡𝑃𝑃𝑏𝑏 𝑃𝑃𝑜𝑜 𝑜𝑜𝑙𝑙𝑃𝑃𝑃𝑃𝑜𝑜(𝑇𝑇𝑃𝑃)
𝑇𝑇𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑏𝑏𝑙𝑙𝑡𝑡𝑡𝑡𝑃𝑃𝑏𝑏 𝑃𝑃𝑜𝑜 𝑡𝑡ℎ𝑏𝑏 𝑃𝑃𝑙𝑙𝑡𝑡𝑐𝑐𝑐𝑐 𝑃𝑃𝑜𝑜 𝑏𝑏𝑡𝑡𝑃𝑃ℎ 𝑃𝑃𝑃𝑃𝑙𝑙𝑐𝑐𝑐𝑐𝑡𝑡𝑐𝑐𝑃𝑃𝑙𝑙𝑐𝑐𝑙𝑙𝑃𝑃 𝑜𝑜𝑡𝑡𝑃𝑃𝑡𝑡𝑃𝑃𝑃𝑃(𝑇𝑇𝑁𝑁) 

(5) 

 
 

𝐹𝐹𝑙𝑙𝑃𝑃𝑃𝑃𝑐𝑐 𝐻𝐻𝑡𝑡𝐻𝐻𝑡𝑡𝑃𝑃𝑐𝑐 (𝐹𝐹𝑁𝑁) =  𝐹𝐹𝑁𝑁𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 ×  𝐴𝐴𝑐𝑐𝐴𝐴𝑏𝑏𝑃𝑃𝑡𝑡+𝐹𝐹𝑁𝑁𝑆𝑆𝑆𝑆𝑆𝑆𝐴𝐴𝐴𝐴 𝑆𝑆𝑙𝑙𝑃𝑃𝐴𝐴𝑏𝑏 + 𝐹𝐹𝑁𝑁𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐴𝐴𝐶𝐶𝐶𝐶𝐴𝐴 ×
𝐶𝐶𝑃𝑃𝑃𝑃𝐶𝐶𝑡𝑡𝑡𝑡𝑃𝑃𝑃𝑃𝑏𝑏 + 𝐹𝐹𝑁𝑁𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 × 𝑆𝑆𝑃𝑃𝑐𝑐𝑙𝑙 + 𝐹𝐹𝑁𝑁𝑇𝑇𝑇𝑇𝑇𝑇 × 𝑇𝑇𝑇𝑇𝑁𝑁 + 𝐹𝐹𝑁𝑁𝑇𝑇𝑇𝑇𝑇𝑇 × 𝑇𝑇𝑇𝑇𝑁𝑁 + 𝐹𝐹𝑁𝑁𝐷𝐷𝑆𝑆𝐴𝐴𝐴𝐴𝐶𝐶𝑛𝑛𝐴𝐴𝐴𝐴 𝐴𝐴𝑆𝑆 𝐶𝐶𝑆𝑆𝐶𝐶𝐴𝐴𝐶𝐶𝐴𝐴 ×

𝑁𝑁𝑐𝑐𝑐𝑐𝑡𝑡𝑡𝑡𝑙𝑙𝑃𝑃𝑏𝑏 𝑡𝑡𝑃𝑃 𝑃𝑃𝑐𝑐𝐶𝐶𝑏𝑏𝑃𝑃𝑐𝑐 + 𝐹𝐹𝑁𝑁𝐿𝐿𝐶𝐶𝑛𝑛𝐿𝐿 𝑈𝑈𝐴𝐴𝐴𝐴 × 𝑃𝑃𝑡𝑡𝑙𝑙𝑐𝑐 𝑈𝑈𝑐𝑐𝑏𝑏 + 𝐹𝐹𝑁𝑁𝑆𝑆𝐴𝐴𝐶𝐶𝐴𝐴𝐶𝐶𝑆𝑆 𝐷𝐷𝐴𝐴𝑛𝑛𝐴𝐴𝑆𝑆𝐴𝐴𝐷𝐷 ×  𝑆𝑆𝑡𝑡𝑃𝑃𝑏𝑏𝑡𝑡𝑆𝑆 𝑁𝑁𝑏𝑏𝑙𝑙𝑐𝑐𝑐𝑐𝑡𝑡𝐷𝐷 + 
𝐹𝐹𝑁𝑁𝐺𝐺𝐴𝐴𝑆𝑆𝑆𝑆𝑆𝑆𝐺𝐺𝐷𝐷 × 𝐺𝐺𝑏𝑏𝑃𝑃𝑙𝑙𝑃𝑃𝑃𝑃𝐷𝐷+𝐹𝐹𝑁𝑁𝑁𝑁𝐷𝐷𝑁𝑁𝑇𝑇 × 𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁+𝐹𝐹𝑁𝑁𝑁𝑁𝐷𝐷𝑁𝑁𝑇𝑇 × 𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁+𝐹𝐹𝑁𝑁𝐷𝐷𝐷𝐷𝐷𝐷 × 𝑁𝑁𝑁𝑁𝐷𝐷 

 

(6) 

 
 

𝐴𝐴𝑈𝑈𝐶𝐶 =
(𝛴𝛴𝑇𝑇𝑇𝑇 + 𝛴𝛴𝑇𝑇𝑁𝑁)

𝑇𝑇 + 𝑁𝑁  
 

(7) 

 
  

𝑀𝑀𝐴𝐴𝑀𝑀 = 1
𝑛𝑛 ∑ ∣ 𝐷𝐷𝑆𝑆 − �̂�𝐷𝑆𝑆

𝑛𝑛
𝑆𝑆=1 ∣

 
(8) 

 
 

𝑁𝑁𝑀𝑀𝑆𝑆𝑀𝑀 = √1
𝑙𝑙 ∑ (𝐷𝐷𝑆𝑆 − �̂�𝐷𝑆𝑆)2

𝑛𝑛

𝑆𝑆=1
 (9) 

 
  

𝑘𝑘 = 𝐴𝐴0 − 𝐴𝐴𝐴𝐴
1 − 𝐴𝐴𝐴𝐴

 

 

(10) 

 
  

𝐴𝐴𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑡𝑡𝑃𝑃𝐷𝐷 = 𝑇𝑇𝑇𝑇 + 𝑇𝑇𝑁𝑁
𝑇𝑇𝑇𝑇 + 𝑇𝑇𝑁𝑁 + 𝐹𝐹𝑇𝑇 + 𝐹𝐹𝑁𝑁 

 

(11) 

 Is the predicted value for the 
i-th observation; |

  
  

𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 = 𝑁𝑁𝑁𝑁𝑁𝑁 − 𝑁𝑁
𝑁𝑁𝑁𝑁𝑁𝑁 + 𝑁𝑁 

 

(1) 

 
  

𝑇𝑇𝑇𝑇𝑁𝑁 = 𝑇𝑇0 − ∑(𝑛𝑛−1)𝑇𝑇𝑛𝑛 
 

(2) 

  

 
 

𝑇𝑇𝑇𝑇𝑁𝑁 =  𝑙𝑙𝑙𝑙(𝐴𝐴 − 𝑡𝑡𝑡𝑡𝑙𝑙(𝑏𝑏𝑏𝑏𝑡𝑡𝑡𝑡)) 
 

(3) 

 
  

𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 =  𝑆𝑆𝑇𝑇𝑁𝑁𝑁𝑁 −  𝑁𝑁𝑁𝑁𝑁𝑁
𝑆𝑆𝑇𝑇𝑁𝑁𝑁𝑁 +  𝑁𝑁𝑁𝑁𝑁𝑁 

 

(4) 

 
  

𝐹𝐹𝑁𝑁 = 𝑇𝑇𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑏𝑏𝑙𝑙𝑡𝑡𝑡𝑡𝑃𝑃𝑏𝑏 𝑃𝑃𝑜𝑜 𝑜𝑜𝑙𝑙𝑃𝑃𝑃𝑃𝑜𝑜(𝑇𝑇𝑃𝑃)
𝑇𝑇𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑏𝑏𝑙𝑙𝑡𝑡𝑡𝑡𝑃𝑃𝑏𝑏 𝑃𝑃𝑜𝑜 𝑡𝑡ℎ𝑏𝑏 𝑃𝑃𝑙𝑙𝑡𝑡𝑐𝑐𝑐𝑐 𝑃𝑃𝑜𝑜 𝑏𝑏𝑡𝑡𝑃𝑃ℎ 𝑃𝑃𝑃𝑃𝑙𝑙𝑐𝑐𝑐𝑐𝑡𝑡𝑐𝑐𝑃𝑃𝑙𝑙𝑐𝑐𝑙𝑙𝑃𝑃 𝑜𝑜𝑡𝑡𝑃𝑃𝑡𝑡𝑃𝑃𝑃𝑃(𝑇𝑇𝑁𝑁) 

(5) 

 
 

