
50

INTRODUCTION

Water scarcity is a major problem in Medi-
terranean regions, especially in Morocco (Hamdy 
and Lacirigniola, 2005), and particularly in arid 
areas where farming relies heavily on irrigation 
(Al Hamedi et al., 2024). The growing demand 
for food, driven by population growth, puts sig-
nificant pressure on water resources, making ef-
ficient irrigation water use essential to sustain 

agriculture in these regions (Benoit and Comeau, 
2006; Kobry and Eliamani, 2004). Agriculture, 
which uses a large share of water in Morocco 
(Chehbouni et al., 2008), is especially vulnerable 
to the current water crisis. This highlights the 
need for sustainable management strategies tai-
lored to the challenges of arid and semi-arid areas 
(Kahil et al., 2015).

To address these challenges, Morocco 
launched the Green Morocco Plan (PMV) in 
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needs. However, the study is limited to sugar beet cultivation within the Tadla region, and the findings may not 
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assess the long-term impacts of implementing water-saving practices. The practical value of this research lies in 
its potential to improve irrigation efficiency and reduce water waste, offering actionable insights for farmers and 
policymakers. This study bridges the gap between theoretical water optimization and practical implementation in 
semi-arid regions, contributing to more sustainable water management practices and ensuring the future viability 
of agriculture in arid environments.
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2008. This is a comprehensive strategy to improve 
agricultural performance while tackling the critical 
issue of water scarcity. One key part of this plan is 
to optimize irrigation water use by promoting lo-
calized irrigation systems, such as drip irrigation, 
which aim to increase water efficiency and reduce 
losses (PMV, 2008). Estimates suggest this transi-
tion could save up to 1.4 billion cubic meters of 
water annually, helping to ensure sustainable agri-
cultural development in the face of growing climate 
and resource challenges (Bouazzama et al., 2015).

However, despite the ambitious goals and 
progress of the Green Morocco Plan, water scar-
city remains a persistent challenge. The World 
Water Vision report highlights that the global 
water crisis is not only caused by limited avail-
ability but also by poor management practices, 
which have significant impacts on people and the 
environment (Saraiva et al., 2020). This issue is 
particularly relevant in Morocco, where solutions 
from the Green Morocco Plan, though promising, 
appear increasingly insufficient to meet the rising 
demand for efficient water use.

Several studies have revealed significant gaps 
in the practical application of localized irrigation 
systems, often considered a benchmark for wa-
ter management (Nassah et al., 2018, 2020). The 
2022 agricultural report by Jesko Hentschel em-
phasized that the measures under the Green Mo-
rocco Plan must be supported by more efficient 
and rational water-use practices. This includes 
addressing persistent inefficiencies in current irri-
gation systems and promoting adaptive manage-
ment that considers crop needs, soil conditions, 
and climate variability (Khalid and Moujahid, 
2020; MAPM, 2020). It underlines the urgency 
for targeted research to close the gap between 
the theoretical potential of localized systems and 
their real-world application. This ensures these 
systems meet their goal of sustainable water re-
source management.

In this context, the aim of this study is to fill 
this gap by evaluating irrigation practices in the 
irrigated area of Tadla. Specifically, it compares 
the water supplied to sugar beet crops with the 
calculated net water needs during different growth 
stages, analyzing the match between water supply 
and crop needs for gravity and drip irrigation sys-
tems. Sugar beet was chosen as the target crop 
because of its economic importance in the region 
and its relatively high water requirements (El 
Harfi et al., 2020).

This study aims to determine whether current 
water-use practices are wasteful, insufficient, or 
adequate. It provides valuable insights on how 
to optimize water use, contributing to existing 
knowledge by offering empirical evidence on the 
performance of irrigation systems in a semi-arid 
context. The results of this study are important for 
policymakers and researchers seeking to improve 
water use efficiency in arid and semi-arid regions.

