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INTRODUCTION

India has 7,516.6 miles of mainland and is-
land coastline. East, south, and west are the Bay of 
Bengal, Indian Ocean, and Arabian Sea. India is a 
maritime nation with popular beaches for leisure 
activities [Ramakrishna et al., 2010]. The coastline 
environs in India can also be dangerous due to large 
waves, violent currents, shifting tides, and com-
plex and ever-changing physical features [Mehta 
et al., 2019]. The WHO predicts 236,000 drown-
ing deaths in 2019. In 2019, injuries caused nearly 
8% of deaths. Drowning is the third leading cause 
of unintentional injury deaths at 7%. The inaugu-
ral regional evaluation on drowning prevention by 
the World Health Organization (WHO) reveals that 

in 2019, a staggering 144,000 individuals lost their 
lives due to drowning in the Asia Pacific area alone, 
constituting a significant 61% of the total global 
drowning fatalities [Ray-Bennett et al., 2024]. The 
report was published prior to World Drowning Pre-
vention Day on July 25th. It indicated that drown-
ing resulted in the deaths of approximately 70,000 
to 74,000 individuals in South-East Asia and the 
Western Pacific region. Between 2020 and 2023, 
38,000 beach drowning occurred. Beach-related 
drowning in India is a chronic issue because to 
its social, economic, and emotional effects. Most 
drowning deaths in India occur in the northeast, fol-
lowed by Andhra Pradesh and Maharashtra, accord-
ing to the report. Rip currents have killed 39 Indi-
ans annually during the past decade. The east coast 

Novel deep learning training optimizer issues analysis 
to detect seashore high and low tides 

Gopi Vadapalli1 , Rajesh Duvvuru1*

1 School of Computer Science and Engineering, VIT-AP University, Amravathi, India
* Corresponding author’s e-mail: dr.rajeshduvvuru@gmail.com

ABSTRACT
High tide causes rip waves that causing disruptions and deaths in beaches of India and rest. In most of the beach 
drowning deaths are rising due to a lack of early warning information. Currently beach guards need real-time 
beach monitoring tide warning systems to rescue drowning people. While deep learning technologies excel at 
predicting objects, they struggle to accurately forecast high and low tides information for beach swimmers. At 
present the high and low tide detection accuracy is lower, due to that the early warning system are not functioning 
effectively. To improve the tide detection efficiency the dataset training must achieve higher accuracy. This paper 
addresses deep learning training issues to improve novel tide dataset training accuracy with novel tide dataset. This 
study suggests the best deep learning training network for beach tide classification. The work fine-tunes optimizers 
and epochs to look at the modern deep learning algorithms ResNet-18 and ResNet-50. This study tests deep learn-
ing training networks namely, RMSProp, SGDM and ADAM with epochs starting from 30 to 500 and applies three 
optimizers to balanced tide data. When using SGDM at shorter epochs, ResNet-18 and ResNet-50 achieved 100% 
training accuracy. The ResNet-50 training network had 100% classification accuracy with all three optimizers in 
lower and upper epochs. ResNet-50 integrated with SGDM and ADAM optimizers obtained 100% success at re-
duced epochs compared with ResNet-18. The present study examines only two training classes, i.e., high and low 
tides, and it can be extended by adding a few more object classes like humans and ferries. This unique approach 
aids in automating smart beach monitoring devices, enabling them to continuously send out high and low tide 
alerts using ResNet-50. The dissemination of tide information is crucial for rescue operations to prevent drowning 
cases and reduce fatalities in Indian and rest beaches.

Keywords: deep learning, CNN algorithm, beach, high-tide, low-tide.

Received: 2024.01.16
Accepted: 2025.02.15
Published: 2025.03.01

Ecological Engineering & Environmental Technology, 2025, 26(4), 13–33
https://doi.org/10.12912/27197050/200492
ISSN 2719–7050, License CC-BY 4.0

ECOLOGICAL ENGINEERING 
& ENVIRONMENTAL TECHNOLOGY

https://orcid.org/0009-0002-5687-0251
https://orcid.org/0000-0002-5053-0590


14

Ecological Engineering & Environmental Technology 2025, 26(4), 13–33

of India had 30–40 drowning each year, while the 
west coast had 5–10 [Ravimuni,et al., 2022]. Rip 
currents killed around 350 people in coastal Andhra 
Pradesh, saving only 10. Although inconsistent, 
the powerful rip current that causes most drown-
ing deaths in the state forms during high tides. It 
operates 50–150 feet and suction force can reach 
five to eight kilometers per hour, making beaches 
dangerous. According to the National Crime Re-
cords Bureau (NCRB-2019) survey reports, the 
state of Andhra Pradesh recorded 1,554 fatalities 
due to drowning. Out of the total deaths, 44% were 
classified as accidents, while the remaining deaths 
were attributed to suicides and other reasons. The 
present work especially concentrates on the high-
tide causing deaths that are very high in the state of 
Andhra Pradesh and rest of the India. Many such 
incidents were recently reported and that are as 
follows:  Annually, around 1,500 individuals suc-
cumb to drowning in the state of Andhra Pradesh. 
Between 2017 and 2021, Andhra Pradesh recorded 
a total of 8,299 drowning fatalities.

The drowning statistics show that throughout 
the course of the past twelve years, there have 
been a total of more than two hundred people who 
have lost their lives as a result of drowning acci-
dents that have occurred at a variety of beaches in 
and around Vizag. Several beaches, including RK 
Beach, Bheemili Beach, Rushikonda Beach, and 
Yarada Beach, have become dangerous places 
to visit. There were a total of sixty people who 
passed away at RK beach during the years 2016 
and 2022, as indicated by the given data. There 
were a total of thirteen people who lost their lives 
at the beach as a result of drowning during the 
years 2017–2021 (Fig. 1). 

Currently, a smart beach high-tide system is 
required to alert swimmers inside the beaches of 

India and the rest of the world. At present the Indian 
lifeguards manually patrol beaches from a tower. 
They warn people against entering rip current or 
high-tide zones through speaker announcements. 
Manual monitoring incurs significant costs and de-
lays the identification of high tides or rip currents, 
potentially causing damage to beach swimmers 
and even resulting in fatalities. The present beach 
monitoring and alert systems (BMAS) target wa-
ter quality, erosion, bacteria, debris, marine litter, 
and waste management [Halliday et al., 2011; Liu 
et al., 2024; Little et al., 2022; Pikelj et al., 2018]. 
Hazard-based BMAS, especially rip current and 
high tide monitoring, lacks resources. The field of 
computer vision has done a lot of research on using 
deep neural networks to find objects. But most tests 
and studies are focused on finding real things such 
as humans, vehicles, places etc., and there are clear 
lines between what is and isn’t an object [de Silva 
et al., 2021]. Identification of High tides is transient 
phenomena that are not visible in every instance 
and lack well defined boundaries, even when they 
can be observed. The applicability of present ap-
proaches remains uncertain. Deep learning models 
are now better at finding high-tides than present ma-
chine learning models. Even fewer researchers tried 
to achieve fine detection accuracy, but still it is big 
challenge in identifying the high-tide due to limita-
tions in tide dataset, optimizer and epoch selection.