𝐹𝐹𝑙𝑙𝑃𝑃𝑃𝑃𝑐𝑐 𝐻𝐻𝑡𝑡𝐻𝐻𝑡𝑡𝑃𝑃𝑐𝑐 (𝐹𝐹𝑁𝑁) =  𝐹𝐹𝑁𝑁𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 ×  𝐴𝐴𝑐𝑐𝐴𝐴𝑏𝑏𝑃𝑃𝑡𝑡+𝐹𝐹𝑁𝑁𝑆𝑆𝑆𝑆𝑆𝑆𝐴𝐴𝐴𝐴 𝑆𝑆𝑙𝑙𝑃𝑃𝐴𝐴𝑏𝑏 + 𝐹𝐹𝑁𝑁𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐴𝐴𝐶𝐶𝐶𝐶𝐴𝐴 ×
𝐶𝐶𝑃𝑃𝑃𝑃𝐶𝐶𝑡𝑡𝑡𝑡𝑃𝑃𝑃𝑃𝑏𝑏 + 𝐹𝐹𝑁𝑁𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 × 𝑆𝑆𝑃𝑃𝑐𝑐𝑙𝑙 + 𝐹𝐹𝑁𝑁𝑇𝑇𝑇𝑇𝑇𝑇 × 𝑇𝑇𝑇𝑇𝑁𝑁 + 𝐹𝐹𝑁𝑁𝑇𝑇𝑇𝑇𝑇𝑇 × 𝑇𝑇𝑇𝑇𝑁𝑁 + 𝐹𝐹𝑁𝑁𝐷𝐷𝑆𝑆𝐴𝐴𝐴𝐴𝐶𝐶𝑛𝑛𝐴𝐴𝐴𝐴 𝐴𝐴𝑆𝑆 𝐶𝐶𝑆𝑆𝐶𝐶𝐴𝐴𝐶𝐶𝐴𝐴 ×

𝑁𝑁𝑐𝑐𝑐𝑐𝑡𝑡𝑡𝑡𝑙𝑙𝑃𝑃𝑏𝑏 𝑡𝑡𝑃𝑃 𝑃𝑃𝑐𝑐𝐶𝐶𝑏𝑏𝑃𝑃𝑐𝑐 + 𝐹𝐹𝑁𝑁𝐿𝐿𝐶𝐶𝑛𝑛𝐿𝐿 𝑈𝑈𝐴𝐴𝐴𝐴 × 𝑃𝑃𝑡𝑡𝑙𝑙𝑐𝑐 𝑈𝑈𝑐𝑐𝑏𝑏 + 𝐹𝐹𝑁𝑁𝑆𝑆𝐴𝐴𝐶𝐶𝐴𝐴𝐶𝐶𝑆𝑆 𝐷𝐷𝐴𝐴𝑛𝑛𝐴𝐴𝑆𝑆𝐴𝐴𝐷𝐷 ×  𝑆𝑆𝑡𝑡𝑃𝑃𝑏𝑏𝑡𝑡𝑆𝑆 𝑁𝑁𝑏𝑏𝑙𝑙𝑐𝑐𝑐𝑐𝑡𝑡𝐷𝐷 + 
𝐹𝐹𝑁𝑁𝐺𝐺𝐴𝐴𝑆𝑆𝑆𝑆𝑆𝑆𝐺𝐺𝐷𝐷 × 𝐺𝐺𝑏𝑏𝑃𝑃𝑙𝑙𝑃𝑃𝑃𝑃𝐷𝐷+𝐹𝐹𝑁𝑁𝑁𝑁𝐷𝐷𝑁𝑁𝑇𝑇 × 𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁+𝐹𝐹𝑁𝑁𝑁𝑁𝐷𝐷𝑁𝑁𝑇𝑇 × 𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁+𝐹𝐹𝑁𝑁𝐷𝐷𝐷𝐷𝐷𝐷 × 𝑁𝑁𝑁𝑁𝐷𝐷 

 

(6) 

 
 

𝐴𝐴𝑈𝑈𝐶𝐶 =
(𝛴𝛴𝑇𝑇𝑇𝑇 + 𝛴𝛴𝑇𝑇𝑁𝑁)

𝑇𝑇 + 𝑁𝑁  
 

(7) 

 
  

𝑀𝑀𝐴𝐴𝑀𝑀 = 1
𝑛𝑛 ∑ ∣ 𝐷𝐷𝑆𝑆 − �̂�𝐷𝑆𝑆

𝑛𝑛
𝑆𝑆=1 ∣

 
(8) 

 
 

𝑁𝑁𝑀𝑀𝑆𝑆𝑀𝑀 = √1
𝑙𝑙 ∑ (𝐷𝐷𝑆𝑆 − �̂�𝐷𝑆𝑆)2

𝑛𝑛

𝑆𝑆=1
 (9) 

 
  

𝑘𝑘 = 𝐴𝐴0 − 𝐴𝐴𝐴𝐴
1 − 𝐴𝐴𝐴𝐴

 

 

(10) 

 
  

𝐴𝐴𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑡𝑡𝑃𝑃𝐷𝐷 = 𝑇𝑇𝑇𝑇 + 𝑇𝑇𝑁𝑁
𝑇𝑇𝑇𝑇 + 𝑇𝑇𝑁𝑁 + 𝐹𝐹𝑇𝑇 + 𝐹𝐹𝑁𝑁 

 

(11) 

| is the absolute 
difference between the actual and predict-
ed values.

Rmse (root mean square error)

RMSE is particularly effective for quantitative 
forecasts, such as predicting water levels or flow 
rates. Its value lies in the way it disproportionately 

Table 1. Parameters and settings for machine learning model (XGBoost)
Model Parameter Value Description

XGBoost

Objective ”binary:logistic” Binary classification model

Max_depth 4 Maximum depth of the trees

Eta 0.2 Learning rate controlling the step size for updates

Subsample 0.8 Proportion of rows used for training each tree

Colsample_bytree 0.8 Proportion of columns used for training each tree

Gamma 1 Regularization term to penalize overly complex trees

Min_child_weight 10 Minimum sum of instance weights (hessian) needed in a child
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penalizes larger errors over smaller ones. This 
attribute is critical in flood prediction, where un-
derestimating the impact of an event can have 
more severe consequences than overestimating it 
(Haghizadeh et al., 2017; Janizadeh et al., 2021).

These metrics can help determine how reli-
able and accurate a flood prediction model is in 
practical scenarios. Moreover, they can guide im-
provements in model development and deploy-
ment, ensuring better preparedness and response 
strategies for flood-prone areas (Haghizadeh et 
al., 2017; Janizadeh et al., 2021).

The equation for RMSE is:

 

  
  

𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 = 𝑁𝑁𝑁𝑁𝑁𝑁 − 𝑁𝑁
𝑁𝑁𝑁𝑁𝑁𝑁 + 𝑁𝑁 

 

(1) 

 
  

𝑇𝑇𝑇𝑇𝑁𝑁 = 𝑇𝑇0 − ∑(𝑛𝑛−1)𝑇𝑇𝑛𝑛 
 

(2) 

  

 
 

𝑇𝑇𝑇𝑇𝑁𝑁 =  𝑙𝑙𝑙𝑙(𝐴𝐴 − 𝑡𝑡𝑡𝑡𝑙𝑙(𝑏𝑏𝑏𝑏𝑡𝑡𝑡𝑡)) 
 

(3) 

 
  

𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 =  𝑆𝑆𝑇𝑇𝑁𝑁𝑁𝑁 −  𝑁𝑁𝑁𝑁𝑁𝑁
𝑆𝑆𝑇𝑇𝑁𝑁𝑁𝑁 +  𝑁𝑁𝑁𝑁𝑁𝑁 

 

(4) 

 
  

𝐹𝐹𝑁𝑁 = 𝑇𝑇𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑏𝑏𝑙𝑙𝑡𝑡𝑡𝑡𝑃𝑃𝑏𝑏 𝑃𝑃𝑜𝑜 𝑜𝑜𝑙𝑙𝑃𝑃𝑃𝑃𝑜𝑜(𝑇𝑇𝑃𝑃)
𝑇𝑇𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑏𝑏𝑙𝑙𝑡𝑡𝑡𝑡𝑃𝑃𝑏𝑏 𝑃𝑃𝑜𝑜 𝑡𝑡ℎ𝑏𝑏 𝑃𝑃𝑙𝑙𝑡𝑡𝑐𝑐𝑐𝑐 𝑃𝑃𝑜𝑜 𝑏𝑏𝑡𝑡𝑃𝑃ℎ 𝑃𝑃𝑃𝑃𝑙𝑙𝑐𝑐𝑐𝑐𝑡𝑡𝑐𝑐𝑃𝑃𝑙𝑙𝑐𝑐𝑙𝑙𝑃𝑃 𝑜𝑜𝑡𝑡𝑃𝑃𝑡𝑡𝑃𝑃𝑃𝑃(𝑇𝑇𝑁𝑁) 

(5) 

 
 