MATERIALS AND METHODS

Study area description

This study was carried out in the Tadla ir-
rigated perimeter, located 200 km south-east of 
the city of Casablanca in Morocco (Figure 1). 
The Tadla irrigated perimeter covers a large area, 
estimated at 3.600 km2 (Bouazzama et al., 2015; 
Chaaou et al., 2020).

The river crossed by the Oum R’bia for 
around 160 km. The latter divides it into irrigated 
sub-perimeters with different hydraulic charac-
teristics: Béni Amir to the north (35.600 ha) and 
Béni Moussa (69.500 ha) to the south (Bouaz-
zama et al., 2015; Chaaou et al., 2020).

The perimeter’s climate is continental, with 
a dry period from April to October, and a wet pe-
riod from November to March. Average annual 
rainfall varies from 150 to 450 mm, with an inter-
annual coefficient of variation of 20% (Bouazza-
ma et al., 2015; Chikhaoui et al., 2018; Chaaou et 
al., 2020). The wettest month is November (61.3 
mm), with a secondary maximum in March (39.8 
mm). July and August are the two dry months 
(Figure 2). The disparity of temperatures in this 
region is remarkable, with a maximum of 28.7 °C 
in July and a minimum of 10.6 °C in January.

Figure 1. Location of the study area 
(Chaaou et al., 2020)
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The study area is divided into two different 
regions: Beni Moussa and Beni Amir (Figure 
3). The Beni Amir perimeter is irrigated by the 
Ahmed Lhansali dam on the Oum Er-Rabia, with 
a capacity of 750 mm3. The Beni Moussa pe-
rimeter is irrigated by the Bin El Ouidane dam, 
on the Oued El Abid, with a capacity of 1.500 
mm3. Groundwater consists of water tables and 
a turonian water table. The perimeter contains 
around 10.000 wells mobilizing 40% of the mo-
bilizable volume estimated at 440 mm3 annually 
(El Harti et al., 2016; Chaaou et al., 2020).

MATERIALS AND METHODS

This study was carried out for the 2022–2023 
period in the two irrigated areas of Tadla.

Data collection and irrigation system

the data of the irrigation actual quantity sup-
plied to the growers is collected by a field sur-
vey in the 2022/2023 crop year. This survey aims 
to collect information on the agricultural area of 
sugar beet plots and the irrigation system used 
(flood or drip) Appendix 1.

The number of sampled plots represents 30% 
of all beet growers. This percentage, determined 
by the Cosumar Group subsidiary SUTA, which 
is committed to preserving natural resources and 
biodiversity, is considered representative. The 
samples are distributed across the two main ir-
rigation perimeters: Beni Amir (BA) and Beni 
Moussa (BM) (Fig. 4).

For the 2022/2023 crop year, the number 
of beet growers using drip irrigation systems in 

Figure 2. Umbrothermal diagram of the Tadla climatic region

Figure 3. Location of the beni amir and beni moussa irrigation perimeters
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these three zones totals 152, with 66 in the BA 
zone and 86 in the BM zone. The total number of 
beet growers using drip irrigation to be surveyed 
is therefore 46, distributed as follows:
	• Beni Amir zone: 30% of 66, i.e. 20 beet growers;
	• Beni Moussa zone: 30% of 86, i.e. 26 beet 

growers.

In addition, the total number of beet growers 
using flood irrigation is 15, distributed as follows:
	• Beni Amir zone: 30% of 20, i.e. 6 beet growers
	• Beni Moussa zone: 30% of 30, i.e. 9 beet growers.

So, the overall total of beet growers surveyed 
is: 61 beet growers, The following table gives the 
breakdown of farmers to be surveyed by perimeter, 
irrigation mode and irrigation performance (Table 1).

Method used to calculate the actual amount 
of water irrigated by beet growers in one 
hectare over the entire cycle.

The amount of water consumed per hectare 
(Wc) is determined by the total flow used, the 
frequency of irrigation (i.e. the number of times 
farmers water their crops) and the duration of 
each irrigation session.

