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INTRODUCTION

Flooding is one of the most common, peril-
ous, and devastating natural disaster, consistently 
threatening various places globally, and it repre-
sents one of the most urgent environmental haz-
ards, presenting substantial risks to people, in-
frastructure, and crops. and ecosystems (Tanguy, 
2012). Flooding has become a growing threat 
due to expanding settlements in vulnerable areas 
and intensified extreme weather events driven 
by climate change. Increased localized storms 
now trigger rapid and severe flash floods, posing 
significant risk (Echogdali et al., 2018). In the 
Draa-Ouadnoun Basin, Southern Morocco, ex-
treme rainfall variability, combined with complex 
topographical and geomorphological features 

(Khaddari et al., 2022; Khettouch et al., 2023), 
has led to increasing vulnerability to flood events. 
These challenges necessitate advanced approach-
es to delineate flood-prone zones, enabling effec-
tive flood management and mitigation strategies. 
The delineation of flood-prone regions requires 
the integration of multiple geological, hydrologi-
cal, and geomorphological factors in this com-
plex environment.

Recent advancements in flood assessment 
methods have mostly focused on the incorpora-
tion of machine learning (ML) methods, bivariate 
statistical analysis, and multi-criteria decision-
making (MCDM) frameworks. Among these 
approaches, artificial neural networks (ANNs) 
(Aghenda et al., 2024; Khoirunisa et al., 2021), 
support vector machines (SVM) (Shafapour 
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Tehrany et al., 2019; Shikhteymour et al., 2023) 
and, decision trees (DTs) (Mashaly & Ghoneim, 
2018). Bivariate statistical analysis was one 
of the most used approaches for studying flood 
susceptibility assessments, with the ability to 
establish relationships between the incidence of 
floods and the factors that influence them (Pus-
dekar & Dudul, 2024), using models such as the 
frequency ratio (FR) (Akay & Baduna Koçyiğit, 
2024; Saha et al., 2022; S. Samanta et al., 2018), 
certainty factor (CF) (Cao et al., 2020), index of 
entropy (IoE) (Ivan Ulloa et al., 2020), weights of 
evidence (Sarker et al., 2024), and statistical in-
dex (SI) method (Muthu & Ramamoorthy, 2024). 
However, because statistical methods rely on 
variables derived from linear assumptions, they 
frequently fail to adequately handle the complex, 
non-linear dynamics of floods, potentially over-
simplifying the complicated interactions among 
influencing components (Costache & Bui, 2020; 
Tehrany, Pradhan, & Jebur, 2015; Tehrany, Prad-
han, Mansor, et al., 2015). MCDM models have 
garnered substantial attention in flood-related 
studies due to their robust capability to incorpo-
rate and analyze multiple criteria, enabling com-
prehensive and balanced evaluations of flood 
susceptibility and risk (Song & Chung, 2016). 
They can be used for several aims including flood 
susceptibility mapping (FSM) (Roy et al., 2021), 
flood hazard zonation (Akay & Baduna Koçyiğit, 
2024; Das, 2018), Mapping flood vulnerability 
(Dey et al., 2024), flood risk mapping (Radwan 
et al., 2019), flash flood analysis (Costache & 
Bui, 2020), forecasting floods (Teh Noranis et al., 
2019), and Among MCDM techniques, the most 
widely used are the analytical hierarchy process 
(AHP) (Das & Gupta, 2021; Mitra et al., 2022; 
Wang et al., 2018). AHP (Saaty, 1980), a MCDM 
approach, is among the most widely utilized 
techniques in flood susceptibility mapping (Leta 
& Adugna, 2023), since it enables a systematic 
comparison of disparate criteria based on their 
relative importance. AHP assigns weights to dif-
ferent flood susceptibility factors, including rain-
fall intensity, slope, and land use, incorporating 
expert knowledge in highlighting those very cru-
cial factors for flood risk (Samanta et al., 2018; 
Zou et al., 2013). This method adds a great value 
to the Draa-Ouadnoun Basin, where expertise 
judgment will be crucial in determining how the 
elements are ranked. influencing flooding accord-
ing to the hydro-meteorological conditions of the 
area under consideration. 