𝐹𝐹𝑙𝑙𝑃𝑃𝑃𝑃𝑐𝑐 𝐻𝐻𝑡𝑡𝐻𝐻𝑡𝑡𝑃𝑃𝑐𝑐 (𝐹𝐹𝑁𝑁) =  𝐹𝐹𝑁𝑁𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 ×  𝐴𝐴𝑐𝑐𝐴𝐴𝑏𝑏𝑃𝑃𝑡𝑡+𝐹𝐹𝑁𝑁𝑆𝑆𝑆𝑆𝑆𝑆𝐴𝐴𝐴𝐴 𝑆𝑆𝑙𝑙𝑃𝑃𝐴𝐴𝑏𝑏 + 𝐹𝐹𝑁𝑁𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐴𝐴𝐶𝐶𝐶𝐶𝐴𝐴 ×
𝐶𝐶𝑃𝑃𝑃𝑃𝐶𝐶𝑡𝑡𝑡𝑡𝑃𝑃𝑃𝑃𝑏𝑏 + 𝐹𝐹𝑁𝑁𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 × 𝑆𝑆𝑃𝑃𝑐𝑐𝑙𝑙 + 𝐹𝐹𝑁𝑁𝑇𝑇𝑇𝑇𝑇𝑇 × 𝑇𝑇𝑇𝑇𝑁𝑁 + 𝐹𝐹𝑁𝑁𝑇𝑇𝑇𝑇𝑇𝑇 × 𝑇𝑇𝑇𝑇𝑁𝑁 + 𝐹𝐹𝑁𝑁𝐷𝐷𝑆𝑆𝐴𝐴𝐴𝐴𝐶𝐶𝑛𝑛𝐴𝐴𝐴𝐴 𝐴𝐴𝑆𝑆 𝐶𝐶𝑆𝑆𝐶𝐶𝐴𝐴𝐶𝐶𝐴𝐴 ×

𝑁𝑁𝑐𝑐𝑐𝑐𝑡𝑡𝑡𝑡𝑙𝑙𝑃𝑃𝑏𝑏 𝑡𝑡𝑃𝑃 𝑃𝑃𝑐𝑐𝐶𝐶𝑏𝑏𝑃𝑃𝑐𝑐 + 𝐹𝐹𝑁𝑁𝐿𝐿𝐶𝐶𝑛𝑛𝐿𝐿 𝑈𝑈𝐴𝐴𝐴𝐴 × 𝑃𝑃𝑡𝑡𝑙𝑙𝑐𝑐 𝑈𝑈𝑐𝑐𝑏𝑏 + 𝐹𝐹𝑁𝑁𝑆𝑆𝐴𝐴𝐶𝐶𝐴𝐴𝐶𝐶𝑆𝑆 𝐷𝐷𝐴𝐴𝑛𝑛𝐴𝐴𝑆𝑆𝐴𝐴𝐷𝐷 ×  𝑆𝑆𝑡𝑡𝑃𝑃𝑏𝑏𝑡𝑡𝑆𝑆 𝑁𝑁𝑏𝑏𝑙𝑙𝑐𝑐𝑐𝑐𝑡𝑡𝐷𝐷 + 
𝐹𝐹𝑁𝑁𝐺𝐺𝐴𝐴𝑆𝑆𝑆𝑆𝑆𝑆𝐺𝐺𝐷𝐷 × 𝐺𝐺𝑏𝑏𝑃𝑃𝑙𝑙𝑃𝑃𝑃𝑃𝐷𝐷+𝐹𝐹𝑁𝑁𝑁𝑁𝐷𝐷𝑁𝑁𝑇𝑇 × 𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁+𝐹𝐹𝑁𝑁𝑁𝑁𝐷𝐷𝑁𝑁𝑇𝑇 × 𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁+𝐹𝐹𝑁𝑁𝐷𝐷𝐷𝐷𝐷𝐷 × 𝑁𝑁𝑁𝑁𝐷𝐷 

 

(6) 

 
 

𝐴𝐴𝑈𝑈𝐶𝐶 =
(𝛴𝛴𝑇𝑇𝑇𝑇 + 𝛴𝛴𝑇𝑇𝑁𝑁)

𝑇𝑇 + 𝑁𝑁  
 

(7) 

 
  

𝑀𝑀𝐴𝐴𝑀𝑀 = 1
𝑛𝑛 ∑ ∣ 𝐷𝐷𝑆𝑆 − �̂�𝐷𝑆𝑆

𝑛𝑛
𝑆𝑆=1 ∣

 
(8) 

 
 

𝑁𝑁𝑀𝑀𝑆𝑆𝑀𝑀 = √1
𝑙𝑙 ∑ (𝐷𝐷𝑆𝑆 − �̂�𝐷𝑆𝑆)2

𝑛𝑛

𝑆𝑆=1
 (9) 

 
  

𝑘𝑘 = 𝐴𝐴0 − 𝐴𝐴𝐴𝐴
1 − 𝐴𝐴𝐴𝐴

 

 

(10) 

 
  

𝐴𝐴𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑡𝑡𝑃𝑃𝐷𝐷 = 𝑇𝑇𝑇𝑇 + 𝑇𝑇𝑁𝑁
𝑇𝑇𝑇𝑇 + 𝑇𝑇𝑁𝑁 + 𝐹𝐹𝑇𝑇 + 𝐹𝐹𝑁𝑁 

 

(11) 

 (9)

where: n is the number of observations; yi is the 
actual (observed) value for the i-th obser-
vation; 

  
  

𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 = 𝑁𝑁𝑁𝑁𝑁𝑁 − 𝑁𝑁
𝑁𝑁𝑁𝑁𝑁𝑁 + 𝑁𝑁 

 

(1) 

 
  

𝑇𝑇𝑇𝑇𝑁𝑁 = 𝑇𝑇0 − ∑(𝑛𝑛−1)𝑇𝑇𝑛𝑛 
 

(2) 

  

 
 

𝑇𝑇𝑇𝑇𝑁𝑁 =  𝑙𝑙𝑙𝑙(𝐴𝐴 − 𝑡𝑡𝑡𝑡𝑙𝑙(𝑏𝑏𝑏𝑏𝑡𝑡𝑡𝑡)) 
 

(3) 

 
  

𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 =  𝑆𝑆𝑇𝑇𝑁𝑁𝑁𝑁 −  𝑁𝑁𝑁𝑁𝑁𝑁
𝑆𝑆𝑇𝑇𝑁𝑁𝑁𝑁 +  𝑁𝑁𝑁𝑁𝑁𝑁 

 

(4) 

 
  

𝐹𝐹𝑁𝑁 = 𝑇𝑇𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑏𝑏𝑙𝑙𝑡𝑡𝑡𝑡𝑃𝑃𝑏𝑏 𝑃𝑃𝑜𝑜 𝑜𝑜𝑙𝑙𝑃𝑃𝑃𝑃𝑜𝑜(𝑇𝑇𝑃𝑃)
𝑇𝑇𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑏𝑏𝑙𝑙𝑡𝑡𝑡𝑡𝑃𝑃𝑏𝑏 𝑃𝑃𝑜𝑜 𝑡𝑡ℎ𝑏𝑏 𝑃𝑃𝑙𝑙𝑡𝑡𝑐𝑐𝑐𝑐 𝑃𝑃𝑜𝑜 𝑏𝑏𝑡𝑡𝑃𝑃ℎ 𝑃𝑃𝑃𝑃𝑙𝑙𝑐𝑐𝑐𝑐𝑡𝑡𝑐𝑐𝑃𝑃𝑙𝑙𝑐𝑐𝑙𝑙𝑃𝑃 𝑜𝑜𝑡𝑡𝑃𝑃𝑡𝑡𝑃𝑃𝑃𝑃(𝑇𝑇𝑁𝑁) 

(5) 

 
 

𝐹𝐹𝑙𝑙𝑃𝑃𝑃𝑃𝑐𝑐 𝐻𝐻𝑡𝑡𝐻𝐻𝑡𝑡𝑃𝑃𝑐𝑐 (𝐹𝐹𝑁𝑁) =  𝐹𝐹𝑁𝑁𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 ×  𝐴𝐴𝑐𝑐𝐴𝐴𝑏𝑏𝑃𝑃𝑡𝑡+𝐹𝐹𝑁𝑁𝑆𝑆𝑆𝑆𝑆𝑆𝐴𝐴𝐴𝐴 𝑆𝑆𝑙𝑙𝑃𝑃𝐴𝐴𝑏𝑏 + 𝐹𝐹𝑁𝑁𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐴𝐴𝐶𝐶𝐶𝐶𝐴𝐴 ×
𝐶𝐶𝑃𝑃𝑃𝑃𝐶𝐶𝑡𝑡𝑡𝑡𝑃𝑃𝑃𝑃𝑏𝑏 + 𝐹𝐹𝑁𝑁𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 × 𝑆𝑆𝑃𝑃𝑐𝑐𝑙𝑙 + 𝐹𝐹𝑁𝑁𝑇𝑇𝑇𝑇𝑇𝑇 × 𝑇𝑇𝑇𝑇𝑁𝑁 + 𝐹𝐹𝑁𝑁𝑇𝑇𝑇𝑇𝑇𝑇 × 𝑇𝑇𝑇𝑇𝑁𝑁 + 𝐹𝐹𝑁𝑁𝐷𝐷𝑆𝑆𝐴𝐴𝐴𝐴𝐶𝐶𝑛𝑛𝐴𝐴𝐴𝐴 𝐴𝐴𝑆𝑆 𝐶𝐶𝑆𝑆𝐶𝐶𝐴𝐴𝐶𝐶𝐴𝐴 ×