This study aims to integrate deep learning 
technologies for the identification and monitoring 
of tidal waves in Bay-of-Bengal-like coastlines, 
where the detection accuracy for multi-class tidal 
waves is inadequate. Object detection accuracy is 
mostly contingent upon training precision; yet, re-
searchers frequently encounter uncertainty regard-
ing the optimal configuration of hyperparameters, 
including learning rate, epochs, and optimizers, 

Figure 1. Drowning fatalities reported in the state of Andhra Pradesh during 2017–2021. National Crime 
Records Bureau (NCRB-2022)
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to attain 100% accuracy. To improve accuracy, 
consider data properties and class count when 
choosing a training network. The current study 
enhanced training accuracy on a novel custom 
tidal dataset using ResNet-18 and ResNet-50 two 
popular pre-trained models. This research used 
110 raw-tide images of Bay-of-Bengal beaches lo-
cated in Andhra Pradesh state. We operated each 
training network independently while maintaining 
uniformity in all other hyperparameters (such as 
epochs, optimizers, learning rate, etc.). The opti-
mizers namely SGDM, ADAM, and RMSProp are 
adjusted for 30–500 Epochs the ResNet-18 out-
performed ResNet-50. The SDGM, ADAM, and 
RMSPROP helped ResNet-18 train categorization 
with 89.74% accuracy. However, ADAM outper-
forms SGDM and RMSPROP almost for majority 
of iterations. To improve training accuracy in bal-
anced Tide datasets, this study found the best deep 
learning network, optimizers, and Epoch rate. This 
study compares ResNet-18 and ResNet-50 highest 
training accuracy on tidal dataset. A very limited 
study was carried out in the areas of beach tides 
detection using deep learning. This study uses tide 
datasets to find the best hyper-parameters for train-
ing accuracy of ResNet-18 and ResNet-50. The 
ResNet-50 looks to be the best network for detec-
tor algorithms based on dataset training outcomes. 
Deep learning models now outperform conven-
tional approaches in rip current detection. Due to 
poor data dispersion, these models still have accu-
racy limits. Most studies have focused on human 
detection close and inside beaches and very strong 
waves. This study will monitor beach conditions 
for swimming by identifying high and low tides 
that can trigger rip currents.  Deep learning systems 
now recognize objects with astonishing precision. 

Advanced deep learning algorithms like Au-
toencoders, CNNs, SOMs, DBNs, LSTMs, RB-
FNs, RNNs, GANs, MLPs, and RBMs can detect 
objects with varying degrees of accuracy [Girin et 
al., 20]. Recently, CNNs have excelled at multi-
class object detection [Mohana et al., 2021]. 
Presently, maritime tide prediction endeavors 
have progressed markedly, integrating elements 
such as high-tide and low-tide, while employing 
the Internet of Things (IoT) and artificial intelli-
gence (AI) to alert the public regarding drown-
ing incidents. At present, AI-driven deep learning 
technologies are pivotal in object prediction; yet, 
their precision in forecasting sea tide waves re-
mains comparatively inadequate. In deep learning 
algorithms, the training of networks, along with 

optimizers and epochs, is essential for attaining 
greater accuracy in object detection. Currently, 
there is a necessity to advance smart artificial 
intelligence technologies that can effectively no-
tify citizens and local authorities to commence 
prompt rescue operations. Identifying high-tide 
and low-tide waves presents a considerable prob-
lem, especially at hazardous beaches. The accu-
racy of tidal wave detection presents a consider-
able challenge for academics and practitioners, 
as enhanced detection accuracy largely relies on 
the training accuracy of the image collection. 
Nevertheless, researchers have performed few 
pre-training tests to evaluate the efficacy of Tide 
detections. Typically, high training accuracy may 
lead to superior test accuracy. Notwithstanding 
the network training model’s acclaim for object 
detection, the Epoch rate for optimal data training 
is still to be determined. 

The current research only trains problems us-
ing Tide datasets and needs be tested for accuracy 
using detector algorithms like YOLO, MobileNet, 
etc. ResNet-50 is better in training Tide datasets 
related with water photos, according to this study. 
This technical analysis helps the Indian Coast 
Guards (ICG) and Marine Police (MP), which has 
few tidal facilities. These sorts of deep learning ap-
proaches for tide datasets are useful to transmit lo-
cation information and early warnings periodically, 
which could detect high tides and result in a lower 
fatality rate on Indian beaches. The rest of the pa-
per is organized is as follows: Section two sets the 
framework for our inquiry by evaluating relevant 
literature and technique. Section three explains our 
new strategy. Section four details our research plan 
to attain our goals. Section five details our findings 
on the proposed technique, its efficacy, and its ef-
fects. Lastly, section six summarizes our main find-
ings and suggests additional research.

Related works

Artificial intelligence-based beach wave 
detection has reduced risk and saved lives from 
rip currents and high tides. An AI model by Shi-
mada et al. can detect rip currents near the jetty. 
A single AI model identified flash rip currents in 
open areas and stationary rip currents near jet-
tys. Training the AI model under various condi-
tions allowed us to reliably detect rip currents at 
each location [Shimada et al., 2023]. Najafza-
deh et al. calculated the RTR for 50 southern 
Chinese beaches using nine Machine Learning 
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(ML) models for RIP wave recognition. ML 
models include M5 Model Tree (MT), Ada-
Boost, MARS, SVM, EPR, GEP, Stacked, XG-
Boost, and Random Forest (RF). This strategy 
produced a reliable southern Chinese coast study 
dataset. The study forecasts rip current vulner-
ability using two parameters: Ω (dimensionless 
fall velocity) and TR (tide range). During train-
ing and testing, R, RMSE, violin diagrams, heat-
maps, and Taylor diagrams analyzed AI model 
performance. Therefore, MARS predicted RTR 
better than other AI algorithms. Results showed 
RTR estimation’s accuracy and effectiveness. To 
protect beachgoers, Southern Chinese beach op-
erators must aggressively manage high tides and 
high rip current danger [Najafzadeh et al., 2024]. 
studied Parangtritis beach’s cove-shaped coast-
line morphology. ALOS PALSAR images were 
used to determine the surf zone and breaking 
waves. Others have used the Radon Transform 
for wave runup video motion detection, compar-
ing it to color contrast from RGB photographs 
and LiDAR measurements [Almar et al., 2017]. 
The study on ‘high-tide’ detection that produces 
beach rip currents is sparse. Koon et al. explored 
an association between tide patterns and fatal 
drowning at New South Wales surf beaches. 
Their research informs coastal safety manage-
ment and practice. First, high tide can cause 
non-swimmers and young children to slip into 
deep water [Puleo et al., 2016]. Tides effect surf-
zone wave-breaking, which creates rip currents. 
Tidal currents can affect tidal inlets, coastal en-
gineering constructions, and beach nourishment 
areas more than open-ocean beaches [Yadhunath 