The hydrological setting of the Draa-Ouad-
noun Basin is so complicated due to topographi-
cal and lithological variations as well as great 
spatial variability in rainfall and distribution het-
erogeneity. This study addresses the critical gap 
in flood susceptibility mapping within the Upper 
Draa Basin (UDB), a region that have recently 
experienced a severe flash floods, via integrating 
RS data and AHP-MCDM with GIS. It provides 
a structured, expert-driven methodology to assess 
flood susceptible region in an efficient as well as 
sustainable manner, accounting for the basin’s 
complex topography, lithology, and rainfall vari-
ability. The research contributes in advancing flood 
management by offering a transferable framework 
tailored to data-scarce, and semi-arid environ-
ments, enabling more effective decision-making 
strategies. It therefore becomes very important to 
establish which approach best describes this com-
plication in order to have a realistic susceptibility 
flood map. Taking precedence to render help to-
ward decision-makers coming up with strong poli-
cies in the management of floods, resource alloca-
tion planning, and sustainability measures concern-
ing desert and semi-arid regions that are vulnerable 
to flooding. The methodology takes looks at how 
MCDM techniques can be made applicable to deal 
with the hydrological variability in that respect. 
The results are intended to feed into flood suscepti-
bility mitigation and planning processes in similar 
hydrologically problematic regions. Accordingly, 
employing AHP, which can include expert-driven 
prioritization. Performance evaluation under the 
current data conditions in such environment will 
help to identify and assess flood susceptibility 
mapping. The primary goals of this research are: 
	• To assess and map areas that are at high risk of 

flooding via analytic hierarchy process within 
the Upper Draa Basin, regarding their spatial 
precision and efficiency. 

	• To discuss how these MCDM-based modeling 
may provide information on the elaboration of a 
sustainable regional approach to flood manage-
ment, especially for the most prone flood area. 

The attainment of these objectives will en-
sure that a reliable methodology is provided for 
delineating flood-prone zones while at the same 
time guaranteeing sound strategies for disaster 
risk reduction. This research forms part of sus-
tainable flood management planning for both the 
Draa-Ouadnoun Basin and other similar regions 
characterized by arid or semi-arid environments.
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MATERIALS AND METHODS

Study area

The Draa Oued Noun (DON) watershed, sit-
uated between latitudes 32° N and 29.3° N and 
longitudes 9.88° W and 5.5° W in southern Mo-
rocco. it is one of the biggest watersheds of the 
Kingdom, has an area of greater than 103460 
km2, covering 1/7 of the total area of Morocco. 
The DON is bounded by the High Atlas Moun-
tains to the north, the Atlantic Ocean to the west, 
the Sahara to the south, and Algeria to the east 
(Fig. 1). In the DON settled agriculture devel-
oped around underground water sources and dry 
riverbeds that flood during the rainy season tem-
peratures are mild and regular, exhibit a semi-
arid to arid climate, with an annual average of 22 
°C. The plains receive 100 mm of rainfall annu-
ally, whereas the High Atlas Mountains receive 
600 mm. There are four main sub-watersheds 
located in the DON which are the Upper Drâa 
which is the current study area (Fig. 1), Middle 
Drâa, Lower Drâa, and Guelmim. 

Methods

A bibliographic analysis of more than 400 
scientific articles published between 2000 and 
2025 was conducted to identify the key mech-
anisms and factors associated with floods, 

specifically in the context of applying the AHP 
method. This approach allowed the identification 
of several closely related and frequently studied 
themes within the literature on flood manage-
ment. The findings, illustrated in Figure 2, high-
light the main key factors within flood investiga-
tion such as vulnerability, risk and susceptibility, 
represented as circles of varying sizes. The size 
of each circle reflects the relative significance of 
a concept within the broader theme, while their 
proximity to the center indicates their connec-
tion to the central topic, namely “flood manage-
ment using AHP” (Fig. 2).