𝑁𝑁𝑐𝑐𝑐𝑐𝑡𝑡𝑡𝑡𝑙𝑙𝑃𝑃𝑏𝑏 𝑡𝑡𝑃𝑃 𝑃𝑃𝑐𝑐𝐶𝐶𝑏𝑏𝑃𝑃𝑐𝑐 + 𝐹𝐹𝑁𝑁𝐿𝐿𝐶𝐶𝑛𝑛𝐿𝐿 𝑈𝑈𝐴𝐴𝐴𝐴 × 𝑃𝑃𝑡𝑡𝑙𝑙𝑐𝑐 𝑈𝑈𝑐𝑐𝑏𝑏 + 𝐹𝐹𝑁𝑁𝑆𝑆𝐴𝐴𝐶𝐶𝐴𝐴𝐶𝐶𝑆𝑆 𝐷𝐷𝐴𝐴𝑛𝑛𝐴𝐴𝑆𝑆𝐴𝐴𝐷𝐷 ×  𝑆𝑆𝑡𝑡𝑃𝑃𝑏𝑏𝑡𝑡𝑆𝑆 𝑁𝑁𝑏𝑏𝑙𝑙𝑐𝑐𝑐𝑐𝑡𝑡𝐷𝐷 + 
𝐹𝐹𝑁𝑁𝐺𝐺𝐴𝐴𝑆𝑆𝑆𝑆𝑆𝑆𝐺𝐺𝐷𝐷 × 𝐺𝐺𝑏𝑏𝑃𝑃𝑙𝑙𝑃𝑃𝑃𝑃𝐷𝐷+𝐹𝐹𝑁𝑁𝑁𝑁𝐷𝐷𝑁𝑁𝑇𝑇 × 𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁+𝐹𝐹𝑁𝑁𝑁𝑁𝐷𝐷𝑁𝑁𝑇𝑇 × 𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁+𝐹𝐹𝑁𝑁𝐷𝐷𝐷𝐷𝐷𝐷 × 𝑁𝑁𝑁𝑁𝐷𝐷 

 

(6) 

 
 

𝐴𝐴𝑈𝑈𝐶𝐶 =
(𝛴𝛴𝑇𝑇𝑇𝑇 + 𝛴𝛴𝑇𝑇𝑁𝑁)

𝑇𝑇 + 𝑁𝑁  
 

(7) 

 
  

𝑀𝑀𝐴𝐴𝑀𝑀 = 1
𝑛𝑛 ∑ ∣ 𝐷𝐷𝑆𝑆 − �̂�𝐷𝑆𝑆

𝑛𝑛
𝑆𝑆=1 ∣

 
(8) 

 
 

𝑁𝑁𝑀𝑀𝑆𝑆𝑀𝑀 = √1
𝑙𝑙 ∑ (𝐷𝐷𝑆𝑆 − �̂�𝐷𝑆𝑆)2

𝑛𝑛

𝑆𝑆=1
 (9) 

 
  

𝑘𝑘 = 𝐴𝐴0 − 𝐴𝐴𝐴𝐴
1 − 𝐴𝐴𝐴𝐴

 

 

(10) 

 
  

𝐴𝐴𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑡𝑡𝑃𝑃𝐷𝐷 = 𝑇𝑇𝑇𝑇 + 𝑇𝑇𝑁𝑁
𝑇𝑇𝑇𝑇 + 𝑇𝑇𝑁𝑁 + 𝐹𝐹𝑇𝑇 + 𝐹𝐹𝑁𝑁 

 

(11) 

 Is the predicted value for the 
i-th observation; 

  
  

𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 = 𝑁𝑁𝑁𝑁𝑁𝑁 − 𝑁𝑁
𝑁𝑁𝑁𝑁𝑁𝑁 + 𝑁𝑁 

 

(1) 

 
  

𝑇𝑇𝑇𝑇𝑁𝑁 = 𝑇𝑇0 − ∑(𝑛𝑛−1)𝑇𝑇𝑛𝑛 
 

(2) 

  

 
 

𝑇𝑇𝑇𝑇𝑁𝑁 =  𝑙𝑙𝑙𝑙(𝐴𝐴 − 𝑡𝑡𝑡𝑡𝑙𝑙(𝑏𝑏𝑏𝑏𝑡𝑡𝑡𝑡)) 
 

(3) 

 
  

𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 =  𝑆𝑆𝑇𝑇𝑁𝑁𝑁𝑁 −  𝑁𝑁𝑁𝑁𝑁𝑁
𝑆𝑆𝑇𝑇𝑁𝑁𝑁𝑁 +  𝑁𝑁𝑁𝑁𝑁𝑁 

 

(4) 

 
  

𝐹𝐹𝑁𝑁 = 𝑇𝑇𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑏𝑏𝑙𝑙𝑡𝑡𝑡𝑡𝑃𝑃𝑏𝑏 𝑃𝑃𝑜𝑜 𝑜𝑜𝑙𝑙𝑃𝑃𝑃𝑃𝑜𝑜(𝑇𝑇𝑃𝑃)
𝑇𝑇𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑏𝑏𝑙𝑙𝑡𝑡𝑡𝑡𝑃𝑃𝑏𝑏 𝑃𝑃𝑜𝑜 𝑡𝑡ℎ𝑏𝑏 𝑃𝑃𝑙𝑙𝑡𝑡𝑐𝑐𝑐𝑐 𝑃𝑃𝑜𝑜 𝑏𝑏𝑡𝑡𝑃𝑃ℎ 𝑃𝑃𝑃𝑃𝑙𝑙𝑐𝑐𝑐𝑐𝑡𝑡𝑐𝑐𝑃𝑃𝑙𝑙𝑐𝑐𝑙𝑙𝑃𝑃 𝑜𝑜𝑡𝑡𝑃𝑃𝑡𝑡𝑃𝑃𝑃𝑃(𝑇𝑇𝑁𝑁) 

(5) 

 
 

𝐹𝐹𝑙𝑙𝑃𝑃𝑃𝑃𝑐𝑐 𝐻𝐻𝑡𝑡𝐻𝐻𝑡𝑡𝑃𝑃𝑐𝑐 (𝐹𝐹𝑁𝑁) =  𝐹𝐹𝑁𝑁𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 ×  𝐴𝐴𝑐𝑐𝐴𝐴𝑏𝑏𝑃𝑃𝑡𝑡+𝐹𝐹𝑁𝑁𝑆𝑆𝑆𝑆𝑆𝑆𝐴𝐴𝐴𝐴 𝑆𝑆𝑙𝑙𝑃𝑃𝐴𝐴𝑏𝑏 + 𝐹𝐹𝑁𝑁𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐴𝐴𝐶𝐶𝐶𝐶𝐴𝐴 ×
𝐶𝐶𝑃𝑃𝑃𝑃𝐶𝐶𝑡𝑡𝑡𝑡𝑃𝑃𝑃𝑃𝑏𝑏 + 𝐹𝐹𝑁𝑁𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 × 𝑆𝑆𝑃𝑃𝑐𝑐𝑙𝑙 + 𝐹𝐹𝑁𝑁𝑇𝑇𝑇𝑇𝑇𝑇 × 𝑇𝑇𝑇𝑇𝑁𝑁 + 𝐹𝐹𝑁𝑁𝑇𝑇𝑇𝑇𝑇𝑇 × 𝑇𝑇𝑇𝑇𝑁𝑁 + 𝐹𝐹𝑁𝑁𝐷𝐷𝑆𝑆𝐴𝐴𝐴𝐴𝐶𝐶𝑛𝑛𝐴𝐴𝐴𝐴 𝐴𝐴𝑆𝑆 𝐶𝐶𝑆𝑆𝐶𝐶𝐴𝐴𝐶𝐶𝐴𝐴 ×

𝑁𝑁𝑐𝑐𝑐𝑐𝑡𝑡𝑡𝑡𝑙𝑙𝑃𝑃𝑏𝑏 𝑡𝑡𝑃𝑃 𝑃𝑃𝑐𝑐𝐶𝐶𝑏𝑏𝑃𝑃𝑐𝑐 + 𝐹𝐹𝑁𝑁𝐿𝐿𝐶𝐶𝑛𝑛𝐿𝐿 𝑈𝑈𝐴𝐴𝐴𝐴 × 𝑃𝑃𝑡𝑡𝑙𝑙𝑐𝑐 𝑈𝑈𝑐𝑐𝑏𝑏 + 𝐹𝐹𝑁𝑁𝑆𝑆𝐴𝐴𝐶𝐶𝐴𝐴𝐶𝐶𝑆𝑆 𝐷𝐷𝐴𝐴𝑛𝑛𝐴𝐴𝑆𝑆𝐴𝐴𝐷𝐷 ×  𝑆𝑆𝑡𝑡𝑃𝑃𝑏𝑏𝑡𝑡𝑆𝑆 𝑁𝑁𝑏𝑏𝑙𝑙𝑐𝑐𝑐𝑐𝑡𝑡𝐷𝐷 + 
𝐹𝐹𝑁𝑁𝐺𝐺𝐴𝐴𝑆𝑆𝑆𝑆𝑆𝑆𝐺𝐺𝐷𝐷 × 𝐺𝐺𝑏𝑏𝑃𝑃𝑙𝑙𝑃𝑃𝑃𝑃𝐷𝐷+𝐹𝐹𝑁𝑁𝑁𝑁𝐷𝐷𝑁𝑁𝑇𝑇 × 𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁+𝐹𝐹𝑁𝑁𝑁𝑁𝐷𝐷𝑁𝑁𝑇𝑇 × 𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁+𝐹𝐹𝑁𝑁𝐷𝐷𝐷𝐷𝐷𝐷 × 𝑁𝑁𝑁𝑁𝐷𝐷 

