
311

INTRODUCTION

Climate change remains one of the most 
pressing global challenges, with significant im-
plications for environmental, social, and eco-
nomic systems (Merigan and  Weiss, 1980; Sant-
er et al., 1996; Stanhill and  Cohen, 2001; Vale et 
al., 2021; Wigley and  Raper, 1990).Among its 
many impacts, rising land surface temperatures 
(LST) and sea surface temperatures (SST) have 
emerged as critical indicators of environmental 
change, particularly in rapidly urbanizing re-
gions  (Houghton and  Woodwell, 1989; Warrick 
et al., 1996). While extensive research has been 
conducted on LST and SST in temperate and 

tropical regions, arid coastal cities, such as Aqa-
ba, Jordan, remain underexplored (Bastiaanssen 
et al., 1998; Bonan et al., 2002; Cea et al., 2005; 
Idso, 1981; Kustas and  Norman, 1996; Kustas 
et al., 2003; Prihodko and  Goward, 1997; Quat-
trochi and  Luvall, 2004). This gap is particularly 
concerning given the unique environmental and 
geological characteristics of these regions, which 
can significantly influence thermal dynamics 
(Anisimov et al., 2010; Anisimov et al., 2007; 
Assessment, 2005).

Previous studies have primarily focused on 
the relationship between LST and urban heat is-
lands in non-arid regions, often neglecting the 
role of lithological formations and their thermal 
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properties (Jiang and  Tian, 2010). For instance, 
while the impact of urbanization on LST has been 
well-documented (Chaithanya et al., 2017). For 
instance, while the impact of urbanization on LST 
has been well-documented (Ibrahim and  Abu-
Mallouh, 2018). Additionally, the interplay be-
tween LST and SST in coastal arid environments 
has not been thoroughly investigated despite its 
potential implications for local climate resilience 
and marine ecosystems.

Recent advancements in remote sensing and 
geographic information systems (GIS) have revo-
lutionized our ability to measure and monitor land 
surface temperature and sea surface temperature 
with unprecedented accuracy and spatial resolu-
tion (Al Kuwari et al., 2016; Jensen et al., 2005; 
Khandelwal et al., 2018; Kim, 1992; Tarrad and  
Ibrahim, 2021). (McMillin, 1975). In addition, 
to avoid many obstacles that can be faced dur-
ing this process, several studies have presented 
different approaches to deal with issues such as 
atmospheric and emissivity effects (Becker and  
Li, 1990; Gillespie et al., 1998; Hook et al., 1992; 
Ibrahim and  Abu-Mallouh, 2018; Ibrahim et al., 
2021; Jiménez‐Muñoz and  Sobrino, 2003; Kealy 
and  Hook, 1993; Kerr et al., 1992; Vázquez et al., 
1997). The current study addresses these gaps by 
leveraging remote sensing and GIS techniques to 
estimate LST and SST in Aqaba, Jordan, a rapidly 
urbanizing coastal city characterized by diverse 
geological formations. The primary objective is 

to explore the relationships between temperature 
variations, land use changes, and lithological 
features. Specifically, the study aims to quantify 
the impact of urbanization and geological forma-
tions on LST, with a focus on identifying ther-
mal anomalies in urban and exposed geological 
areas, additionally to investigate the correlation 
between LST and SST along the Red Sea coast, 
providing insights into the land-sea thermal inter-
actions in arid coastal environments.

The study hypothesizes that land use and li-
thology variations significantly influence LST, 
with urban areas and silica-rich geological for-
mations exhibiting higher temperatures. A mea-
surable correlation exists between LST and SST, 
driven by the thermal exchange between ter-
restrial and marine environments. This research 
contributes to a deeper understanding of thermal 
dynamics in arid coastal regions by addressing 
these objectives, offering valuable insights for 
urban planning, environmental management, and 
climate change adaptation strategies.