Furthermore, the current study methodology 
for determining flood susceptibility in the Up-
per Draa watershed is illustrated in Figure 3. The 
method combines spatial remote sensing, GIS, 
and MCDM. Overall, the flowchart in Figure 2 
provides a concise synopsis of the methodology 
employed in this investigation, highlighting the 
integration of multiple data typologies. This study 
initiates data acquisition and preparation. Seven 
key factors influencing flood susceptibility were 
incorporated into the analysis: precipitation, li-
thology, land use, elevation, slope, flow accumu-
lation, and distance to the river. These elements 
were chosen in light of an extensive assessment 
of the literature and their relevance to similar 
studies conducted in southern Moroccan territory 
(Khaddari et al., 2023). 

Figure 1. Geographical situation of the study area Upper Draa basin and in-situ gauge stations.
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Figure 2. Term co-occurrence map in flood mapping-related literature, generated through an analysis 
of a database extracted from web of science

Figure 3. Methodological flowchart for flood susceptibility assessment

Thematic layers representing each of these 
factors were generated using a geographic infor-
mation system (GIS). To assign a weight to each 
criterion, the AHP was applied. This approach 
is based on pairwise comparisons, allowing for 

the hierarchical ranking of factors according to 
their relative importance. The consistency of the 
weightings was assessed by calculating the con-
sistency ratio (CR), ensuring the robustness of the 
results. The weighted thematic layers were then 
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aggregated using a mathematical formulation in-
tegrated into the GIS, leading to the generation of 
a final flood susceptibility map (FSM). This map 
was validated using the receiver operating charac-
teristic (ROC) curve, a widely adopted statistical 
method for assessing the performance of predic-
tive models. Field control points were utilized to 
compute the area under the curve (AUC), ensuring 
the reliability and accuracy of the produced map.

Data acquisition and preparation

The methods used offer several advantag-
es, including, the production of accurate flood 
prone estimates without relying solely on em-
pirical models or limited historical data. These 
methods effectively combine the area’s specific 
flood susceptibility with the critical factors re-
quired for optimal management of flood-prone. 
Furthermore, this knowledge-driven approach 
significantly reduces time and costs compared 
to conventional methods. The necessary data 
for the current study were extracted from a va-
riety of sources (Table 1). A field campaign was 
carried out to evaluate flood risks within the 
study area. This mission allowed for the identi-
fication and documentation of areas affected by 
flooding while analyzing the factors that exac-
erbate their occurrence.

MCDM-modeling method

The analytic hierarchy process is a structured 
and systematic multi-criteria decision-making 
approach that facilitates the evaluation and prior-
itization of alternatives based on multiple weight-
ed criteria. Developed by Saaty, AHP relies on a 

hierarchical decomposition of the decision prob-
lem and pairwise comparisons of its constituent 
elements. This method is widely applied across 
various scientific domains in its original or in var-
ious modified versions, including risk manage-
ment, land-use planning, environmental studies, 
and strategic decision-making, due to its capabil-
ity to integrate both qualitative and quantitative 
criteria (Das, 2018; El Jazouli et al., 2019; Khos-
ravi et al., 2021; Nithya et al., 2019; Panchal & 
Shrivastava, 2022; Radwan et al., 2019; Saremi 
et al., 2024; Swain et al., 2020). Its robustness 
makes it particularly valuable in complex deci-
sion-making scenarios where multiple factors and 
competing priorities must be considered.