 

(6) 

 
 

𝐴𝐴𝑈𝑈𝐶𝐶 =
(𝛴𝛴𝑇𝑇𝑇𝑇 + 𝛴𝛴𝑇𝑇𝑁𝑁)

𝑇𝑇 + 𝑁𝑁  
 

(7) 

 
  

𝑀𝑀𝐴𝐴𝑀𝑀 = 1
𝑛𝑛 ∑ ∣ 𝐷𝐷𝑆𝑆 − �̂�𝐷𝑆𝑆

𝑛𝑛
𝑆𝑆=1 ∣

 
(8) 

 
 

𝑁𝑁𝑀𝑀𝑆𝑆𝑀𝑀 = √1
𝑙𝑙 ∑ (𝐷𝐷𝑆𝑆 − �̂�𝐷𝑆𝑆)2

𝑛𝑛

𝑆𝑆=1
 (9) 

 
  

𝑘𝑘 = 𝐴𝐴0 − 𝐴𝐴𝐴𝐴
1 − 𝐴𝐴𝐴𝐴

 

 

(10) 

 
  

𝐴𝐴𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑡𝑡𝑃𝑃𝐷𝐷 = 𝑇𝑇𝑇𝑇 + 𝑇𝑇𝑁𝑁
𝑇𝑇𝑇𝑇 + 𝑇𝑇𝑁𝑁 + 𝐹𝐹𝑇𝑇 + 𝐹𝐹𝑁𝑁 

 

(11) 

 is the squared 
difference between the actual and predict-
ed values.

Kappa

Cohen’s Kappa is a statistical tool that mea-
sures the agreement between two sets of rankings 
or predictions, while taking into account the prob-
ability of agreement obtained simply by chance. 
This measure is particularly relevant in the evalu-
ation of prediction models, especially those that 
generate categorical results, as in the validation 
of flood forecasts. In flood prediction, Cohen’s 
Kappa can be used to assess the performance of 
different models and measure inter-rater reliabil-
ity (Paul et al., 2022)

The equation for Kappa (Cohen’s Kappa) is:

 

  
  

𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 = 𝑁𝑁𝑁𝑁𝑁𝑁 − 𝑁𝑁
𝑁𝑁𝑁𝑁𝑁𝑁 + 𝑁𝑁 

 

(1) 

 
  

𝑇𝑇𝑇𝑇𝑁𝑁 = 𝑇𝑇0 − ∑(𝑛𝑛−1)𝑇𝑇𝑛𝑛 
 

(2) 

  

 
 

𝑇𝑇𝑇𝑇𝑁𝑁 =  𝑙𝑙𝑙𝑙(𝐴𝐴 − 𝑡𝑡𝑡𝑡𝑙𝑙(𝑏𝑏𝑏𝑏𝑡𝑡𝑡𝑡)) 
 

(3) 

 
  

𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 =  𝑆𝑆𝑇𝑇𝑁𝑁𝑁𝑁 −  𝑁𝑁𝑁𝑁𝑁𝑁
𝑆𝑆𝑇𝑇𝑁𝑁𝑁𝑁 +  𝑁𝑁𝑁𝑁𝑁𝑁 

 

(4) 

 
  

𝐹𝐹𝑁𝑁 = 𝑇𝑇𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑏𝑏𝑙𝑙𝑡𝑡𝑡𝑡𝑃𝑃𝑏𝑏 𝑃𝑃𝑜𝑜 𝑜𝑜𝑙𝑙𝑃𝑃𝑃𝑃𝑜𝑜(𝑇𝑇𝑃𝑃)
𝑇𝑇𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑏𝑏𝑙𝑙𝑡𝑡𝑡𝑡𝑃𝑃𝑏𝑏 𝑃𝑃𝑜𝑜 𝑡𝑡ℎ𝑏𝑏 𝑃𝑃𝑙𝑙𝑡𝑡𝑐𝑐𝑐𝑐 𝑃𝑃𝑜𝑜 𝑏𝑏𝑡𝑡𝑃𝑃ℎ 𝑃𝑃𝑃𝑃𝑙𝑙𝑐𝑐𝑐𝑐𝑡𝑡𝑐𝑐𝑃𝑃𝑙𝑙𝑐𝑐𝑙𝑙𝑃𝑃 𝑜𝑜𝑡𝑡𝑃𝑃𝑡𝑡𝑃𝑃𝑃𝑃(𝑇𝑇𝑁𝑁) 

(5) 

 
 

𝐹𝐹𝑙𝑙𝑃𝑃𝑃𝑃𝑐𝑐 𝐻𝐻𝑡𝑡𝐻𝐻𝑡𝑡𝑃𝑃𝑐𝑐 (𝐹𝐹𝑁𝑁) =  𝐹𝐹𝑁𝑁𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 ×  𝐴𝐴𝑐𝑐𝐴𝐴𝑏𝑏𝑃𝑃𝑡𝑡+𝐹𝐹𝑁𝑁𝑆𝑆𝑆𝑆𝑆𝑆𝐴𝐴𝐴𝐴 𝑆𝑆𝑙𝑙𝑃𝑃𝐴𝐴𝑏𝑏 + 𝐹𝐹𝑁𝑁𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐴𝐴𝐶𝐶𝐶𝐶𝐴𝐴 ×
𝐶𝐶𝑃𝑃𝑃𝑃𝐶𝐶𝑡𝑡𝑡𝑡𝑃𝑃𝑃𝑃𝑏𝑏 + 𝐹𝐹𝑁𝑁𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 × 𝑆𝑆𝑃𝑃𝑐𝑐𝑙𝑙 + 𝐹𝐹𝑁𝑁𝑇𝑇𝑇𝑇𝑇𝑇 × 𝑇𝑇𝑇𝑇𝑁𝑁 + 𝐹𝐹𝑁𝑁𝑇𝑇𝑇𝑇𝑇𝑇 × 𝑇𝑇𝑇𝑇𝑁𝑁 + 𝐹𝐹𝑁𝑁𝐷𝐷𝑆𝑆𝐴𝐴𝐴𝐴𝐶𝐶𝑛𝑛𝐴𝐴𝐴𝐴 𝐴𝐴𝑆𝑆 𝐶𝐶𝑆𝑆𝐶𝐶𝐴𝐴𝐶𝐶𝐴𝐴 ×

𝑁𝑁𝑐𝑐𝑐𝑐𝑡𝑡𝑡𝑡𝑙𝑙𝑃𝑃𝑏𝑏 𝑡𝑡𝑃𝑃 𝑃𝑃𝑐𝑐𝐶𝐶𝑏𝑏𝑃𝑃𝑐𝑐 + 𝐹𝐹𝑁𝑁𝐿𝐿𝐶𝐶𝑛𝑛𝐿𝐿 𝑈𝑈𝐴𝐴𝐴𝐴 × 𝑃𝑃𝑡𝑡𝑙𝑙𝑐𝑐 𝑈𝑈𝑐𝑐𝑏𝑏 + 𝐹𝐹𝑁𝑁𝑆𝑆𝐴𝐴𝐶𝐶𝐴𝐴𝐶𝐶𝑆𝑆 𝐷𝐷𝐴𝐴𝑛𝑛𝐴𝐴𝑆𝑆𝐴𝐴𝐷𝐷 ×  𝑆𝑆𝑡𝑡𝑃𝑃𝑏𝑏𝑡𝑡𝑆𝑆 𝑁𝑁𝑏𝑏𝑙𝑙𝑐𝑐𝑐𝑐𝑡𝑡𝐷𝐷 + 
𝐹𝐹𝑁𝑁𝐺𝐺𝐴𝐴𝑆𝑆𝑆𝑆𝑆𝑆𝐺𝐺𝐷𝐷 × 𝐺𝐺𝑏𝑏𝑃𝑃𝑙𝑙𝑃𝑃𝑃𝑃𝐷𝐷+𝐹𝐹𝑁𝑁𝑁𝑁𝐷𝐷𝑁𝑁𝑇𝑇 × 𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁+𝐹𝐹𝑁𝑁𝑁𝑁𝐷𝐷𝑁𝑁𝑇𝑇 × 𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁+𝐹𝐹𝑁𝑁𝐷𝐷𝐷𝐷𝐷𝐷 × 𝑁𝑁𝑁𝑁𝐷𝐷 

 

(6) 

 
 

𝐴𝐴𝑈𝑈𝐶𝐶 =
(𝛴𝛴𝑇𝑇𝑇𝑇 + 𝛴𝛴𝑇𝑇𝑁𝑁)