et al, 2022]. As the tide rises in coastal areas 
with rough beaches, straits, offshore pressures, 
huge tidal ranges, and offshore islands, can in-
teract with approaching waves to raise break-
ing wave heights Tides’ influence on rip current 
flow behavior, especially wave breaker patterns, 
are crucial for swimmers and bathers’ safety on 
beaches with rip currents and high-tides [Koon 
et al., 2023]. Due to the criticality of identify-
ing high tides, limited high-tide detection stud-
ies with higher accuracy are available in AI lit-
erature [Vitousek et al, 2023]. Currently there is 
a need to create a beach monitoring system for 
the safety of beach visitors; using optimal image 
sensing is more challenging, especially working 
with deep learning technologies [George et al., 
2024]. Moreover selection of right deep learn-
ing optimizer to attain higher accuracies is more 
critical challenge ahead for the tidal images 
[Elshamy et al., 2023; Lambu et al., 2024].

Study area

The real-time tide dataset is collected from 
four drowning and high-tide zone beaches of 
Andhra Pradesh state, India. The four high-tide 
vulnerable beaches are Rama Krishna beach (RK 
Beach) (17° 42’ 51.4584’’ N, 83° 19’ 25’’),  Pu-
dimadaka beach  ( 17° 29’ 24’’ N, 83° 00’ 13’’),  
Manginapudi beach (16°  14’ 37’’ N, 81° 14’ 
26’’) and Surya lanka beach (15°  50’ 55’’ N, 80° 
32’ 01’’). Figure 2 shows the geographical loca-
tions of the high-tide zone beach of the study 
area in the state of Andhra Pradesh. Andhra 
Pradesh is in the Northern hemisphere region on 

Figure 2. Location map of the study area
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the southeastern coast of the Indian Peninsula 
in the Bay of Bengal (Fig. 2). Andhra Pradesh, 
known as the “Sunrise state of India” for its 
coastline tourism, has nine seaports. Andhra 
Pradesh possesses the second-longest coastline 
in India, extending 975 km that covers nine ma-
jor seaports along the Bay of Bengal. The recent 
drowning statistics of Drowning killed 8,299 
Andhra Pradesh residents from 2017 to 2021, it 
reflects that almost every year 1600 drowning 
deaths are recorded every year. Especially over 
the past 12 years, 200 people have drowned at 
Visakhapatnam district beaches. The drowning 
statistics also specified that, 60 people drowned 
at RK beach during 2016–2021. This beach is 
the most vulnerable to rip currents and high-
tides, which killed 92 surfers from 2000 to 2010. 
Rip currents and high-tides were also found in 
Surya Lanka and Manginapudi beaches (Fig. 3). 
Figure 3 shows field pictures at different loca-
tions of the study area beaches such as  location 
(A) RK Beach near Visakhapatnam district; (B) 
Pudimadaka Beach near Anakapalli district; (C) 
Manginapudi beach near Machilipatnam city; 
(D) Suryalanka beach near Bapatla district. 

The RK Beach became popular after inde-
pendence because Vizag’s public and private 
sector enterprises attracted a huge workers, their 
families, and tourists. The natural harbor and Vi-
sakhapatnam Port in the 1930s boosted the re-
gion’s economy, enabling tourism. Indians and 
foreigners visited the long untouched seashore for 

its beauty. The submarine museum, clean water-
ways, and Bay of Bengal view were main attrac-
tions. The aquarium here is an added attraction. 
The sea’s roar is wonderful. Tourism at RK Beach 
flourished in the 20th century as Vizag became a 
port city (Fig. 3A).  

Pudimadaka Beach on the Bay of Bengal ranks 
35th of 115 Andhra Pradesh beaches. Capital city 
Amaravathi is 302 kilometers away and situated in 
Anakapalli district. Pudimadaka, the nearest town 
Anakapalli, is 0.1 km from the beach. The gor-
geous Bay of Bengal coast has this kilometers-long 
sand beach. Since the bottom gradually shrinks, 
aqua socks are unnecessary. Pudimadaka Beach is 
unspoiled by services. The beach is popular with 
tranquil resters (Figure 3B). In Krishna District, 
Andhra Pradesh, Manginapudi Village has the 
beautiful Manginapudi Beach. It borders the Bay 
of Bengal on the shore. Machilipatnam, a popular 
tourist site, lies 15 km from the seashore. Other lo-
cal landmarks include Manginapudi Beach, 80 km 
from Viajayawada, 82 km from Eluru, and 117 km 
from Guntur. Visakhapatnam (Vizag), a prominent 
state holiday resort, is 340 km from this beach. The 
famed Manginapudi Beach in Andhra Pradesh is a 
great beach vacation spot. It is also called Machil-
ipatnam Beach and Bandar Beach locally. All 
pathways lead to Manginapudi Beach, despite its 
many names. Beautiful vistas, reasonable accom-
modations, and local activities draw tourists to the 
beach. The area’s unique feel is perfect for any-
one seeking a break from their busy lives (Figure 

Figure 3. Study area beaches: (A) RK beach located in Visakhapatnam district; (B) Pudimadaka beach located in 
Anakapalli district; (C) Manginapudi beach located in Krishna district; (D) Suryalanka beach located in Bapatla 

district of Andhra Pradesh, India
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3C). Suryalanka beach, 8 km from Bapatla town, 
Andhra Pradesh, offers a peaceful escape on the 
Bay of Bengal. Weekends and vacations are ideal 
for relaxing at Bapatla beach. Natural splendor of 
flowing waves invites strolls and picnics (Fig. 3D).

Methodology

Methodology is shown in Figure 4, it focuses 
majorly on shows data acquisition, pre-processing, 
training of tidal data, deep convolution neural net-
work (DCNN), Classifier, train the of tidal data 
for best detection of high-tide and low-tides. The 
DCNN comprises with two popular pre-trained 
ResNet-18 and ResNet-50 networks for validation 
of best training analysis to find high-tide.