STUDY AREA 

Aqaba is located in the southernmost parts of 
Jordan at 29°00’ to 30°50’ N and 35°00´ to 36°40’ 
E (Figure 1). It spans an area of 4940 km²  The 
area hosts a wide variation of topographic fea-
tures where rugged mountains (up to ca. 1848 m 

Figure 1. Location map of the Aqaba area; lower-left – digital elevation model of the study area 
based on DEM
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above sea level (asl)) are found in the east and 
north, while flat areas (ca. 10 m asl) are located 
in the southern and western parts (Al-Taani et al., 
2023; Burdon, 1959). The contemporary climate 
is arid, with a mean annual rainfall of ca. 32.2 
mm (Farhan and  Anaba, 2016). The highest sum-
mer temperature during July reaches up to about 
37°C while it drops to about 23°C at night, with 
a summer daily average of 11.4 sunny hours (Al-
Ghriybah and  Didane, 2023).

Geological settings

The study area is primarily comprised of 
Proterozoic igneous rocks, locally known as the 
Aqaba Complex, which includes granites and 
granodiorites in the highlands in the study area’s 
central and western parts. Several sedimentary 
formations are found either overlying the Aqaba 
Complex or exposed at different locations. These 
include the Cambrian Ram sandstone (Salib 
Arkose) formation consisting of more than 50 
m yellowish pebbly conglomerate and arkosic 
sandstone. The particle size fines upward where 
sedimentary structures are noted on the Natural 
Resources Authority (NRA) map. The Cenoma-
nian Kurnub sandstone formation is also exposed 
over a small area in the northeastern parts of the 
study area. This formation primarily consists of 
fine to coarse sandstone with pebbles of quartz 
(NRA map). Over the eastern parts of the study 
area, the Cambrian sandstone Khreim formation 
is exposed (Powell et al., 2014). In addition to the 
sandstone formations, the limestone-dominated 
Ajlun and Amman Wadi Sir formations are ex-
posed (Masri, 1963). The western parts of the 
study area, influenced by the drainage originating 
from the central highlands, are covered by Qua-
ternary to recent deposits that primarily comprise 
alluvial fans, siliciclastic gravels, sand, mudflats, 
and wadi sediments. (Smadi, 1997) (Figure 2).

MATERIALS AND METHODS

Data set

This investigation utilizes satellite imagery ac-
quired in April 2022 from the Landsat 8 OLI/ TIRs 
(Operational Land Imager) and MODIS; specifi-
cally, the examination contains records from Landsat 
8 OLI and MODIS for estimating land surface tem-
perature. These are free through Global Visualization 

(GloVis) and the United States Geological Survey 
(USGS) website. In addition, daily Level 3 sea sur-
face temperature data from MODIS through the 
Ocean Color Database of the National Aeronautics 
and Space Administration (NASA) with a resolution 
of 4 km. The data were also obtained from in-situ 
measurements and calibrated to align with in-situ sea 
surface temperature readings, as shown in Table 1. 
Furthermore, the geological map produced by the 
Jordan Natural Resources Authority was utilized to 
establish the correlation between land surface tem-
perature and the geological formations in the study 
area. The data was preprocessed through the use of a 
set of different software, including ERDAS IMAG-
INE 2014 for image processing, ArcMap Software 
used for land use and land cover classification, accu-
racy assessment of applying the LST equation, and R 
Studio for statistical analysis (Figure 3).

The study employs a combination of remote 
sensing data and statistical analysis to investigate 
the correlation between land surface temperatures 
and sea surface temperature based on the Meth-
odology used. LST was estimated using the split-
window algorithm applied to Landsat 8 OLI/
TIRS thermal bands, while SST was derived from 
MODIS Level 3 data with a spatial resolution of 
4 km. The correlation between LST and SST was 
analyzed using Pearson’s correlation coefficient, 

Figure 2. Exposed geological formation map for the 
study area (after Smadi 1997)
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quantifying the linear relationship between the two 
variables. This approach allows for a robust assess-
ment of the study area’s thermal interactions be-
tween terrestrial and marine environments.