AHP

The goal of the current investigation on 
flood prone mapping (FPM) cannot be effective-
ly attained by relying on only one parameter or 
evaluation metric, as the physical environment 
is inherently multi-faceted. Therefore, it is es-
sential to consider multiple perspectives to in-
form decision-making (Saaty, 1990). In this con-
text, the AHP is mainly utilized as a semi-quali-
tative method for supporting strategic planning. 
AHP involves performing pairwise comparisons 
of the causal factors to assign weights based on 
their relative importance (Saaty, 1990). The lat-
ter was extensively used in flood assessment and 
FPM, owing to its flexibility and robustness. It 
permits adjusting factors weighting, enhancing 
the robustness of the decision support frame-
work (Saaty, 1990; d’Avignon & Sauvageau, 
1996; El Morjani, 2002; Jari et al., 2022; Wang 
et al., 2018). The current research employs the 

Table 1. Datasets utilized for the mapping of flood prone within the Upper Drâa watershed.
Data type Resolution Year Reference

ASTER-DEM 30 meters 2009 https://earthexplorer.usgs.gov

Slope 30 meters 2009 Generated from DTM (ASTER-DEM).

Flow accumulation 30 meters 2009 Generated from DTM (ASTER-DEM).

Hydrographical network 30 meters 2009 Generated from DTM (ASTER-DEM).

Sentinel-2 satellite Simage VNIR 10 
meters 2024 https://earthexplorer.usgs.gov.

LU/LC 30 meters 2024 Obtained from Sentinel-2 processing.

Lithological data 30 meters 1951 Extracted from the geological map of Upper 
Draa at a scale of 1:200,000.

Precipitation 30 meters 2000–2024 A network of meteorological stations.

Flood sites Shapefile 2006–2024

Draa-Oued Noun Hydraulic Watershed 
Agency (DONHBA) A six-day field mission 
was conducted to study flood risks in the 
study area from 25 to 31 October .2024
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AHP approach and follows a structured process, 
consisting of three key stages: 
1.	Standardizing as well as weighting criteria, 

where the various criteria are normalized and 
assigned relative weights on the basis of their 
importance to flood occurrence; 

2.	Consistency check, to warrant the fact that the 
established pairwise comparisons maintain logi-
cal consistency, as per Saaty’s consistency ratio; 

3.	Aggregation of criteria, where the weighted 
criteria are combined to form an overall flood 
risk assessment, providing a comprehensive 
and balanced evaluation of the zone’s flood-
ing susceptibility. This approach enables a 
more nuanced with reliable decision-making 
process, factoring in the complexity of flood 
risk assessment.

Standardization/weighting of evaluation criteria

After identifying and hierarchically ranking 
the flood susceptibility factors (including flow ac-
cumulation, lithology, proximity to hydrographi-
cal network, altitude, slope, LULC, and precipi-
tation) (Morjani, 2011; Khaddari et al., 2023, El 
Morjani, 2002; Hammami et al., 2019; Yurdakul, 

2004), a pairwise comparison matrix (PCM) is 
established using every component to evaluate 
the relative importance of each parameter. These 
evaluations are quantified on a numerical scale 
ranging from 1 to 9, where 1 signifies the lowest 
level of significance and 9 characterises the high-
est degree of importance (Table 2).

The used approach involves developing a 
hierarchical pairwise comparison with a sev-
en*seven matrix, with diagonal values fixed at 
1 (Table 3). Each row is compared against the 
corresponding column to determine relative im-
portance and determine evaluation scores. For 
instance, if flow accumulation (FC) is deemed 
significantly more important than LULC, it 
would receive a score of 5. 

Inverse relationship is represented in the cor-
responding cell (e.g., 1/3 for land use/land cover 
(LULC) in relation with FC (Khaddari et al., 2023). 