𝑇𝑇 + 𝑁𝑁  
 

(7) 

 
  

𝑀𝑀𝐴𝐴𝑀𝑀 = 1
𝑛𝑛 ∑ ∣ 𝐷𝐷𝑆𝑆 − �̂�𝐷𝑆𝑆

𝑛𝑛
𝑆𝑆=1 ∣

 
(8) 

 
 

𝑁𝑁𝑀𝑀𝑆𝑆𝑀𝑀 = √1
𝑙𝑙 ∑ (𝐷𝐷𝑆𝑆 − �̂�𝐷𝑆𝑆)2

𝑛𝑛

𝑆𝑆=1
 (9) 

 
  

𝑘𝑘 = 𝐴𝐴0 − 𝐴𝐴𝐴𝐴
1 − 𝐴𝐴𝐴𝐴

 

 

(10) 

 
  

𝐴𝐴𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑡𝑡𝑃𝑃𝐷𝐷 = 𝑇𝑇𝑇𝑇 + 𝑇𝑇𝑁𝑁
𝑇𝑇𝑇𝑇 + 𝑇𝑇𝑁𝑁 + 𝐹𝐹𝑇𝑇 + 𝐹𝐹𝑁𝑁 

 

(11) 

 (10)

where: p0 is the observed agreement, which is the 
proportion of times the two raters (or the 
model and ground truth) agree; pe is the 
expected agreement, which is the propor-
tion of times the two raters (or model and 
ground truth) would agree by chance.

Accuracy

Accuracy is a straightforward measure when 
predicting whether a flood will occur or not (bi-
nary classification: flood/no flood). It provides a 
quick snapshot of overall model effectiveness but 
can be misleading if the data set is unbalanced 

(e.g., very few flood events compared to non-
flood days). The equation for accuracy is:

 

  
  

𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 = 𝑁𝑁𝑁𝑁𝑁𝑁 − 𝑁𝑁
𝑁𝑁𝑁𝑁𝑁𝑁 + 𝑁𝑁 

 

(1) 

 
  

𝑇𝑇𝑇𝑇𝑁𝑁 = 𝑇𝑇0 − ∑(𝑛𝑛−1)𝑇𝑇𝑛𝑛 
 

(2) 

  

 
 

𝑇𝑇𝑇𝑇𝑁𝑁 =  𝑙𝑙𝑙𝑙(𝐴𝐴 − 𝑡𝑡𝑡𝑡𝑙𝑙(𝑏𝑏𝑏𝑏𝑡𝑡𝑡𝑡)) 
 

(3) 

 
  

𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 =  𝑆𝑆𝑇𝑇𝑁𝑁𝑁𝑁 −  𝑁𝑁𝑁𝑁𝑁𝑁
𝑆𝑆𝑇𝑇𝑁𝑁𝑁𝑁 +  𝑁𝑁𝑁𝑁𝑁𝑁 

 

(4) 

 
  

𝐹𝐹𝑁𝑁 = 𝑇𝑇𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑏𝑏𝑙𝑙𝑡𝑡𝑡𝑡𝑃𝑃𝑏𝑏 𝑃𝑃𝑜𝑜 𝑜𝑜𝑙𝑙𝑃𝑃𝑃𝑃𝑜𝑜(𝑇𝑇𝑃𝑃)
𝑇𝑇𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑏𝑏𝑙𝑙𝑡𝑡𝑡𝑡𝑃𝑃𝑏𝑏 𝑃𝑃𝑜𝑜 𝑡𝑡ℎ𝑏𝑏 𝑃𝑃𝑙𝑙𝑡𝑡𝑐𝑐𝑐𝑐 𝑃𝑃𝑜𝑜 𝑏𝑏𝑡𝑡𝑃𝑃ℎ 𝑃𝑃𝑃𝑃𝑙𝑙𝑐𝑐𝑐𝑐𝑡𝑡𝑐𝑐𝑃𝑃𝑙𝑙𝑐𝑐𝑙𝑙𝑃𝑃 𝑜𝑜𝑡𝑡𝑃𝑃𝑡𝑡𝑃𝑃𝑃𝑃(𝑇𝑇𝑁𝑁) 
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where: TP (true positives) – the number of cor-
rectly predicted flood events; TN (true 
negatives) – the number of correctly pre-
dicted non-flood events; FP (false posi-
tives) – the number of non-flood events 
incorrectly predicted as floods; FN (false 
negatives) – the number of flood events 
incorrectly predicted as non-floods.

RESULTS

Importance of variables and analysis of 
explanatory factors using statistical method

The analysis of flood hazard involves various 
factors that contribute to the overall risk. Table 2 
provides a comprehensive breakdown of these fac-
tors, categorized by classes such as aspect, slope, 
curvature, soil, TPI, TWI, distance to rivers, land 
use, stream density, geology, NDVI, NDBI, and 
DRO. Each class is analyzed based on frequency 
ratio (FR) index. These indices help to normalize 
the data and provide a clear picture of the rela-
tive importance of each class in predicting flood 
hazards. In the following sections, we will classify 
and discuss these classes according to the three 
different prediction models used in this study.

The frequency ratio method pays more at-
tention to slope, appearance and NDVI. These 
results reveal a significant agreement, especially 
with regard to the importance of slope and vegeta-
tion, while highlighting the particularities of each 
method. It is essential to recognize the uniqueness 
of the FR method; although it may seem simple, it 
highlights geographical factors that are often ig-
nored, making it a valuable and essential tool for 
in-depth and relevant analyses

Importance of variables and analysis of 
explanatory factors using machine learning 
model XGBoost

In the analysis performed with XGBoost, it 
is clearly demonstrated that the most influential 
variables are NDVI, NDBI and SLOPE (Figure 
6). This highlights the crucial importance of veg-
etation indices and topography in our understand-
ing of the phenomena studied.



275

Ecological Engineering & Environmental Technology 2025, 26(3), 265–285

Table 2. Spatial relation between thematic layers and historic floods using FR method

Factor Class Nbr. of 
Pixel % of domain Nbr. of

inundation points % Flood FR index FR
normalized

Aspect

North to East 93350 27.68 533 24.46 0.88 0.88

East to South 39590 11.74 213 9.78 0.83 0.05

South to West 47047 13.95 198 9.09 0.65 0.04

West to North 68096 20.19 280 12.85 0.63 0.04

West to North 89171 26.44 955 43.83 1.65 0.11

Slope (%)

0–3.36 216201 64.11 883 40.52 0.63 0.04

3.36–7.48 86644 25.69 542 24.87 0.96 0.06

7.48–14.78 18986 5.63 85 3.90 0.69 0.04

14.78–24.33 9864 2.92 141 6.47 2.21 0.15

24.33–47.73 5559 1.65 528 24.23 14.7 1.00

Curvature

-10.23–1.29 56699 16.81 395 18.13 1.07 0.07

-1.29–0.67 161642 47.93 947 43.46 0.90 0.06

-0.67–0.03 63508 18.83 395 18.13 0.96 0.06

0.03–0.65 47764 14.16 291 13.35 0.94 0.06

0.65–9.60 7641 2.27 151 6.93 3.05 0.20

SOL

Poorly developed 
erosional soils 

with crude mineral 
inclusions

269635 79.95 1411 64.75 0.81 0.05

Isohumic soils with 
calsimagnesic 

inclusions
67619 20.05 768 35.25 1.75 0.12

TPI

-5.5–0.65 19438 5.76 109 5.00 0.86 0.05

-0.65–0.27 88554 26.26 407 18.68 0.71 0.04

-0.27–0.10 121760 36.10 665 30.52 0.84 0.05

0.10–0.48 89179 26.44 628 28.82 1.09 0.07

0.48–5.25 18323 5.43 370 16.98 3.12 0.213

TWI

2.504–4.97 51729 15.34 884 40.57 2.64 0.18

4.97–6.18 175009 51.89 837 38.41 0.74 0.05

6.18–7.71 84166 24.96 352 16.15 0.64 0.04

7.71–10.18 18280 5.42 69 3.17 0.58 0.04

10.18–15.92 8070 2.39 37 1.70 0.71 0.04

Distance to 
rivers (m)

0–98.37 133496 39.58 624 28.64 0.72 0.04

98.37–210.16 102770 30.47 512 23.50 0.77 0.05

210.16–357.72 60860 18.05 309 14.18 0.78 0.05

357.72–567.88 27446 8.14 396 18.17 2.23 0.15

567.88–1 140.24 12682 3.76 338 15.51 4.12 0.28

Land use

Built–up 132323 39.24 1367 62.74 1.59 0.10

Arboriculture 181601 53.85 756 34.69 0.64 0.04

Agricultural land 22042 6.54 54 2.48 0.37 0.02

Bare ground 1288 0.38 2 0.09 0.24 0.01

Stream 
Density 

(km/km²)

0–0.67 73600 21.82 907 41.62 1.90 0.13

0.67–1.69 61794 18.32 365 16.75 0.91 0.06

1.69–2.69 96653 28.66 406 18.63 0.65 0.04
2.696945842–
3.845644996 72262 21.43 334 15.33 0.71 0.04