Image processing

Various methods, such as dual-angle (DA), 
split-window (SW), and single-channel (SC), are 
employed for estimating land surface temperature. 
In the split-window approach, thermal bands and 
NDVI data are utilized, and the LST can be derived 
using Equation (1). (Alipour et al., 2003; Ghulam 
and  Hall, 2010; Rajeshwari and  Mani, 2014). 

	 𝐿𝐿𝐿𝐿𝐿𝐿 = 𝐵𝐵𝐵𝐵
1 + (𝑊𝑊 × 𝐵𝐵𝐵𝐵

𝑃𝑃 × ln(𝑒𝑒))                    (1) 
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𝑙𝑙𝑙𝑙 (𝐾𝐾1

𝑙𝑙λ + 1)
− 272.15                     (2) 
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2
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Ts = α + β′Ti + γ′(Ti – Tj) + δ(1 – sec(θ))                     (8) 
 

	 (1)

where:	 the LST is land surface temperature, BT 
is brightness temperature and W is wave-
length, P is a constant value of 1438, and 
e/LSE refers to the land surface emissivity.

Brightness temperature (BT)

According to NASA (2012) the brightness tem-
perature can be defined as the blackbody tempera-
ture that produces the light sensed by the sensor. At 
the same time, Alipour et al. (2003) define it as the 
temperature recorded by the satellite when the image 

is acquired. Hence, it is a satellite-generated tem-
perature and does not reflect on-ground temperatures 
(Alipour et al., 2003). Accordingly, TIRS band data 
(as BT) can be obtained by converting thermal con-
stants in the metadata using Equation 2.
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	 (2)

where:	 the K1 and K2 are thermal constants, Lλ 
refers to the top of atmospheric spectral 
radiance.

The BT is calculated, considering the top of 
atmospheric (TOA) spectral radiance is acquired, 
as shown in Equation 3.
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	 (3)
The Mʟ refers to the Band specific multiplica-

tive rescaling factor (radiance_mult_band_10/11). 
Aʟ means the Band specific additive rescaling 
factor (radiance_add_band_10/11). Qcal is a band 
10/ 11 image.

Land surface emissivity

A relative parameter known as land surface 
emissivity can be used to calculate blackbody 
radiance from the land surface temperature (So-
brino et al., 2008). There are various methods for 

Table 1. Factors used in the study
Data set Source Resolution Factors

Digital elevation model STRM 30 m Elevation

Landsat 8 USGS 30 m LULC,  LST

MODIS NASA 4 km LST, SST

Lithology Ministry of energy and mineral 
resources 1:50000 Lithology map

Figure 3. Methodology flow chart for the study
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estimating the emissivity of the terrestrial surface 
(Equation 4). The NDVI approach is used, which 
calculates the LST in degrees Celsius after ac-
counting for the proportion of vegetation (Pv). 
Equation 5 is used for land surface emissivity.
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where:	 the e refers to LSE (land surface emissiv-
ity), the Pv is the proportion of vegetation. 
NDVI – normalized differences vegeta-
tion index.

Image classification

Satellite data was obtained from the USGS Earth 
Explorer. The maximum likelihood method was em-
ployed to classify the land use map, which is consid-
ered one of the most common methods used in Su-
pervised classification (Ibrahim and  Abu-Mallouh, 
2018). Two hundred points were sampled to estab-
lish the training samples for each class. 

Accuracy assessments

The accuracy assessments provide deeper in-
sights into the areas where classification errors 
occur. To evaluate the precision of the classifica-
tion, a set of random points needs to be generated, 
allowing for the analysis of data at each point’s 
location. This process helps determine the over-
all accuracy of the categorization. The outcome 
would be determining, using Google Earth (truth 
points), the type of land use at that location and 
contrasting it with the land use of the classified 
raster (Jensen, 2005). The classification accuracy 
was evaluated using three common criteria: over-
all accuracy, producer accuracy, and user accu-
racy (Lillesand et al., 2015)

It is calculated using Equations (6 and 7)
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Sea surface temperature

The MODIS SST was retrieved using the 
NLSST algorithm given in Equation 8: 
	 Ts = α + β′Ti + γ′(Ti – Tj) + δ(1 – sec(θ))	 (8)

where:	 the Ti’s are brightness temperatures in 
various bands for a given location and the 
coefficients α, β and γ give the parameter-
ized correction, θ is the zenith angle and 
δ is an additional scan angle coefficient 
(Minnett, 1990; Walton et al., 1998).