	

1 
 

𝑊𝑊𝑊𝑊 = 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 × 
× 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 × 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 

 
 (1) 

  
𝐸𝐸𝐸𝐸𝐸𝐸 = ((0.457 × 𝑇𝑇°𝑚𝑚𝑚𝑚𝑚𝑚) + 8.128) × 𝑃𝑃 × 𝐾𝐾𝐾𝐾 (2) 
 
𝑇𝑇𝑚𝑚𝑚𝑚𝑚𝑚 = 𝑇𝑇𝑚𝑚𝑚𝑚𝑚𝑚 + 𝑇𝑇𝑚𝑚𝑚𝑚𝑚𝑚

2  (3) 
 
𝑃𝑃 = 𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 𝑜𝑜𝑜𝑜 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑ℎ𝑡𝑡 ℎ𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 𝑖𝑖𝑖𝑖 𝑡𝑡ℎ𝑒𝑒 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚ℎ 

𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑ℎ𝑡𝑡 ℎ𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 𝑖𝑖𝑖𝑖 𝑡𝑡ℎ𝑒𝑒 𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦  (4) 
 
𝐾𝐾𝐾𝐾 = ((0.031 × 𝑇𝑇°𝑚𝑚𝑚𝑚𝑚𝑚) + 0.24) (5) 
 
𝐸𝐸𝐸𝐸𝐸𝐸 = 𝐸𝐸𝐸𝐸𝐸𝐸 × 𝐾𝐾𝐾𝐾 (6) 
 
𝐼𝐼𝑁𝑁 = 𝐸𝐸𝐸𝐸𝑐𝑐 − 𝑃𝑃𝐸𝐸 (7) 
 
𝑃𝑃𝐸𝐸 = 𝑃𝑃 − 𝐼𝐼𝑅𝑅 (8) 
 
ETc = ETo × Kc × Kr (9) 
 

	 (1)

Water requirements of sugar beet under 
localized irrigation in the Tadla perimeter

Calculation of ET0 

 Evapotranspiration (ETo) is determined us-
ing the Blaney-Criddle formula, this method is a 
simplified approach to estimating evapotranspira-
tion, using an appropriate set of meteorological 
data (Mohamed Abd El-Wahed and Abd El-Ma-
geed, 2014; Xiong et al., 2015; Doorenbos et al., 
2022). So the formula is as follows:

	

1 
 

𝑊𝑊𝑊𝑊 = 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 × 
× 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 × 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 

 
 (1) 

  
𝐸𝐸𝐸𝐸𝐸𝐸 = ((0.457 × 𝑇𝑇°𝑚𝑚𝑚𝑚𝑚𝑚) + 8.128) × 𝑃𝑃 × 𝐾𝐾𝐾𝐾 (2) 
 
𝑇𝑇𝑚𝑚𝑚𝑚𝑚𝑚 = 𝑇𝑇𝑚𝑚𝑚𝑚𝑚𝑚 + 𝑇𝑇𝑚𝑚𝑚𝑚𝑚𝑚

2  (3) 
 
𝑃𝑃 = 𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 𝑜𝑜𝑜𝑜 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑ℎ𝑡𝑡 ℎ𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 𝑖𝑖𝑖𝑖 𝑡𝑡ℎ𝑒𝑒 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚ℎ 

𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑ℎ𝑡𝑡 ℎ𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 𝑖𝑖𝑖𝑖 𝑡𝑡ℎ𝑒𝑒 𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦  (4) 
 
𝐾𝐾𝐾𝐾 = ((0.031 × 𝑇𝑇°𝑚𝑚𝑚𝑚𝑚𝑚) + 0.24) (5) 
 
𝐸𝐸𝐸𝐸𝐸𝐸 = 𝐸𝐸𝐸𝐸𝐸𝐸 × 𝐾𝐾𝐾𝐾 (6) 
 