Next, a normalized index It is determined by 
dividing the total score by the score of the indi-
vidual factor (refer to Table 3). Based on these 
individual weights, a total weight (W) of 1 is 
distributed across the seven parameters (Table 
4) (Cao et al., 2020). The Table 4 presents the 

Table 2. Articulation and quantification of the comparative significance of a dual set of criteria.
A verbal representation of the relative importance 

of one criterion in comparison to another Numerical

Even more (even more important) 1

Moderately more 3

Strongly more 5

Very much more 7

Extremely more 9

Moderately less 1/2

Strongly less 1/5

Very less 1/7

Extremely less 1/9

Table 3. Matrix of pairwise comparisons for flood causative factors.
Parameter FC PR DD ELE SLOPE LULC LITH

FC 1.00 5.00000 5.00000 5.00000 5.00000 7.00000 7.00000

PR 1/5 1.00 3.00000 3.00000 3.00000 5.00000 6.00000

DD 1/5 1/3 1.00 3.00000 5.00000 5.00000 6.00000

ELE 1/5 1/3 1/3 1.00 3.00000 3.00000 4.00000

SLOPE 1/5 1/3 1/5 1/3 1.00 3.00000 3.00000

LULC 1/3 1/5 1/5 1/3 1/3 1.00 3.00000

LITH 1/5 1/6 1/6 1/4 1/3 1/3 1.00

Note: FC – flow accumulation, DD – distance from the hydrographic network, ELE – elevation, LITH – lithology, 
PR – precipitation.
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outcomes of a hierarchical analysis process em-
ployed to standardize flood parameters, and their 
derived weights. The values in the table represent 
the relative importance of each parameter com-
pared to others, with FC as the most influential 
factor with a weight of 40.0%, followed by RF 
(19.0%) and DD (16.5%). Other parameters, 
ELE, Slope, LULC, and LITH, relatively exhibit 
progressively lower weights. 

The Table 5 outlines the  classification of 
each causal factor, the intensity ratings, and the 
weights derived using the AHP. Each causal fac-
tor is categorized into distinct classes based on 
its contribution to flood occurrence, with cor-
responding intensity ratings (from 1 for “very 
low” to 5 for “very high”) and weights that re-
flect their relative importance in the overall flood 
occurrence assessment.

Table 6 presents the values of the random in-
dex (RI), which are determined by the number of 
factors involved (Saaty & Vargas, 2012). Within 
this investigation, seven factors have been con-
sidered, with the RI = 1.32.

In order to calculate consistency index, Equa-
tion 1 has been implemented:

	 𝐼𝐼 =  𝜆𝜆𝑚𝑚𝑚𝑚𝑚𝑚− 𝑛𝑛 
𝑛𝑛−1  (2) 

𝐴𝐴 = ∑ 𝑃𝑃𝑖𝑖𝑉𝑉𝑖𝑖
𝑛𝑛
𝑖𝑖=1  (3) 

 
𝐴𝐴 = (𝑊𝑊𝑊𝑊𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹 × 𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹) + (𝑊𝑊𝑊𝑊𝐿𝐿𝐿𝐿𝐿𝐿ℎ × 𝐿𝐿𝐿𝐿𝐿𝐿ℎ𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜) 

+ (𝑊𝑊𝑊𝑊𝑆𝑆𝑆𝑆𝑆𝑆  × 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆) + (𝑊𝑊𝑊𝑊𝐷𝐷𝐷𝐷 × 𝐷𝐷𝑅𝑅𝑅𝑅) +  
(𝑊𝑊𝑊𝑊𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿 × 𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿 𝑢𝑢𝑢𝑢𝑢𝑢 𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 + (𝑊𝑊𝑊𝑊𝑃𝑃𝑃𝑃𝑃𝑃 × 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑝𝑝𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚) 

+ (𝑊𝑊𝑊𝑊𝐸𝐸𝐸𝐸𝐸𝐸 × 𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸 ) 
 
 

 
 
 

(4) 

𝐶𝐶𝐶𝐶 =  𝐶𝐶𝐶𝐶
𝑅𝑅𝑅𝑅 (5) 

	 (1)

where:	𝜆𝑚𝑎𝑥 is the maximum eigenvalue, and 
n denotes the number of criteria. In this 
study, the consistency index (CI) has been 
computed using n=7, and 𝜆𝑚𝑎𝑥 = 7.35.

Randomized index used as displayed in Table 
6 is 1.32. Consequently, the calculated consisten-
cy ratio (CR) is 0.04, which is significantly below 
the threshold of 0.1. This result confirms that the 

pairwise comparison matrix (PCM) demonstrates 
an acceptable level of consistency.