RESULTS AND DISCUSSION

Observed and estimated land surface 
temperature

Land surface temperature were estimated us-
ing TIR and MODIS images satellite data. Figure 
4 illustrates the geographical distribution of land 
surface temperature, where the values ranged 
from 24 °C to 50 °C (mean = 37 °C). Elevated 
(high) surface temperatures are shown as dark 
red, covering the northeastern and central regions 
of the study area.

Similarly, Figure 5 shows the observed sur-
face temperature (MODIS image). In agreement 
with the LST distribution, the dark red color 
(high) values are concentrated in the northeastern 
and central parts with values ranging from 33 °C 
to 50 °C (mean = 42 °C). This was also empha-
sized through statistical correlation between the 
two maps, where an r2 value of 0.64 was obtained 

Figure 4. Estimated land surface temperature map
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(for 200 control points). However, minor differ-
ences between the two maps are noticeable, likely 
due to variations in spatial resolution among the 
data sources and the influence of surface rough-
ness on temperature measurements (Lillesand et 
al., 2015), as well as the potential influence of at-
mospheric impurities on surface temperature.

LST and land use changes

Image classification divided The study area 
into four land use types (Figure 6). These include 
exposed geological formations (barren), vegeta-
tion, urban areas, and water. When analyzing the 
reference data and the classified results in Table 
2, it was observed that 77.35% of the exposed 
geological formations were correctly classified. 
(user accuracy percentage) with a moderate level 
of agreement, as suggested by a Kappa coefficient 
of 0.73. and an overall accuracy of 79% was ob-
tained from reference data and the classification 
output. By extracting data for 25 points, the LST 
and MODIS-temperature data were compared 
for accuracy and consistency, as shown in Table 
2. Figure 7 shows that the two methods consis-
tently classified vegetation cover regardless of the 
higher temperatures observed using the MODIS 
data. Regarding the urban and barren classes, the 

results indicate some discrepancies between the 
two methods. The urban class was better classified 
using the LST data, while the barren class showed 
more consistent classification using the MODIS 
data; the spectral signature of metropolitan areas 
is very similar to that of neighboring areas due to 
the common materials, such as limestone, pres-
ent in both. This similarity poses challenges for 
accurately classifying urban areas in rocky and 
arid regions using satellite imagery, which often 
lacks high resolution. This issue is consistent with 
the problems highlighted by (Tarrad and Ibrahim, 
2021) regarding the classification difficulties in 
such environments. The findings reveal a reason-
able correlation between the observed surface 
temperature and the LST derived from the single-
channel algorithm using Landsat OLI/TIRS sen-
sor data, as reflected in the minimum, maximum, 
mean, and standard deviation values. The results 
also reveal that the accuracy of these data is low 
when compared to points for each class between 
LST data and MODIS data, except for the barren 
areas class, which exhibits good accuracy.

Lithological formations and estimated 
temperature

Seven lithological formations, namely the 
basement complex, alluvium, Lower Ajloun, 

Figure 5. Observation surface temperature 
(MODIS image)