𝐼𝐼𝑁𝑁 = 𝐸𝐸𝐸𝐸𝑐𝑐 − 𝑃𝑃𝐸𝐸 (7) 
 
𝑃𝑃𝐸𝐸 = 𝑃𝑃 − 𝐼𝐼𝑅𝑅 (8) 
 
ETc = ETo × Kc × Kr (9) 
 

	 (2)

where:	Eto – reference evapotranspiration (mm/
day); Tₘₒᵧ – mean daily air temperature (°C). 
It is calculated as the average of the daily 
maximum and minimum temperatures:

	

1 
 

𝑊𝑊𝑊𝑊 = 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 × 
× 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 × 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 

 
 (1) 

  
𝐸𝐸𝐸𝐸𝐸𝐸 = ((0.457 × 𝑇𝑇°𝑚𝑚𝑚𝑚𝑚𝑚) + 8.128) × 𝑃𝑃 × 𝐾𝐾𝐾𝐾 (2) 
 
𝑇𝑇𝑚𝑚𝑚𝑚𝑚𝑚 = 𝑇𝑇𝑚𝑚𝑚𝑚𝑚𝑚 + 𝑇𝑇𝑚𝑚𝑚𝑚𝑚𝑚

2  (3) 
 
𝑃𝑃 = 𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 𝑜𝑜𝑜𝑜 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑ℎ𝑡𝑡 ℎ𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 𝑖𝑖𝑖𝑖 𝑡𝑡ℎ𝑒𝑒 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚ℎ 

𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑ℎ𝑡𝑡 ℎ𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 𝑖𝑖𝑖𝑖 𝑡𝑡ℎ𝑒𝑒 𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦  (4) 
 
𝐾𝐾𝐾𝐾 = ((0.031 × 𝑇𝑇°𝑚𝑚𝑚𝑚𝑚𝑚) + 0.24) (5) 
 
𝐸𝐸𝐸𝐸𝐸𝐸 = 𝐸𝐸𝐸𝐸𝐸𝐸 × 𝐾𝐾𝐾𝐾 (6) 
 
𝐼𝐼𝑁𝑁 = 𝐸𝐸𝐸𝐸𝑐𝑐 − 𝑃𝑃𝐸𝐸 (7) 
 
𝑃𝑃𝐸𝐸 = 𝑃𝑃 − 𝐼𝐼𝑅𝑅 (8) 
 
ETc = ETo × Kc × Kr (9) 
 

	 (3)

P is the number of daylight hours on a given 
day as a percentage of the total number of day-
light hours in a year, %.

Figure 4. Distribution of samples of actual quantity of irrigation supplied and type of irrigation system

Table 1. Number and distribution of survey plots in the tadla irrigated area
Irrigation system Drip Flood

Perimeter BA BM BA BM

Number of respondents 20 26 6 9

Total 46 15

General total 61
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1 
 

𝑊𝑊𝑊𝑊 = 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 × 
× 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 × 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 

 
 (1) 

  
𝐸𝐸𝐸𝐸𝐸𝐸 = ((0.457 × 𝑇𝑇°𝑚𝑚𝑚𝑚𝑚𝑚) + 8.128) × 𝑃𝑃 × 𝐾𝐾𝐾𝐾 (2) 
 
𝑇𝑇𝑚𝑚𝑚𝑚𝑚𝑚 = 𝑇𝑇𝑚𝑚𝑚𝑚𝑚𝑚 + 𝑇𝑇𝑚𝑚𝑚𝑚𝑚𝑚

2  (3) 
 
𝑃𝑃 = 𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 𝑜𝑜𝑜𝑜 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑ℎ𝑡𝑡 ℎ𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 𝑖𝑖𝑖𝑖 𝑡𝑡ℎ𝑒𝑒 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚ℎ 

𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑ℎ𝑡𝑡 ℎ𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 𝑖𝑖𝑖𝑖 𝑡𝑡ℎ𝑒𝑒 𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦  (4) 
 