After defining the evaluation criteria factors and 
assigning weighting coefficients (Table 5), the next 
step is to combine these layers using a mathematic 
operation for the Initial grouping of criteria into a 
unique layer (Eq. 2). The integration of weighted 
factors in raster format is performed through the 
raster calculator tool integrated within ArcGIS 10.5.

	
𝐼𝐼 =  𝜆𝜆𝑚𝑚𝑚𝑚𝑚𝑚− 𝑛𝑛 

𝑛𝑛−1  (2) 
𝐴𝐴 = ∑ 𝑃𝑃𝑖𝑖𝑉𝑉𝑖𝑖

𝑛𝑛
𝑖𝑖=1  (3) 

 
𝐴𝐴 = (𝑊𝑊𝑊𝑊𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹 × 𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹) + (𝑊𝑊𝑊𝑊𝐿𝐿𝐿𝐿𝐿𝐿ℎ × 𝐿𝐿𝐿𝐿𝐿𝐿ℎ𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜) 

+ (𝑊𝑊𝑊𝑊𝑆𝑆𝑆𝑆𝑆𝑆  × 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆) + (𝑊𝑊𝑊𝑊𝐷𝐷𝐷𝐷 × 𝐷𝐷𝑅𝑅𝑅𝑅) +  
(𝑊𝑊𝑊𝑊𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿 × 𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿 𝑢𝑢𝑢𝑢𝑢𝑢 𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 + (𝑊𝑊𝑊𝑊𝑃𝑃𝑃𝑃𝑃𝑃 × 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑝𝑝𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚) 

+ (𝑊𝑊𝑊𝑊𝐸𝐸𝐸𝐸𝐸𝐸 × 𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸 ) 
 
 

 
 
 

(4) 

𝐶𝐶𝐶𝐶 =  𝐶𝐶𝐶𝐶
𝑅𝑅𝑅𝑅 (5) 

	 (2)

where:	A represents the aggregation of criteria, 
n is the number of criteria, Pᵢ denotes the 
weight of criterion i, and Vᵢ is the stan-
dardized value of factor i; the application 
of this formula is shown in Equation 3.

	

 
𝐴𝐴 = (𝑊𝑊𝑊𝑊𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹 × 𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹) + 

+ (𝑊𝑊𝑊𝑊𝐿𝐿𝐿𝐿𝐿𝐿ℎ × 𝐿𝐿𝐿𝐿𝐿𝐿ℎ𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜) + (𝑊𝑊𝑊𝑊𝑆𝑆𝑆𝑆𝑆𝑆  × 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆) +  
+ (𝑊𝑊𝑊𝑊𝐷𝐷𝐷𝐷 × 𝐷𝐷𝑅𝑅𝑅𝑅) +  (𝑊𝑊𝑊𝑊𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿 × 𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿 𝑢𝑢𝑢𝑢𝑢𝑢 𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐) + 

+ (𝑊𝑊𝑊𝑊𝑃𝑃𝑃𝑃𝑃𝑃 × 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑝𝑝𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚) + (𝑊𝑊𝑊𝑊𝐸𝐸𝐸𝐸𝐸𝐸 × 𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸 ) 
 

(4) 

 

	(3)

Consistency check 

Consistency check (CR) is a mathematical 
indicator used to evaluate the reliability of deci-
sions in a pairwise comparison process (Saaty, 
1977). A CR value below 0.1 indicates acceptable 
consistency, while values exceeding this thresh-
old suggest inconsistencies within the compari-
son matrix. In this study, the CR of the analytic 
hierarchy process (AHP) matrix was determined 
using the formula provided in Equation 4.