Figure 6. Land use map for the study area
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Amman-Wadi Sir, Kornub, Khreim, and Ram, are 
exposed in the study area (see section 2.1). By 
superposing the lithological map over the mea-
sured LST map (Figure 8), the results indicate 
that the lithological variations are also observed 
in terms of temperature variability. The highest 
surface temperature was observed in the base-
ment complex and alluvium deposits, while other 
formations showed lower average temperatures. 
This can be attributed to the mineralogical con-
tent of the different rocks where higher tempera-
tures reflect the silica in igneous rocks; similarly, 
the silica content in the sandstone formations may 
have also contributed to the elevated tempera-
tures obtained. (Ibrahim and  Abu-Mallouh, 2018; 
Ibrahim et al., 2021; Tarrad and  Ibrahim, 2021) 
confirmed in their studies that there is a correla-
tion between basalt and LST using satellite im-
ages. Other formations, such as limestone-domi-
nated formations, may exhibit a weak correlation 
between their mineral composition and energy, 
which can cause energy reflection or water reten-
tion, ultimately reducing land temperature.

To better understand the lithological discrimi-
nation using the measured temperatures, 25 points 
were selected and numerically examined. The re-
sults also revealed that the data is more dispersed 
when looking at the LST data, compared to the 
MODIS data, except for the basement complex 
and alluvium formation, which exhibit good simi-
larity between LST and MODIS data. Addition-
ally, to show the difference in data consistency be-
tween the two methods, the 25 points were plotted 
in Figure 9. Similarly to the statistical parameters, 
the visual inspections show that the MODIS tem-
perature data is more consistent than the LST data. 
Nonetheless, the MODIS data shows higher tem-
peratures for the lithological formations.

It has been noted that surface temperatures 
exhibit elevated values across various land use 
types and geological formations. It is worth not-
ing that vegetation and urban areas have experi-
enced slightly lower values in average tempera-
tures. This could be attributed to factors such as 
water-cooling in vegetation or the presence of 
vegetation cover, which has a weak correlation 

Figure 7. Temperature data for the 25 points extracted from the different land use classes
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with surface temperature. Increasing vegetation 
cover can lead to a decrease in surface tempera-
ture. Additionally, Utilizing reflective building 
materials or cooling systems in urban areas dur-
ing the summer can help lower temperatures. 
This is particularly beneficial in arid and semi-
arid regions, where high temperatures persist 
most of the year. The highest values in surface 

temperature of the urban areas were observed 
for built-up land constructed over the alluvium 
and basement complex formations. In contrast, 
other urban areas in other formations showed 
lower average temperatures. This can be attrib-
uted to the effect of these geological formations 
on residential areas, which result in higher tem-
peratures than other areas.

Figure 8. A lithological map of the study area overlies the LST map (a) and MODIS map (b)

Figure 9. Temperature data for the 25 points extracted from the different lithological formations
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Relationship between SST, LST, and land use 
changes

As discussed in advance, we will look at dis-
covered distinct spatial styles in land surface tem-
perature and sea surface temperature, especially 
along the coast of the Red Sea. The calculated LST 
exhibited lower values near the ocean coast, indi-
cating a capacity correlation with SST variations. 
Figure 10 illustrates that SST ranged from 26.5°C 
to 28.Five°C, with a mean of 27.5°C. Higher SSTs 
were predominantly located in the southern parts of 
the Red Sea, suggesting complicated environmental 
effects on temperature distribution.

The correlation between LST and SST under-
scores the interconnectedness among terrestrial 
and marine thermal dynamics. In all likelihood, 
Coastal geomorphology, including bays, estuar-
ies, and headlands, modulates oceanic circulate 
patterns and heat change approaches, thereby 
affecting SST variability. Furthermore, land use 
changes, mainly urbanization and exposed geo-
logical formations, affected neighborhood tem-
perature gradients noticeably. Urban heat islands 
and thermal anomalies in exposed geological 
formations contribute extra warmth to adjoin-
ing coastal waters, doubly raising SST. This 
mutualistic relationship between land and sea 

temperatures can lead to comments mechanisms 
affecting local weather dynamics.

Understanding those interactions is essential 
for assessing coastal regions’ weather resilience 
and environmental sustainability. By elucidating 
the reciprocal influences of LST and SST, this 
study contributes valuable insights into how an-
thropogenic activities and natural strategies form 
temperature regimes at the land-water interface. 
These findings tell strategies for mitigating urban 
warmth influences and spotlight the significance 
of integrated land-sea control techniques in miti-
gating weather alternate results.