Raw tide data collected

The gravitational influence of the moon on 
Earth is a crucial factor in the formation of tides. 
The gravitational attraction between two objects in-
creases as their proximity to one other diminishes. 
Although both the sun and the moon exert gravita-
tional forces on Earth, the moon’s influence is con-
siderably stronger due to its proximity to the Earth 
compared to that of the sun. The moon exemplifies 
a tidal force due to its ability to elevate the tides 
on Earth. The moon exerts a tidal influence on the 
entire planet. The diminished flexibility of Earth’s 

terrestrial surfaces renders them largely unaffected 
by this. Nonetheless, within a single day, terrestrial 
surfaces can shift up to 55 centimeters (22 inches) in 
either direction. Terrestrial tides refer to these move-
ments. Terrestrial tides can modify the exact loca-
tion of an object. In radio astronomy and the deter-
mination of coordinates using a global positioning 
system (GPS), terrestrial tides are critically impor-
tant. Volcanologists study terrestrial tides because 
the movement of the Earth’s crust can occasionally 
trigger a volcanic eruption. The tidal force exerted 
by the moon significantly influences the ocean’s 
surface. As a liquid, water has a heightened respon-
siveness to gravitational forces. Tidal range refers 
to the vertical disparity between high tide and low 
tide. The gravitational influence of the sun on Earth 
results in a monthly shift in the range. Despite being 
nearly 390 times further distant from Earth than the 
moon, the sun’s mass influences tides.

High-tide

The hemisphere of the Earth oriented towards 
the moon experiences the highest tidal force ex-
erted by the moon. On the side of the Earth that is 
oriented away, it is in its most vulnerable state. The 
ocean’s capacity to bulge outward simultaneously 
at two distinct areas is facilitated by variations in 
gravitational force. When the Earth is oriented to-
wards the moon, a bulge is observable on that side. 

Figure 4. Proposed high-tide detection methodology
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This is the direct tidal force exerted by the moon, 
which is attracting the ocean towards it. One bulge 
is situated on the Earth’s opposite side from the oth-
er. From this perspective, the sea protrudes away 
from the moon. One possible interpretation of the 
bulge is that it is the tidal force of the moon that is 
dragging the planet (and not the water) toward it.  
The term “high tide” refers to these bulges that 
occur in the waters of the ocean. It is referred to 
as the high tide when the tide is at its highest on 
the side of the Earth that is facing the moon. A 
low high tide is the name given to the high tide 
that is brought about by the bulge that is located 
on the opposite side of the Earth. When the ocean 
is open, the water pushes outward in the direc-
tion of the moon. The water rises and stretches 
out onto the land along the coastline with the 
tides. As per the Tides data 2024, the height of 
the high tide in the study area differed. Among 
the four beaches in the study area, RK Beach and 
Pudimadaka Beach recorded almost similar tide 

heights. The average height ranges from 0.96 
meter to 1.83, and the average high-tide height is 
1.395 m per day. In contrast to RK and Pudimada-
ka beaches, the high-tide heights at Manginipudi 
and Suryalanka beaches are nearly identical. The 
high-tide heights in Manginipudi and Suryalanka 
beaches range from 0.88 m to 1.65 m, with an av-
erage high tide height of 1.265 m. The high-tide 
statistics reveal that the tides at RK and Pudimaka 
beaches average 0.13 m higher per day than those 
at Munginipudi and Suryalanka beaches. We 
also observed that the distance between beach-
es played a crucial role in recording the similar 
high-tide values between the RK and Pudimada-
ka beaches, which also reflected similarly in the 
Manginapudi and Suryalanka beaches. Figure 5 
represents the sample images of high-tide class in 
the novel tide dataset with 50 MP resolution each 
and Figure 6 presents the high-tide information 
for the study area beaches over a period of four 
months (September to December).

Figure 5. Dataset of high-tide images

Figure 6. Height of the high-tides in the study area (RK beach, Pudimadaka beach, Manginapudi beach, 
Suryalanka beach). Tide charts, (http://www.tideschart.com/india/andhra-Pradesh/)
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Low-tide 

Tidal range and frequency are influenced by 
the geography of the seacoast and ocean floor. Wa-
ter has the potential to disperse extensively on a 
polished and wide beach. The tidal levels can fluc-
tuate by a few millimeters. In a relatively narrow, 
rocky entrance or harbor, the tidal range may ex-
tend over several meters. Low tide is characterized 
by the minimum elevation or lowermost point of 
the wave. The low-tide are safe for the people to 
swim and enjoy. The low-tide data set is collected 
from all four beaches of the Andhra Pradesh state 
with 50 MP image resolution (Fig. 7).

The tides data for 2024 indicate variability 
in the height of low tide within the study area. 
RK Beach and Pudimadaka Beach exhibited 
comparable tide heights among the four beaches 
in the study area. The average height varies be-
tween 0.02 meters and 0.75 meters, with a daily 
average low-tide height of 0.385 meters. The 
low-tide heights at Manginipudi and Suryalanka 

beaches are nearly identical, in contrast to those 
at RK and Pudimadaka beaches. The low-tide 
heights at Manginipudi and Suryalanka beaches 
vary from 0.01 m to 0.69 m, with an average of 
0.35 m. The low-tide data indicate that the tides 
at RK and Pudimaka beaches are, on average, 
0.035 m lower per day compared to those at 
Munginipudi and Suryalanka beaches. The dis-
tance between beaches significantly influenced 
the comparable low-tide values observed at RK 
and Pudimadaka beaches, a trend that was also 
evident at Manginapudi and Suryalanka beach-
es. Figure 8 illustrates the low-tide data for the 
study area beaches across a four-month dura-
tion, from September to December.

Dataset

The novel tide dataset contains 322 tide pho-
tos divided into hide-tide (175) and low-tide 
(142). The beaches in the research region are 
captured using a high-resolution Nikon D-850 

Figure 7. Dataset of low-tide images

Figure 8. Height of the low tides in the study area (RK beach, Pudimadaka beach, Manginapudi beach, 
Suryalanka beach). Tide charts, (http://www.tideschart.com/india/andhra-Pradesh/)
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camera, which has a resolution of 45.7 megapix-
els. The data undergoes pre-processing to ensure 
a high-quality dataset. Pre-processing removes 
distortions and improves essential aspects. We 
preprocess the dataset using these methods: 

The  data profiling was conducted on the raw 
tide dataset, focusing on shuffling, size, color, 
and brightness. The open-source ‘Data Gradients’ 
tool profiles Tide datasets by focusing on various 
picture quality factors such convexity, fine de-
tails, segments, brightness and color distribution, 
aspect ratios, and resolution. 

The data cleaning involved the removal 
of redundant, incorrect, improperly, corrupted, 
blur, formatted, or incomplete tide images. We 
collected 105 high-tide images and removed 70. 
We removed 38 of 142 low-tide photos, most 
of which are duplicates and few are indistinct 
[Meliboev et al., 2022]. Classifying balanced 
datasets is more accurate and less prejudiced 
than imbalanced datasets.  

The image enhancement process included the 
meticulous selection and resizing of 209 high-
resolution tidal wave photographs to dimensions 
of 640 × 640 pixels for the present study across 
each class [Li et al., 2021]. (IV) The Tides class 
images are subjected to an eight-fold augmen-
tation process, resulting in a total of 4471 im-
ages. The dataset is rotated clockwise, counter-
clockwise, upside-down at 90o, and two times at 
-15o and 15o. Blurring, noising, horizontal and 
vertical flips, and angle flipping (Kumar et al., 
2024). We allocate seventy percent for training, 
ten percent for testing, and twenty percent for 
validation from the dataset (Fig. 9–H).