	

𝐼𝐼 =  𝜆𝜆𝑚𝑚𝑚𝑚𝑚𝑚− 𝑛𝑛 
𝑛𝑛−1  (2) 

𝐴𝐴 = ∑ 𝑃𝑃𝑖𝑖𝑉𝑉𝑖𝑖
𝑛𝑛
𝑖𝑖=1  (3) 

 
𝐴𝐴 = (𝑊𝑊𝑊𝑊𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹 × 𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹) + (𝑊𝑊𝑊𝑊𝐿𝐿𝐿𝐿𝐿𝐿ℎ × 𝐿𝐿𝐿𝐿𝐿𝐿ℎ𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜) 

+ (𝑊𝑊𝑊𝑊𝑆𝑆𝑆𝑆𝑆𝑆  × 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆) + (𝑊𝑊𝑊𝑊𝐷𝐷𝐷𝐷 × 𝐷𝐷𝑅𝑅𝑅𝑅) +  
(𝑊𝑊𝑊𝑊𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿 × 𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿 𝑢𝑢𝑢𝑢𝑢𝑢 𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 + (𝑊𝑊𝑊𝑊𝑃𝑃𝑃𝑃𝑃𝑃 × 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑝𝑝𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚) 

+ (𝑊𝑊𝑊𝑊𝐸𝐸𝐸𝐸𝐸𝐸 × 𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸 ) 
 
 

 
 
 

(4) 

𝐶𝐶𝐶𝐶 =  𝐶𝐶𝐶𝐶
𝑅𝑅𝑅𝑅 (5) 	 (4)

where:	CR is consistency ratio; CI is consistency 
index; RI is randomized index.

Table 4. Standardized flood parameters through the hierarchical analysis process
Parameter FC PR DD ELE SLOPE LULC LITH Wi

FC 0.43 0.68 0.51 0.39 0.28 0.29 0.23 40.0%

PR 0.09 0.14 0.30 0.23 0.17 0.21 0.20 19.0%

DD 0.09 0.05 0.10 0.23 0.28 0.21 0.20 16.5%

ELE 0.09 0.05 0.03 0.08 0.17 0.12 0.13 9.5%

SLOPE 0.09 0.05 0.02 0.03 0.06 0.12 0.10 6.5%

LULC 0.14 0.03 0.02 0.03 0.02 0.04 0.10 5.4%

LITH 0.09 0.02 0.02 0.02 0.02 0.01 0.03 3.0%

Lambda max 7.489

CI 0.073

CR 0.06

Note: Wi – weight.
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Table 5. Classification and weights of flood prone decision factors determined using the AHP method
Causal factors Class Intensity Rating Weight

Flow accumulation (pixel)

6.056e+6–1.643e+7 VH 5

0.44
3.222e+6–6.055e+6 H 4
1.676e+6–3.221e+6 M 3
5.154e+5–1.675e+6 L 2

0.000–5.153e+5 VL 1

Precipitation (mm)

223.4–258.4 VH 5

0.19
191.0–223.4 H 4
163.4–190.9 M 3
136.4–163.3 L 2
101.9–139.3 VL 1

Density hydrographic network (No/km2)

1.2–2.1 VH 5

0.17
0.84–1.2 H 4
0.51–0.84 M 3
0.21–0.51 L 2

0–0.21 VL 1

Elevation

1 000–1 400 VH 5

0,09
1 400–1 700 H 4
1 700–2 200 M 3
2 200–2 700 L 2
2 700–4 100 VL 1

Slope

<2.3 VH 5

0.07
2.3–5.2 H 4
5.2–8.7 M 3
8.7–13 L 2
13–49 VL 1

LULC

Wt, Bt, Oa VH 5

0.054
Veg, Cp H 4

BL M 3
Clt L 2
SP VL 1

Lithology

Quartzite and sandstone VH 5

0,03

Dolomite, limestone, sandstone 
with clay intercalation, shale, 

and siltstone.
H 4

fractured limestones, Tuffs, 
shales, and alluvial cone. M 3

Terrace, scree, lacustrine 
limestone, and old alluvial 

cone.
L 2

Recent Reg and Alluvium VL 1

Note: VH – very high, H – high, M – medium, L – low, VL – very low.