𝐾𝐾𝐾𝐾 = ((0.031 × 𝑇𝑇°𝑚𝑚𝑚𝑚𝑚𝑚) + 0.24) (5) 
 
𝐸𝐸𝐸𝐸𝐸𝐸 = 𝐸𝐸𝐸𝐸𝐸𝐸 × 𝐾𝐾𝐾𝐾 (6) 
 
𝐼𝐼𝑁𝑁 = 𝐸𝐸𝐸𝐸𝑐𝑐 − 𝑃𝑃𝐸𝐸 (7) 
 
𝑃𝑃𝐸𝐸 = 𝑃𝑃 − 𝐼𝐼𝑅𝑅 (8) 
 
ETc = ETo × Kc × Kr (9) 
 

	 (4)

Kₜ is crop coefficient (dimensionless). This 
factor adjusts the formula based on the type of 
crop being irrigated, accounting for its specific 
water requirements and growth stage.
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Calculation of ETc

Crop water requirements refer to the amount 
of water required to meet the crop’s evapotranspi-
ration (ETc). the crop evapotranspiration, which 
is calculated according to FAO-56 (Allen et al., 
1998), is generally obtained using a climatic ap-
proach, by applying the product of the reference 
evapotranspiration (ETo) multiplied by the crop 
coefficient (Kc) as follows: (Pereira et al., 2015)
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The Kc crop coefficients used are the FAO Kc 

coefficients (Allen et al., 1998). (see the appendix 4).

Calculation of net irrigation requirement

Net irrigation requirement is a measure used in 
agriculture to determine the amount of additional 
water needed to irrigate a given crop or area. It 
represents the difference between the crop’s wa-
ter requirements (evapotranspiration) and natural 
water inputs (precipitation, soil moisture, etc.) 
(Dukes et al., 2009). More precisely, the net ir-
rigation requirement is calculated by subtracting 
the natural water supply from the crop’s water 
needs. If natural water inputs are insufficient to 
meet the crop’s needs, additional water must be 
supplied by irrigation.

To calculate the net irrigation requirement 
(IN), use the following formula (Dukes et al., 
2009):
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where:	 effective rainfall (PE) refers the Precipi-

tation falling during the growing period 
of the crop that is available to meet the 

consumptive water requirements of crops. 
It does not include precipitation that is 
lost to deep percolation below the root 
zone, surface runoff, or evaporation from 
soil surface (IA, 2005). 
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where:	 IR – the interception of precipitation by 

vegetation, for our case study the inter-
ception of tight plantations (sugar beet) is 
20% (Aussenac, 1968; Huttel, 1975).

RESULTS AND DISCUSSION

Water requirement for one hectare 		
of sugar beet

Calculation of ET0

In accordance with the Blaney-Criddle meth-
od, the results of the monthly potential evapo-
transpiration (ET0) are presented in the Table 2.

Effective rainfall

The Table 3 shows the actual rainfall in 
the study area with the average rainfall for the 
2022/2023 season and the interception:

Net water requirement for one hectare of 
sugar beet

Table 4 presents the cultural coefficients of 
sugar beet by phenological phase and the crop’s 
evapotranspiration (ETc) values, calculated using 
the formula:
	 ETc = ETo * Kc * Kr	 (9)

These data are used to determine the net wa-
ter requirements for each month as well as for 
the entire growth cycle of the plant. It is worth 
noting that sugar beet can be sown during three 
distinct periods: early sowing, which occurs from 
September to mid-October; regular sowing, from 

Table 2. Calculation of reference evapotranspiration (ETo)
Parameter Sept. Oct. Nov. Dec. Jan Feb Mar. Apr May June