The mathematical notations and assumptions

The classification of tide disease is executed on 
the feature map function. The feature map f(h) is the 
product of the input (α) and the kernels (β).The fea-
ture classification function is specified in Eq. 1.

  (1)

where: x denotes the array of tide samples that 
spans from negative infinity to positive 
infinity, h denotes the feature map, while 
α represents the input.

EXPERIMENTATION

The deep convolution neural network 
architecture

The tide classification experimentation is 
done on Matlab computer vision platform. The 
Convolutional neural networks (CNN) are a 
prevalent deep learning technique that requires 
substantial training of multiple layers. The 
CNN can be employed to create a computer 
model that processes chaotic image inputs and 
transforms them into suitable classification out-
put categories (Fig. 10). 

Tide dataset training process

The tide dataset is trained on two different types 
of ResNet deep convolution neural networks. The 
two network layers commonly  consists of layers 
such as Input layer, Softmax layer, Global Average 

Figure 9. Eight-fold augmentation dataset of high-tide (A) Original high-tide image; (B) Flip (horizontal); 
(C) Flip (vertical); (D) Rotation (90o – clock-wise); (E) Rotation (90o – clockwise); (E) Rotation (90o – counter 

clockwise); (F) Rotation (90o – upside-down); (G) Rotation (-15o); (H) Rotation (15o).
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Pooling 2D layer, ReLU layer, fully connected lay-
er, maxpooling layer, convolution 2D layer, etc., and 
the detail discussion is as follows (Fig. 11).

Deep convolution ResNet-18 architecture

The 71 layers of the ResNet-18 architecture 
are used to train the classifier on the created Tide 
dataset. The ResNet-18’s comprehensive train-
ing architecture is shown in Figure 5. The layers 
in Figure 6 are as follows: 20 layers for Batch 
Normalization, 20 layers for convolution, 17 lay-
ers for ReLu, 8 layers for addition, Image input, 
Max pooling, softmax, 2-D global average pool-
ing, fully connected, and classification output. 
20×20×17×8 may be used to design the overall 
architecture of when utilizing Deep Neural Net-
works to train the data (Fig. 9 and Table 1).

Image input layer

Typically, the network receives an input 
picture with dimensions of 224×224×3, where 

224×224 stands for the spatial dimensions (height 
and width) and 3 for the RGB color channels.

SoftMax layer

The Integer, or collection of Integers, serves 
as the axis for the SoftMax normalization, main-
taining the same dimensions as the input. The 
SoftMax function serves as an activation function.

ReLu  layer

Each input element undergoes a threshold 
operation via a ReLU layer, which nullifies any 
value below zero. The layer characteristic values 
in this instance include a negative slope greater 
than or equal to zero, a threshold value, and a 
maximum value.

Addition layer

The standard dropout probability is 0.5. The 
dropout layer randomly assigns input items a val-
ue of zero with a predetermined probability.

Figure 10. The ResNet-based CNN Tide classification system architecture

Figure 11. Internal deep learning ResNet-18 architecture
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Global average pooling 2D layer

The downsampling is executed by the av-
erage pooling operation layer, which partitions 
the input into pooling regions and computes the 
average value for each area, encompassing the 
layer’s height and width dimensions. This layer 
contains a single output.

Fully connected layer

The output value in fully connected layer is 
two, whereas the input dimension is configured 
to auto. Moreover, the BiasL2Factor is consid-
ered 0 when the values of the bias learn rate fac-
tor WeightL2Factor, and  weight learn factor, are 
all set to 1. Next, the Glorot and zeros processes 
of the weights initializer and bias initializer, re-
spectively, were started.

Max pooling layer

The components of the Max Pooling layer 
are padding, strides, and pool size. When training 
an integer or tuple of three integers, the greatest 
value should be taken across a certain window 
size. The maximum value across a 3×3 pooling 
window will be taken by (3, 3). The padding is 
defined as (0, 0, 0, 0) and the steps that the pool-
ing window travels for each pooling step.

Convolution 2D layer

Basic characteristics of the convolution 2D 
layer are filter size (3, 3), number of filters (64), 
Stride (2, 2), and dilation factor (1, 1). Further-
more, the weights single are 33×3×64 and the 
padding value is ‚0’. Bias single is thus 1×1×64. 
Additional weight settings include BaseL2Factor 
as „0”, weights initializer as „glorot”, and base 

initializer as zeros. Additionally, weight learn rate 
factor, Weight2Factor, or bias learn rate factor 
may be set to 1 and rest.

Batch normalization layer

The Batch Normalization Layer’s convolu-
tion, the output is normalized using a batch nor-
malization layer, which improves training stabil-
ity and speeds up convergence.

Classification output layer

The two tidal classes that are in need of clas-
sification are high tide and low tide, and they are 
both contained within the classification layer, 
which is the specified output layer. Cross-entropy 
is the loss function, and the output size is two.

Deep convolution ResNet-50 architecture

The 177 layers of the ResNet-50 architecture 
are used to train the classifier on the created Tide 
dataset. The ResNet-50’s comprehensive train-
ing architecture is shown in Figure 5. The layers 
in Figure 6 are as follows: Image input layer, 2-D 
global average pooling layer, 53 batch normal-
ization layers, 53 convolution layers, SoftMax 
layer, max pooling layer, fully connected layer, 
49 ReLu layers, 16 addition layers, and classifi-
cation output layer. 53×53×49×16 may be used 
to design the overall architecture of when em-
ploying deep neural networks for data training 
(Fig. 11 and Table 1).

Image input layer

Typically, the network receives an input 
picture with dimensions of 224×224×3, where 

Figure 11. Internal deep learning ResNet-18 architecture
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224×224 stands for the spatial dimensions (height 
and width) and 3 for the RGB color channels.

SoftMax layer

The integer, or group of integers, is used as 
the basis for the SoftMax standardization, keep-
ing the same size as the input. The SoftMax func-
tion is used as an activation function.

Global average pooling 2D layer

On average in order to decrease feature maps’ 
spatial dimensions (width and height) while keep-
ing important information, pooling is often used. An 
input (such a feature map from a convolutional lay-
er) is sent into the pooling layer, which splits it into 
pooling regions (like 2×2 or 3×3 blocks) and finds 
the average value within each area. The input is then 
compressed or down-sampled as a consequence.

Addition layer

The dropout layer randomly changes some in-
put elements to zero with a specific chance, and 
the usual chance is 0.5.

ReLu layer

An operation known as a threshold operation 
is carried out on each element of the input by a 
ReLu layer. This operation sets to zero any val-
ue that is less than zero. There are values for the 
layer characteristics that are higher than or equal 
to zero, including the max_value, the threshold 
value, and the negative slope.