3.84–6.36 32945 9.77 167 7.66 0.78 0.05
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Impact of classes in prediction

The biggest factor influencing flood hazards 
(Figure 7) in FR model is steep slopes (24.33–
47.73%), which cause high erosion and runoff. 
Next is the north to east slope orientation. Areas 
with pink-brown carbonated cement powders are 
also highly susceptible. Low vegetation cover 

(NDVI -0.19 to -0.13) is another major factor. The 
distance to rivers, particularly between 567.89 and 
1140.24 meters, significantly affects flood risk. 
Depressions or convergent zones, indicated by 
curvature values of 0.65 to 9.60, are also impor-
tant. Other key factors include low areas that ac-
cumulate water (TPI 0.49–5.25), zones with higher 
water accumulation (TWI 2.51–4.98), and areas 

Geology

Travertines 21224 6.29 171 7.85 1.24 0.08
Recent Quaternary 
(piedmont cones. 

encrusted)
5255 1.56 3 0.14 0.08 0.00

Paleocene (beige 
limestone) 9096 2.70 153 7.02 2.60 0.17

Middle Quaternary 
(scree spreading) 4092 1.21 23 1.06 0.87 0.05

Pink–brown 
carbonated cement 

powders/ Pink–
brown carbonated 
cement powders

7057 2.09 332 15.24 7.28 0.49

Middle Quaternary 
(Tadla silts) 290530 86.15 1497 68.70 0.79 0.05

NDVI

-0.19–0.13 36687 10.88 1275 58.51 5.37 0.36

0.13–0.23 58162 17.25 487 22.35 1.29 0.08

0.23–0.35 90248 26.76 313 14.36 0.53 0.03

0.35–0.49 93618 27.76 99 4.54 0.16 0.01

0.49–0.75 58539 17.36 5 0.23 0.01 0.00

NDBI

-0.34–0.15 24976 7.41 16 0.73 0.09 0.00

-0.15–0.09 60064 17.81 97 4.45 0.25 0.01

-0.09–0.03 72531 21.51 557 25.56 1.18 0.08

-0.03–0.02 100035 29.66 940 43.14 1.45 0.09

0.02–0.16 79648 23.62 569 26.11 1.10 0.07

DRO (m)

0–10 213902 63.42 1641 75.31 1.18 0.08

10–50 97360 28.87 508 23.31 0.80 0.05

50–100 23871 7.08 30 1.38 0.19 0.01

100–200 2121 0.63 0 0.00 0.00 0.00

200–800 0 0.00 0 0.00 0.00 0.00

Figure 6. Comparison of factor importance in flood prediction across RF, XGBoost model and statistical method 
frequency ratio: (a) frequency ratio, (b) XGBoost model
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with Paleocene beige limestone. Moderate to steep 
slopes (14.79–24.33%) with significant runoff, 
closer proximity to rivers (357.72–567.89 meters), 
stream density (0–0.67 km/km²), and specific soil 
types like isohumic soils with calsimagnesic inclu-
sions further influence flood hazards. 

In the analysis performed with XGBoost, the 
bar chart provides a clear picture of how differ-
ent factors influence flood predictions using the 
XGBoost (XGB) algorithm. Steep slopes are the 
most significant contributors (24.33–47.73%), 
playing a key role in increasing runoff and ero-
sion both critical drivers of flooding. Geologi-
cal features, like pink-brown carbonated cement 
powders, also have a notable impact, showing 
how the makeup of the terrain affects flood Haz-
ard. Additionally, regions with sparse vegetation 
(NDVI: 0.194–0.135) are highly influential, as 
low vegetation limits the land’s ability to absorb 
water, leading to more surface runoff. Moderate-
ly important factors include the distance to riv-
ers (567.89–1140.24 m), which shows that areas 
closer to water bodies are at higher risk, and ter-
rain curvature (0.05–0.69), which identifies areas 
where water tends to collect, such as dips or rises 
in the land. Other factors in this category include 
Middle Quaternary geology and the topographi-
cal wetness index (TWI), both of which highlight 
zones where water naturally accumulates.

Urban land use (built-up areas), aspect (West 
to North), and stream density (0.67–1.20 km/km²) 
contribute less to flood dynamics but still play a 
role. Overall, the chart underscores that topograph-
ical and geological features are the primary drivers 
of flood risks, while proximity to water bodies and 

land cover factors add valuable supporting insights. 
This analysis provides a well-rounded understand-
ing of the elements that shape flood hazard.

Analysis of prediction score distributions

To evaluate the distribution of prediction 
scores and their ability to differentiate flood-
prone areas, Histograms of prediction scores 
from the FR and XGBoost models were analyzed 
to assess their ability to differentiate flood-prone 
areas (Figure 8). The FR model’s predictions 
were heavily concentrated near 1.0 in the training 
set, indicating a strong focus on areas identified 
as highly flood-prone. However, its outputs were 
largely binary, offering less granularity in risk 
differentiation. In contrast, XGBoost showed a 
bimodal distribution with peaks at 0.0 and 1.0, ef-
fectively separating low and high flood risks. The 
test set followed this trend with reduced extremes, 
demonstrating better generalization and avoiding 
overfitting. XGBoost’s more nuanced probability 
distribution provides a detailed flood susceptibil-
ity map, capturing intermediate risk levels. While 
the FR model offers interpretability, XGBoost de-
livers finer differentiation, making it better suited 
for detailed flood risk assessments (Figure 9).

Urban flood hazard probability mapping 

The representation of the likelihood of urban 
flooding provides a visual indication of flood 
risk within the city. Using the natural breaks 
(Jenks) (0–1) method in a GIS framework, the 
maps were divided into five levels of hazard: 
very low, low, moderate, high, and very high. A 

Figure 7. Relative contribution of factor classes to predictions using the FR method
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detailed analysis demonstrates differences in the 
distribution of flood hazard categories across the 
two methods (XGBoost and FR). The two maps 
illustrate different approaches to flood hazard 
assessment. The map based on the FR method 
shows a balanced distribution of hazard catego-
ries across the study area. It features a smooth 
transition from “very low” risk (21.3%) to “very 
high” risk (11.3%), with notable representation 
in intermediate categories such as “moderate” 
(25.3%) and “high” (18.3%). This model is par-
ticularly useful for overall assessment and long-
term flood management strategies, enabling 

decision-makers to plan proportionate measures 
across the identified zones (Figure 10).

In contrast, the map generated using the XG-
Boost model highlights a predominance of “very 
low” risk areas (73.0%), while “low” (5.7%), 
“moderate” (4.3%), “high” (5.0%), and “very 
high” (12.0%) risk zones are less represented. 
High and very high-risk zones are concentrated in 
specific locations, often urban areas or vulnerable 
regions. This model emphasizes precise identifi-
cation of extreme-risk areas, making it particular-
ly valuable for targeted interventions and efficient 
allocation of resources for flood prevention. The 

Figure 8. Relative contribution of factor classes to predictions using the XGBoost model

Figure 9. Analysis of prediction score distributions: FR and XGBoost models
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FR map is ideal for comprehensive action plans, 
while the XGBoost map is better suited for opera-
tional responses in critical areas. Together, these 
approaches complement each other one offering a 
broad overview and the other refining the analysis 
for precise targeting (Figure 11, 12). 

Performance analysis 

The ROC curves presented in the Figure 13 
depict the performance of the Frequency Ratio 
and XGBoost models in distinguishing between 
flooded and non-flooded areas for both the train-
ing (a), and testing (b) datasets. The AUC values 

give the quantitative comparison of the models’ 
effectiveness.

The AUC for the XGBoost model in the train-
ing dataset is close to perfection at 99.85%, while 
FR presents a relative lower AUC of 89.2% (Fig. 
13a), which demonstrates that the performances 
are relatively good, though much less precise 
than XGBoost. This wide difference in the perfor-
mance between the two underpins the higher pre-
dictability enjoyed by XGBoost, thus benefiting 
from the nature of machine learning and thereby 
non-linear interaction.

On the testing set, model XGBoost retains 
a high performance with an AUC of 90.71%, 

Figure 10. Flood hazard map generated by statistical method FR

Figure 11. Flood hazard map generated by machine learning model XGBoost
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Figure 12. Flood hazard zone distribution across frequency ratio method, and XGboost machine learning model

confirming that the model generalizes well on 
unseen data. In contrast, FR has an AUC of only 
86.1% (Fig. 13b), reflecting a slightly lower gen-
eralization capability. However, such reduction 
does not diminish in any sense the usefulness of 
predictions made by this model; the FR model, 
though useful in giving predictions, just lacks 
the robustness and reliability associated with 
XGBoost.

On the whole, from both analyses, XGBoost 
suits both datasets very well. Therefore, in the case 
where the application calls for high accuracy and 
generalization, it may serve as a better fit. FR suits 
cases with less complication and is better in carry-
ing out speedy yet less complicated analyses. These 
differences between the two models constitute a 
good reference for deciding on an appropriate tool 
to deal with tasks related to flood prediction.