Average T° (°C) 25.0 23.0 17.0 14.0 10.0 12.0 15.0 19.0 24.0 27.0

Sunshine duration P (%) 28% 25% 23% 22% 23% 25% 27% 29% 31% 32%

Kt 1.02 0.95 0.77 0.67 0.55 0.61 0.71 0.83 0.98 1.08

Number of days 30 31 30 31 31 29 31 30 31 30

ETo (mm) 166.71 137.66 84.13 66.77 49.80 60.40 88.41 121.25 180.58 211.61
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mid-October to the end of November; and late 
sowing, from December to February. An analysis 
of the data in Table 4 reveals that the net water re-
quirement reaches its peak in May, with a value of 
approximately 139.32 mm (Figure 5). Depending 

on the sowing period, the net irrigation require-
ment is 4,204.48 m³/ha for early sowing, 4,575.01 
m³/ha per cycle for regular sowing, and 5,529.58 
m³/ha per cycle for late sowing (Figure 6). Clearly, 
the net irrigation requirement for late-sown sugar 

Table 3. Effective rainfall for the 2022/2023 season
Parameter Sept Oct Nov Dec. Jan Feb Mar Apr May June

P (mm) 13.0 21.0 0.0 58.0 5.0 41.0 0.0 0.0 29.0 0.0

Interception 2.6 4.2 0.0 11.6 1.0 8.2 0.0 0.0 5.8 0.0

Pe (mm) 10.40 16.80 0.00 46.40 4.00 32.80 0.00 0.00 23.20 0.00

Table 4. Net requirement (m3/ha/cycle) for sugar beet in the study area

Parameter
Phenological phases

Germination phase Vegetative growth phase Root formation phase Maturity phase

Sept. Oct. Nov Dec. Jan Feb. Mar. Apr. May June

kc 0.45 0.50 0.50 0.65 0.90 1.10 1.15 1.15 1.00 0.70

Kr 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9

ETc (mm) 67.52 61.95 37.86 39.06 40.33 59.79 91.51 125.49 162.52 133.32
Net requirement 
(mm) 57.17 45.15 37.86 -7.34 36.33 26.99 91.51 125.49 139.32 133.32

Net requirement 
(m3/ha/cycle) 571.17 451.48 378.59 0.00 363.34 269.92 915.07 1254.90 1393.19 1333.16

Early 4204.48

Semi-late 4575.01

Tardive 5529.58

Figure 5. The net monthly requirement for sugar beet in 2022–2023

Figure 6. The net requirement of the sugar beet during the three semi-periods: early, semi-late and tardive
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beet is higher than for other sowing periods. This 
highlights the importance of meticulous irrigation 
management for late-sown crops to ensure ade-
quate water supply and optimal crop growth.

Comparison between net irrigation 
requirement and real quantity irrigated per 
hectare

Système d’irrigation goutte à goutte

On the other hand, it is alarming to note that 
46% of the parcels that have adopted the drip ir-
rigation system wastewater far exceeding the real 
needs of the sugar beet crop, which can lead to 
losses through deep percolation Assessing wa-
ter wastage or deficits using drip irrigation on a 
hectare of sugar beet requires a detailed analysis 
of the amount of water applied compared to the 
crop’s actual needs. Differentiating between net 
requirements and the amount of water actually 
used is crucial to determine whether irrigation is 
adequate or insufficient. The results of this assess-
ment are presented in the table in Appendix 1.

Figure 7 reveals a concerning observation: 
54% of the plots studied using the drip irrigation 
system experienced an irrigation deficit, indicat-
ing that the crops did not receive the required 
quantities of water during the agricultural period. 
This calls for a more detailed analysis by pheno-
logical phase to address the shortfall effectively. 
Conversely, 46% of the parcels using the drip irri-
gation system showed significant water wastage, 
with amounts far exceeding the actual needs of 
the sugar beet crop. This excessive irrigation can 
lead to losses through deep percolation, empha-
sizing the need for better irrigation management 
practices to optimize water use efficiency (Nas-
sah et al., 2018). This phenomenon arises from 
various causes, including poor irrigation water 

management and improper use of the drip ir-
rigation system. It can be attributed to the beet 
growers’ lack of knowledge regarding the optimal 
timing for irrigation and the absence of a well-
structured irrigation schedule.