Fully connected layer

The output size in this layer is set to two, and 
the input size is set to auto. Furthermore, only 
the BiasL2Factor is regarded as 0 when the other 

parameter values, Weight Learn Factor, WeightL-
2Factor, and Bias Learn Rate Factor, are set to 1. 
Next, the processes for WeightsInitializer and Bias 
Initializer were started with zeros, respectively.

Max pooling layer

The max pooling layer comprises pool size, 
strides, and padding. in training, an integer or a 
tuple of three integers specifies the window size 
for determining the maximum. (3, 3) will extract 
the maximum value from a 3×3 pooling window. 
An Integer, a tuple comprising two integers, or 
none. The Strides parameter indicates the distance 
the pooling window advances with each step, 
configured as (2,2), with padding set to (0,0,0,0).

Convolution 2D layer

The convolution 2D layer has fundamental 
attributes such as a filter size of (3,3), a quan-
tity of 64 filters, a stride of (2,2), and a dilation 
factor of (1,1). Additionally, the padding value 
is set to ‘0’, and the weights are specified as 
3×3×3×64. The bias single measures 1×1×64. 
Furthermore, supplementary weight parameters 
include weight learn rate factor, Weight2Fact, 
and bias learn rate factor set to 1, while the Ba-
seL2Factor is designated as 0, weights initial-
izer is defined as glorot, and base initializer is 
established as zeros.

Classification output layer

There are only two tidal classes that may be 
classified, and those are high tide and low tide. 
The classification layer is the defined output layer 
that features these two tide classes. As opposed to 
this, the output size is two, and the cross-entropy 
is utilized as the loss function.

Table 1. ResNet-18 CNN layers (71)
S.No. Name Type Activations (S × S ×C×B) Learnable properties

1 Data 224×224×3 images with 
z ’score’ norms Input image 224× 224 ×3×1 –

2 Conv1(64 7×7×3 ) convolutions with 
stride [2 2] and padding [3 3 3 3 ] Convolution 112×112×64×1 Weights (7×7×3×64)

Bias (1×1×64)

3 bn_conv1(64) Branch 
normalization 112×112×64×1 Offset 1×1×64

Scale 1 ×1×64
4 Conv1_relu ReLu 112×112×64×1 –

69 Fc1000 Fully connected 1×1×1000×1 Weights 1000×512
Bias 1000×1

70 Prob Soft max Softmax 1×1×1000×1 –

71 Classification Layer_predictions
Cross entropy ex with ‘tench’

Classification 
output layer 1×1×1000×1 –
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Batch normalization layer

Following the convolution, the output is nor-
malized using a batch normalization layer, which 
improves training stability and speeds up conver-
gence. This Table 2 has 69 layers, which are com-
prised of 1729 different convolution states. The 
original input image size is 227×227×3, and it is 
gradually decreased from 113×113×64 to 1×1×2 
during the course of the subsequent process. The 
final step is the reduction of the classification re-
sult to 1×1×2 convolutions (Fig. 12).

Dataset loading phase

In order to train for tide detection, two main 
kinds of tide classes are used, with each class’s high 
tide (104) and low tide (105) photos defining the 
training data size. A snapshot of the training dataset 
with two tide classes is shown in the Figure 13. 

Training classes

The present comprises of two types of training 
results related to ResNet-18 and ResNet-50 i.e. 
training_validation_accuracy. The training data-
set uses multi-layer deep convolution networks 
that contain5- pooling layers and 10-convolution 
layers, and 10-relu-convolution layers and used 
three types of most popular training optimizer 
algorithms such as root mean squared propaga-
tion (RMSProp), adaptive moment estimation 
(ADAM), stochastic gradient descent with mo-
mentum (SGDM)To find the best accuracy for the 
Tide disease dataset by varying epochs for afore-
said three algorithms and other training param-
eters is set to constant values such as sequence 
length is longest, sequence_padding_directionis 
‘right’, minibatch size is 128, sequence_padding_
valueis 0, squared_gradient_decay_factor is 0.9, 

Figure 12. Deep learning ResNet-50 architecture

Table 2. ResNet-50 CNN layers (177)
S.No. Name Type Activations (S × S ×C×B) Learnable properties

1 Input_1image size 224×224×3 with 
‚zerocenter’ normalization Input image 224×224×3×1

2 Conv1 [64 7×7×3] with stride [2 2] 
and padding [3 3 3 3 ] Convolution 112×112×64×1

Weights (W) (7×7×3×64) 
and

Bias (B) (1×1×64)

3 bn_conv1[64] Branch 
Normalization 112×112×64×1 Offset 1 × 1 × 64 and

Scale 1 × 1 × 64
4 Activation_1_relu ReLu layer 112×112×64×1

175 Fc1000 Fully connected 1×1×1000×1 W 1000 × 2048 and
B 1000 × 1

176 Prob
SoftMax SoftMax 1×1×1000×1

177
ClassificationLayer_fc1000

Crossentropyex with ‘tench’ and 999 
other classes

Classification 
output 1×1×1000×1
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L2-regularizationis 0.0001, learn_rate_drop_fac-
tor is 0.1, learn_rate_drop_period is 10, epsilon is 
1e-08,  initial_learn_rate is 0.01. In addition, the 
gradient_thresholding_method is used to calcu-
late the L2norms, where the distance of the vec-
tor coordinate from the origin of the vector space.

RESULTS AND DISCUSSION

According to the training results presented in 
Table 3, the training data attained 100% accuracy 
using the ResNet-18 and ResNet-50 architec-
tures, contingent upon the previously defined pa-
rameters, with training accuracy varying based on 
the optimizer method and the number of epochs 
employed. Simulations indicated that the training 
dataset attained 100% accuracy in various sce-
narios, one utilizing the ADAM optimizer and the 
other employing RMSPROP.

Performance analysis of ResNet-18

The training results in Table 3 show that the 
ResNet-18 model reached 100% accuracy on the 
training data with our chosen settings. This perfor-
mance varied depending on the choice of optimizer 
algorithm and the number of epochs. Interestingly, 
we observed that all three optimizers, ADAM and 
SGDM, achieved this peak accuracy. However, the 
RMSPROP optimizer failed to achieve 100% train-
ing accuracy, and peak training accuracy for RM-
SPROP is 98.61% at 50 epochs. Conversely, when 
applied to the ResNet-50 architecture on the same 
tide dataset, all three optimizers perform better 
and achieve 100% training accuracy. Upon further 
analysis, we found that the SGDM optimizer with 
ResNet-18 consistently achieved 98.61% accuracy 
across a range of epoch values from 50 to 500, with 
the exception of lower epochs, where we recorded 

100% training accuracy. The ADAM optimizer 
demonstrated a distinct pattern, achieving lower ac-
curacy (91.22% to 98.61%) at lower epochs (30 to 
100) and achieving 100% at epoch 200. The overfit-
ting problem caused the behavior to deteriorate af-
ter 200 epochs. Notably, SGDM emerged as the top 
performer, reaching the 100% accuracy mark in just 
30 epochs and followed by the ADAM optimizer. 
The results suggest that using SDGM is preferable 
to training the tide dataset, if ResNet-18 is opted as 
deep learning training network. This performance 
variability across different epoch ranges and opti-
mizers using ResNet-18 is clearly illustrated using 
gain and loss graphs in Figures 14–16, providing 
valuable insights into the optimization process for 
this particular tide dataset and model architecture.