Generally, The analysis revealed a significant 
correlation (r = 0.75) between LST and SST, par-
ticularly in coastal areas. This correlation under-
scores the interconnectedness between terrestrial 
and marine thermal dynamics, where higher LST 
values in urban and exposed geological areas con-
tribute to elevated SST in adjacent coastal waters. 
The statistical significance of this relationship 
was confirmed using a p-value threshold of 0.05, 
indicating that the observed correlation is not 
due to random chance. These findings highlight 
the influence of land-based thermal anomalies on 
coastal marine environments, providing valuable 
insights for understanding the land-sea thermal 
interactions in arid coastal regions.

Figure 10. Observation of sea surface temperature (MODIS image) (a) and a combined map 
showing the LST values relative to SST values (b)
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LIMITATIONS AND FUTURE DIRECTIONS

It is critical to notice several obstacles in es-
timating land surface temperature using far-off 
sensing strategies in Aqaba, Jordan. Challenges 
include uncertainties due to cloud cowl and at-
mospheric conditions, affecting LST accuracy, 
especially in dynamic coastal and urban environ-
ments. The spatial resolution of Landsat eight OLI 
and MODIS data limits the detection of first-rate-
scale temperature versions inside heterogeneous 
landscapes, suggesting the want for better-deci-
sion imagery or UAV integration. Future studies 
must additionally explore the complexities of ur-
ban heat islands, integrating socio-economic ele-
ments to enhance knowledge. Additionally, vali-
dating fashions like the split-window algorithm 
(SWA) with floor-based measurements should 
improve reliability and applicability in environ-
mental tracking and urban planning contexts.

CONCLUSIONS

Different mathematical methods are discussed 
in the literature to estimate LSTs using BT of ther-
mal bands extracted from TIRS sensors and LSE 
derived from the PV extracted from OLI sensors. 
From these methods, the split-window algorithm 
has proven to be efficient and report sensible data. 
In this study, supervised classification of the ob-
tained satellite images is used to generate the land 
use map of the study area, resulting in four dis-
tinct land use classes with an overall accuracy of 
79%: rock, vegetation, urban areas, and water.

 Analysis of the LST images revealed higher 
surface temperatures in areas covered by igne-
ous and silica-rich sedimentary formations. Ad-
ditionally, the results indicate a moderate rela-
tionship between land surface temperature and 
the Moderate Resolution Imaging Spectroradi-
ometer (MODIS). Therefore, the SW algorithm 
can be utilized to compute land surface tempera-
ture by employing Landsat 8 multiband opera-
tional land imager and thermal infrared sensor 
images. Moreover, this algorithm can detect 
differences in land temperature among various 
geological formations, indicating that the es-
timated land surface temperature is a valuable 
tool for lithological mapping and monitoring hy-
drothermal dynamics, provided that reliable data 
and techniques are available. The results also 

indicate higher temperatures in residential areas 
near igneous and silica-rich formations.

In addition to the findings discussed, this 
study highlights several implications for future 
research. Firstly, it is crucial to expand the scope 
of research to consist of lengthy-term monitor-
ing and predictive modeling of city heat islands 
and their influences on neighborhood climate re-
silience. By incorporating ancient satellite data 
statistics and in-situ measurements, future studies 
can elucidate temporal traits in LST and SST, fa-
cilitating proactive measures to mitigate environ-
mental risks and enhance community resilience 
against climate variability. Moreover, future re-
search could integrate multi-sensor data, includ-
ing MODIS, to comprehensively monitor thermal 
dynamics at varying spatial and temporal scales. 
This approach would provide a more nuanced un-
derstanding of how land use changes and geologi-
cal attributes influence surface temperatures over 
time. Exploring these relationships can contribute 
to improved land management strategies, climate 
change adaptation efforts, and sustainable urban 
planning practices in rapidly developing coastal 
regions like Aqaba.
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