These results highlight inefficiencies in drip ir-
rigation caused by both farmers and water manag-
ers. Solutions include raising farmers’ awareness, 
providing training on best practices, and promot-
ing rational water resource management. For more 
information, we analyzed the percentage of excess 
water and irrigation deficit in the two irrigated pe-
rimeters, Beni Amir and Beni Moussa. The results 
obtained show that the irrigation fate of plots lo-
cated in the Beni Amir perimeter is equally divided 
(50%) between the two components, i.e. excess 
water and irrigation deficit. In contrast to the Beni 
Amir perimeter, the percentage of excess water in 
the Beni Moussa perimeter was reduced by 8% re-
cording a value of around 42%. on the other hand, 
the percentage of irrigation deficit exceeded 50%.

To address this water imbalance situation, the 
stakeholders in question must adopt the strategy 
of efficient irrigation to minimize water losses due 
to excess water by reducing the current amount 
of irrigation provided, on one hand. On the other 
hand, they should explore the possibility of imple-
menting deficit irrigation for our sugar beet crop. 
Deficit irrigation strategies are one of the means to 
achieve better utilization of irrigation water in ar-
eas with limited water resources (Bouazzama et al., 
2015; Sabri et al., 2017). This concept, proposed 
by Chalmers et al. (1981), is based on controlling 
the vegetative growth of the crop under controlled 
deficit irrigation without reducing the yield (Fig. 8).

Flood irrigation system

From the data presented in Appendix 2, we can 
see that 100% of the plots studied were wasting 

Figure 7. The current state of drip irrigation in the 
Tadla irrigated perimeter

Figure 8. The current state of drip irrigation in the 
two irrigated areas of beni amir and beni moussa
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water. This situation is due to the absence of a well-
structured irrigation program and sensors to deter-
mine the net requirements of the crop at the time of 
irrigation, forcing beet growers to resort to wasting 
water as the sole means of satisfying the demands 
of their crops. To help farmers assess the irrigation 
efficiency of their orchards, a new multicriteria 
approach based on the analytic hierarchy process 
(AHP) technique and the participation of a group of 
experts is proposed (Poveda-Bautista et al., 2021). 
The conversion from gravity irrigation to localized 
irrigation must take place under favorable condi-
tions within the irrigated perimeter of Tadla.

CONCLUSION 

Our study demonstrated the superior efficiency 
of the drip irrigation system compared to the flood-
fed system, based on the analysis of total water 
consumption per hectare irrigated by both systems. 
However, under current drought conditions, neither 
system can fully meet the challenges of irrigation 
if farmers fail to align water application with plant 
needs. This study confirms a critical finding: a sig-
nificant gap exists between the actual quantity of 
water applied and the net irrigation requirements of 
plants. This mismatch leads to considerable water 
wastage, highlighting the urgent need for optimized 
irrigation management during drought periods. The 
results underscore the importance of water con-
servation as a key strategy to ensure the survival 
and sustainability of crops under water-scarce con-
ditions. Among the potential solutions, deficit ir-
rigation strategies offer a promising approach to 
optimizing water use in regions with limited wa-
ter resources, without compromising crop yields. 
Previous studies have extensively documented the 
effectiveness of deficit irrigation in various fruit 
orchards, including peach (Chalmers et al., 1981), 
pear (Zhao et al., 2015), almond (Razouk et al., 
2013), mandarin (Pedrero et al., 2014), clementine 
(Ballester et al., 2014), and apricot (Pérez-Pastor et 
al., 2014). Furthermore, our findings suggest that 
deficit irrigation could also be successfully applied 
to sugar beet cultivation, offering a pathway to 
more sustainable water management in agriculture.
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