Performance analysis of ResNet-50

The training results in Table 3 show that the 
ResNet-50 model reached 100% accuracy on 
the training data with our chosen settings. This 
performance varied depending on the choice of 
optimizer algorithm and the number of epochs. 
Interestingly, we observed that all three optimiz-
ers, ADAM and SGDM, achieved this peak accu-
racy. However, the RMSPROP optimizer failed to 
achieve 100% training accuracy, and peak training 
accuracy for RMSPROP is 100% at 75 epochs. Af-
ter looking more closely, we found that the SGDM 
and ADAM optimizers with ResNet-50 always 
reached 100% accuracy for epochs ranging from 
30 to 500. All three optimizers in the ResNet-50 
network exhibit no overfitting problem. Whereas 
the performance of RMSPROP is similar to that of 
ResNet-18, except at epoch 75, where it achieved 
100%, and the rest of the epochs, the accuracy 
ranges from 97.22% to 98.61%. Notably, SGDM 
and ADAM emerged as the top performers, reach-
ing the 100% accuracy mark in just 30 epochs, 

Figure 13. Screenshot of the tidal dataset with high tide and low tide classes
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Table 3. Training data performance based on optimizer and epochs

Optimizer Algo. Max_epochs
ResNet-18 ResNet-50

Accuracy (%) Accuracy (%)

SGDM

30 100 100

40 100 100

50 98.61 100

75 98.61 100

100 98.61 100

200 98.61 100

300 98.61 100

400 98.61 100

500 98.61 100

ADAM

30 91.22 100

40 91.67 100

50 93.06 100

75 93.06 100

100 98.61 100

200 100 100

300 95.83 100

400 97.67 100

500 97.22 100

RMSPROP

30 95.83 98.61

40 95.83 98.61

50 98.61 98.61

75 97.22 100

100 97.22 97.22

200 91.67 97.22

300 97.22 95.83

400 95.83 97.22

500 90.28 98.61

Figure 14. Attained 100% training accuracy test results using SGDM optimizer for ResNet-18 at Epochs-40 
(A) gain graph and (B) loss graph

followed by the RMSPROP optimizer. If we use 
ResNet-50 as the deep learning training architec-
ture, the training results suggest that using SDGM 
and ADAM is preferable to training the tide data-
set. gain and loss graphs in Figures 17–19 clearly 

illustrate the performance variability across differ-
ent epoch ranges and optimizers using ResNet-50, 
offering valuable insights into the optimization 
process for this specific tide dataset and model 
architecture.
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Figure 15. Attained 100% training accuracy test results using ADAM optimizer for ResNet-18 at Epochs-200 
(A) gain graph and (B) loss graph

Figure 16. Attained 98.61% training accuracy test results using RMSPROP optimizer for ResNet-18 at 
Epochs-50 (A) gain graph and (B) loss graph

Figure 17. Attained 100% training accuracy test results using SGDM optimizer for ResNet-50 at Epochs-30 
(A) gain graph and (B) loss graph

Performance comparison between ResNet-18 
and ResNet-50

The training performance of ResNet-50 on 
the Tide dataset is comparatively higher than that 
of ResNet-18 in all three optimizers (Fig. 20). In 
particular, the performance of ResNet-18 reaches 

its peak in SGDM, with ADAM and RMSProp 
following closely behind (Table 3). All three op-
timizers performed poorly with ResNet-18. In 
most cases, the resultant accuracy of ResNet-18 
remains consistently stable and low, regardless 
of the number of epochs, while the performance 
of ResNet-50 is improving at every Epoch that 
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Figure 18. Attained 100% training accuracy test results using ADAM optimizer for ResNet-50 at Epochs-30 
(A) gain graph and (B) loss graph

Figure 19. Attained 100% training accuracy test results using RMSPROP optimizer for ResNet-50 at Epochs-75 
(A) gain graph and (B) loss graph

Figure 20. Performance analysis of ResNet-18 and ResNet-50 on SGDM, ADAM and RSMPROP optimizers on 
tidal dataset against epochs

exhibits varying accuracies across the three op-
timizers. We have observed that the SDGM op-
timizer’s training accuracy for ResNet-18 varied 
according to Epochs, whenever the lower Epochs 
are used the accuracy is lower i.e., 90.28% at 500 
epoch and 100% at 30 and peak performance is 
observed both deep learning training architectures 

remains constant. However, when the Epochs are 
varied from 30 to 500 while keeping other tun-
ing parameters like learning rate and batch size 
constant, the performance of the ADAM and 
RMSPROP optimizers also varied but recorded 
lower accuracies compared with SGDM. The 
ResNet-18 dataset’s training is faster than that of 
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ResNet-50, with ResNet-50 requiring nearly five 
times more resources to train the current custom 
dataset. For the tide dataset, ResNet-18 executes 
quickly and has a training accuracy that is 2.72% 
lesser than ResNet-50 (Fig. 21).

Compared to ResNet-18, the average dataset 
training performance of ResNet-50 using SGDM 
is high, but only ResNet-18 exhibits peak perfor-
mance. Almost the majority of optimizers show 
a stable performance with minor differences in 
both the ResNet-18 and ResNet-50 models. In 
ResNet-18, the average performance of RM-
SPROP is high at 35%, followed by SGDM (33%) 
and ADAM (32%), as shown in figure 21. Us-
ing SGDM results in 38% lower performance for 
ResNet-50, followed by 32% for ADAM and 30% 
for RMSPROP. ResNet-50 performed much better 
than ResNet-18 because it used depthwise sepa-
rable convolutions, which cut down on the number 
of parameters and the cost of computing them.