In terms of performance metrics (Figure 14), 
the results clearly show that the XGBoost model 
significantly outperforms the FR model across 
all key indicators, including accuracy, class 

consistency (Kappa), MAE, and RMSE. XGBoost 
has an accuracy of 90.5% in training and 84.4% in 
testing, compared to 69% and 66.9% respectively 
for FR. In addition, XGBoost has strong consis-
tency across classes, with Kappa values of 0.81 
in training and 0.69 in testing, much higher than 
the 0.38 and 0.34 in the FR model. These results 
show that XGBoost is more reliable and stable 
in predicting flooded areas, offering predictions 
closer to true values and with reduced error. As a 
result, XGBoost is recommended for applications 
that require high accuracy, while FR can be used 
for faster and less demanding analyses.

DISCUSSION

This study focuses on flood hazard assess-
ment, a comparative analysis of two prominent 
methodological approaches, the FR method and 
the XGBoost model. It aims to underline their 
respective strengths while identifying the most 

Figure 13. ROC curves for flood prediction models – comparison between FR and XGBoost: 
(a) training data performance (AUC: FR = 89.2%, XGBoost = 99.85%), (b) testing data performance 

(AUC: FR = 86.1%, XGBoost = 90.71%)
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Figure 14. Bar chart comparing FR and XGBoost using multiple performance metrics – accuracy, mean absolute 
error (MAE) and root mean square error (RMSE) and Kappa

influential variables in predicting flood-prone 
areas. These approaches, which combine tradi-
tional techniques with advanced machine learn-
ing methods, offer complementary insights into 
flood risk and provide valuable tools for informed 
decision-making.

Comparing the XGBoost algorithm with the 
FR method highlights how both approaches of-
fer valuable but slightly different perspectives on 
flood risk. Both agree that steep slopes (24.33–
47.73%) play the biggest role in flooding by in-
creasing runoff and erosion, making them critical 
in understanding flood dynamics. Similarly, areas 
with low vegetation cover (NDVI: 0.194–0.135 
in XGB and -0.19 to -0.13 in FR) are highlighted 
by both methods, as sparse vegetation reduces the 
land’s ability to absorb water, leading to more sur-
face runoff. Proximity to rivers (567.89–1140.24 
m) is another shared factor, with both models rec-
ognizing its influence on flood risk, particularly in 
areas near water bodies.

Where they differ, FR brings a more detailed 
focus on geographical features, such as the im-
pact of positive curvature (0.65–9.60) and north-
east-facing slopes, which can direct and concen-
trate water flow (Kaffas et al., 2022). Meanwhile, 
XGBoost provides a broader overview, ranking 
the importance of various factors in flood predic-
tion. Together, these methods complement each 
other, with XGBoost excelling at quantifying 
factor contributions and FR offering a more nu-
anced look at specific geographical dynamics. By 
combining their strengths, we can gain a deeper 
understanding of flood risks and develop more 

targeted mitigation strategies. The applicability of 
the FR model in various urban contexts has been 
further demonstrated in New Cairo, Egypt, where 
it achieved an AUC of 90.11%(Megahed et al., 
2023), showcasing its effectiveness for rapid and 
resource-efficient flood susceptibility mapping. 
Thus, the FR method excels in producing quick 
and interpretable flood hazard maps, particularly 
suitable for preliminary assessments.

Conversely, the XGBoost model leverages its 
ability to model complex, nonlinear relationships 
between variables, delivering detailed and refined 
results. For example, a case study in Bahir Dar, 
Ethiopia, demonstrated its robustness with an 
AUC of 98%, identifying critical predictors such 
as proximity to rivers and drainage systems (Leg-
gesse et al., 2024). This model excels in capturing 
intricate variable interactions, offering high accu-
racy and detailed risk mapping (Wu et al., 2024). 
In Suqian City, China, XGBoost was shown to 
outperform Logistic Regression and Random 
Forest in precision and specificity for flood sen-
sitivity assessment (Wu et al., 2024). 

When comparing their performance, it be-
comes evident that XGBoost outperforms the FR 
method across all key metrics. XGBoost achieved 
an accuracy of 90.5% in training and 84.4% in 
testing, significantly higher than the 69% and 
66.9% observed for FR. Similarly, the consisten-
cy between classes, measured by Kappa values, 
was superior in XGBoost, with scores of 0.81 in 
training and 0.69 in testing, compared to 0.38 and 
0.34 for FR. Furthermore, XGBoost demonstrates 
reduced errors, as reflected in its lower MAE and 
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RMSE, translating to predictions that are more 
reliable and closer to actual values. This observa-
tion aligns with findings from Suqian City, where 
XGBoost demonstrated an AUC of 0.854 for test 
datasets, showcasing its robustness in predicting 
flood sensitivity (Wu et al., 2024).

Moreover, the flood hazard maps generated by 
these models highlight their differing approaches 
to risk assessment. The FR model presents a bal-
anced risk distribution, transitioning gradually 
from low-risk areas (21.3%) to very high-risk 
zones (11.3%). This makes it effective for broad 
evaluations and long-term planning. The model’s 
application in Greater Mumbai validated its effi-
ciency in urban flood zoning using limited data 
(Ramesh and Iqbal, 2022). On the other hand, 
the XGBoost model emphasizes very high-risk 
areas (12.0%) while predominantly identifying 
very low-risk zones (73.0%), offering precision 
invaluable for targeted interventions and efficient 
resource allocation.

In conclusion, this comparative analysis un-
derscores the complementary advantages of both 
models. The FR method is ideal for rapid, over-
arching analyses that guide strategic planning, 
while XGBoost excels in delivering detailed and 
precise risk mapping through its ability to model 
complex relationships. The integration of findings 
from Suqian City demonstrates how XGBoost’s 
sophisticated modeling capabilities provide criti-
cal insights into urban flood risk. Combining 
these approaches offers a robust framework for 
comprehensive flood risk assessment, optimizing 
resource management and prevention strategies. 
This ensures that both global perspectives and lo-
calized details are effectively addressed.

CONCLUSIONS

This comparative study underscores the com-
plementary advantages of the FR method and 
the XGBoost model in flood hazard assessment. 
The FR method’s simplicity and reliance on geo-
graphical variables make it an excellent tool for 
preliminary analyses, especially in data-scarce 
regions or during rapid assessments. Converse-
ly, the XGBoost model demonstrates superior 
accuracy and precision by capturing complex, 
nonlinear relationships between variables, inte-
grating both natural and anthropogenic factors. 
Its robustness in detailed mapping and risk dif-
ferentiation is particularly evident in urbanized 

and data-rich contexts. Together, these methods 
provide a holistic approach to flood risk assess-
ment, balancing rapid insights with detailed anal-
ysis for strategic and localized decision-making. 
The FR model’s utility has been validated in ur-
ban contexts like New Cairo and Greater Mum-
bai, where it provided interpretable results for 
broad-scale evaluations. Similarly, XGBoost has 
demonstrated exceptional performance in studies 
such as Bahir Dar and Suqian City, highlighting 
its ability to prioritize high-risk areas and allocate 
resources efficiently. While XGBoost outper-
forms FR across key metrics, including accuracy, 
Kappa values, and error reduction, the FR method 
remains highly relevant for quick hazard map-
ping and strategic planning. Despite the strengths 
of both models, this study acknowledges several 
limitations. The XGBoost model’s performance 
depends heavily on the availability of high-quali-
ty datasets, which may not be accessible in under-
developed regions or during emergency scenar-
ios. Additionally, its computational complexity, 
including intensive parameter tuning, can restrict 
its usability in real-time or resource-limited envi-
ronments. Conversely, the FR method’s reliance 
on linear assumptions and variable independence 
may oversimplify the complex dynamics of flood 
hazards.Both models also face challenges in gen-
eralizability. Their performance is often sensitive 
to the specific geographic and climatic character-
istics of the study area, potentially limiting their 
applicability across diverse regions. Furthermore, 
validation metrics such as AUC and Kappa val-
ues, while useful, may not fully account for long-
term reliability under changing environmental 
conditions, such as urban expansion or climate 
change. To address these limitations, future re-
search should explore the integration of FR and 
XGBoost into a hybrid framework that combines 
the strengths of both approaches. For instance, FR 
can provide a rapid, initial assessment, while XG-
Boost delivers detailed and precise risk mapping. 
Enriching datasets with real-time information 
from satellite imagery, IoT sensors, and crowd-
sourced data can further enhance the accuracy 
and applicability of these models. Dynamic mod-
els that account for temporal changes in land use, 
climate, and hydrology should also be developed 
to improve predictions under evolving condi-
tions. Expanding comparative analyses to include 
other advanced machine learning models, such 
as random forests or deep learning, may uncover 
additional insights into flood hazard modeling. 
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Moreover, the development of user-friendly, au-
tomated tools that integrate GIS with machine 
learning could bridge the gap between research 
and practical disaster management applications. 
Finally, testing models under various scenarios, 
such as extreme rainfall or urbanization, can vali-
date their robustness and reliability in forecast-
ing future risks. By addressing these limitations 
and pursuing these perspectives, future research 
can contribute to more comprehensive, adaptable, 
and effective flood risk management strategies.
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