DISCUSSION

The current experiment suggests that 
ResNet-50 deep learning networks train the Tide 
dataset for higher accuracy. Similar research was 
proposed by Ashhar et al. (2021), who mostly 
looked at how well different deep learning mod-
els, like GoogleNet, SqueezeNet, DenseNet, 
ShuffleNet, and MobileNetV2, could classify 
lung cancers shown on CT scans. But their re-
search didn’t use the Tide dataset and considered 
medical CT scan images as input. Detection of 
high and low tides from the images is very com-
plex compared with the medical CT scan images 
due to [Ashhar et al. 2021]. In addition, their re-
search was not considered the hyper tuning of 

training parameters like optimizers like SGDM, 
ADAM and RMSProp with a change in the ep-
ochs size. Both Optimizers and epochs plays a 
crucial role for higher training accuracy, the cur-
rent results already proved it with 100% accurate, 
while their research obtained a maximum training 
accuracy of 94.13% by SqueezNet. So, from the 
present research we suggest that selection of right 
optimizers and epochs will make difference in the 
training accuracy. The size of the dataset is anoth-
er important aspect for the performance measure 
of the deep training model. Yahya et al. (2021) 
have implemented a transfer learning approach, 
utilizing five different networks, to detect face 
masks and mitigate the impact of Covid-19 on the 
public. For mask data training, they mostly used 
AlexNet, GoogleNet, ResNet-18, ResNet-50, and 
ResNet-101. AlexNet had a 95% success rate at 
constant epochs when they used a standard op-
timizer. But their research varied the size of the 
dataset training initially from 20 images to 400 
with a random interval, but their research has 
not discussed whether the dataset is balanced or 
imbalanced. In addition, the mask object detec-
tion is easy compared with the tide detection due 
to the fragile structure of the tide image [Yahya 
et al., 2021]. Our research suggests that hyper-
tuning training parameters, rather than changing 
the dataset for higher accuracy, is a better option. 
Working with a larger dataset, the computation 
time also increases compared with a smaller da-
taset. The present work used only 209 images to 
achieve higher accuracy.

Detection of uncertain objects, which repre-
sent the fragile objects, is always a challenging 
task compared with the static image objects. Dahi-
ya et al. (2022) looked for a way to train a system 
to recognize standard objects from three species, 

Figure 21. Distribution chart of optimizers performance using (A) ResNet-18 training network; 
(B) ResNet-50 on tidal dataset



31

Ecological Engineering & Environmental Technology 2025, 26(4), 13–33

like a tomato, pepper, or potato. They used a da-
taset of 20,640 photos and 15 different classifi-
cations. They studied training accuracy and used 
eight different deep learning architectures to train 
the dataset: AlexNet, GoogleNet, MobileNet, 
ResNet-18, ResNet-50, ResNet-101, ShuffleNet, 
and SqueezeNet. The hyperparameters employed 
included epochs, learning rate, batch size, and op-
timizer for higher accuracies. Even their research 
focused on static objects and did not address is-
sues with fragile objects, like tide detection. But 
the current research focused on tide detection and 
found the best training network for the fragile ob-
jects like high and low tides [Dahiya et al., 2022].

The deep learning procedures were applied 
to public safety applications, like road breaking 
identifications and resulted with high accuracy 
using AlexNet, ResNet18, and SqueezeNet on 
4333 image dataset of roads. Even they addressed 
the training issues for road dataset, but did’nt 
mentioned on ResNet-50 architecture, especially 
for fragile and uncertain object detection.  But the 
proposed research well focused on the training is-
sues for the uncertain objects by addressing the 
public safety parameter into concern. In addition 
the selection of optimizers are also missing from 
their discussion. This work also concentrated 
on optimizers in addition to epochs, that made a 
clear difference in aching the higher accuracies 
for smaller epochs [Ullah et al. 2022].

As specified in the above the selection of op-
timizers is a major concern in the deep learning 
traning datset task. Kumar et al. (2023)  accuracy 
results are 94.99%, 94.61%, and 94.09% were 
attained, respectively, through hyper-parameter 
optimization utilizing flood data. According on 
the detection analysis findings, AlexNet outper-
forms both GoogleNet and SqueezeNet. We ac-
complished this by fine-tuning hyper-parame-
ters, with particular focus on optimizers such as 
ADAM, SGDM, and RMSProp w.r.t. ResNet-18 
and ResNet-50 models and obtained 100% train-
ing accuracy in both, whereas in their experimen-
tation the Google Net model facilitated an accura-
cy of 94.53%, according to [Kumar et al., 2023].  
They employed epochs, learning rate, small batch 
size, and optimizer as parameters for the model; 
however, their study has not addressed the chal-
lenges associated with the tide datasets. Their Ep-
och range spans from thirty to fifty, employing ex-
clusively the ADAM and SGDM optimizers. The 
RMSProp optimizer is not utilized. The Epochs 
have been altered from 30 to 500 in the current 

study, however. Among the eight deep learning 
architectures, only Google Net has superior per-
formance in continuously detecting larger datas-
ets. They can accommodate a maximum of two 
optimizers and function for up to three epochs. 
Three separate optimizer types – SGDM, ADAM, 
and RMSProp – were employed throughout six 
different epochs, varying in duration from thrity 
to five hundred, in the current study. In our pre-
vious works we performed analogous investiga-
tions on flood object training challenges associ-
ated with AlexNet and XceptionNet, although did 
not address ResNet training concerns [Lambu et 
al., 2024]. In addition the present research is more 
focused on the fragile objects like tide detection 
in the beaches. The latest study may assist re-
searchers managing smaller datasets by enabling 
them to effectively adjust hyperparameters and 
achieve improved accuracy. Most deep learning 
detection techniques are evaluated on datasets 
pertaining to agriculture and medical. This study 
is novel since it employs a private collection of 
photographs affected by beach tides to ascertain 
high-tide levels on Indian beaches, ranging from 
0.96 m to 1.83 m. High-tide early detection via 
deep learning offers the coast guard critical infor-
mation to advise beach swimmers for safety and 
rescue operations.

CONCLUSIONS

The present investigation has achieved the 
study’s objectives. The research identifies the 
optimal deep-learning network for the effective 
training of tide object data. The study demon-
strates that the SGDM optimizer is the most ef-
fective method for training tide object datasets, 
yielding higher detection accuracies. The training 
accuracy results indicate that lower epoch rates 
correlate with reduced accuracies for the tide ob-
ject dataset, necessitating median Epoch rates of 
at least 30 to 500 to attain higher accuracies. The 
research advises against the utilization of SGDM 
and ADAM optimizers for training tide object da-
tasets. Analysis of the observed data indicates that 
training tide object datasets using ResNet-50 and 
the SGDM optimizer for epochs ranging from 30 
to 500 yields improved outcomes. These studies 
aid researchers in adhering to recommended Ep-
ochs for training tide object datasets, as selecting 
the appropriate optimizer can decrease training 
time and potentially enhance both training and 
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testing accuracies. This research provides a valu-
able resource for training tide objects affected by 
high tides resulting from rip currents, which are 
significant in the context of climate change and 
rising sea levels. This research focuses exclu-
sively on the training challenges related to high-
tide and low-tide object datasets. Additionally, it 
is essential to conduct accuracy evaluations of 
the research using detector algorithms including 
RCNN, YOLO, and Mobile Net. The outcomes of 
this research significantly recommend ResNet-50 
deep learning training for the identification of 
high tides for beach areas over ResNet-18. Even 
ResNet-18 executes quickly, but still ResNet-50 
gives best training classification accuracy.
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