Table 6. The used RI values in the RC calculation.
Number of criteria (n) 1 2 3 4 5 6 7 8 9 10

Randomized index (RI) 0 0 0.58 0.90 1.12 1.24 1.32 1.41 1.45 1.49

The consistency of the AHP model for 
flood-prone mapping was checked using a con-
sistency check. The calculated maximum eigen-
value λmax was 7.489 and the CI was found to be 
0.073. With a CR of 0.06, below the threshold 

of 0.1, the results confirm the satisfactory con-
sistency of the pairwise comparison matrix. 
This will ensure that the weighting scheme ap-
plied to factors influencing flood susceptibility 
is reliable and robust.
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RESULTS 

Spatial variation of the thematic layers

Elevation

Lower altitudes, particularly flat areas, tend 
to experience a higher susceptibility of flooding 
due to reduced drainage capacity (Vignesh et al., 
2021). We employed a DEM derived from AS-
TER data accessible at https://earthexplorer.usgs.
gov. This DEM boasts a spatial resolution of 30 
meters. To encompass the entire Upper Drâa wa-
tershed, we downloaded, processed, rectified six 
scenes, and georeferenced them using Lambert’s 
Conformal Conical Projection for southern Mo-
rocco. Subsequently, the watershed boundaries 
were automatically delineated and visually vali-
dated against 1:100,000 scale topographic map. 
The Upper Drâa watershed exhibits significant 
topographic variation, with elevations ranging 
from 1000 meters to a peak of 4100 meters in the 
northwestern area of the watershed (Figure 4a).

LULC

Human activities, including urban develop-
ment and agricultural expansion, and play a criti-
cal role in influencing flood occurrence. These 
activities frequently result in the proliferation of 
impervious surfaces, which impede natural wa-
ter infiltration and exacerbate surface runoff (El 
Morjani et al., 2016). As a result, a clear relation-
ship exists between land-use practices and The 
distribution of the areas susceptible to flooding, 
as documented in previous studies (Apollonio et 
al., 2016; Barkey et al., 2020). In this study, the 
LULC map is generated using Sentinel-2 satellite 

imagery, which provides a higher spatial sam-
pling distance of 10 meters in comparison to me-
dium-resolution satellite-derived images. (Çavur 
et al., 2019). Different land cover categories are 
clearly delineated, including bare land, buildings, 
crops, greenhouse crops, water bodies, oases, 
solar panel areas, and vegetation. Each category 
is represented using a distinct color, as detailed 
in the legend. The map effectively highlights the 
spatial distribution of these classes, with veg-
etation and bare land appearing to dominate the 
landscape. Crops and greenhouse areas are con-
centrated in specific zones, while water bodies 
and solar panel regions occupy relatively smaller 
areas. The presence of buildings and oases indi-
cates the human and natural interaction in the re-
gion (Figure 4b). LULC map aids for understand-
ing land use dynamics and evaluating the poten-
tial influence of these classes on flood and other 
environmental processes within the watershed. Its 
high resolution ensures a detailed representation 
of the spatial patterns, enhancing the reliability 
of subsequent analyses. Then, this LULC map 
was classified as follows: highest values (imper-
meable areas), the medium values, and the lower 
values (infiltration areas) (refer to Table 5).

Drainage density

Drainage density, first defined by Horton 
(1932), represents the total streams length within 
a drainage watershed divided by the watershed’s 
area. It is a fundamental concept in hydrolog-
ic analysis, measuring the drainage length per 
unit area. A high drainage density shows that the 
drainage basin is highly dissected and that a hy-
drologic response from a rainfall event will be 

Figure 4. Elevation map (a) and land use and land cover map LULC (b)
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fairly quick whereas a low drainage density signi-
fies an weakly drained catchment, which is char-
acterized by a slow hydrologic response (Melton, 
1957). The differences in the density of stream 
networks across the study area influences drain-
age density values, where, higher values indicate 
regions with more densely packed streams, po-
tentially influencing factors like runoff rates and 
erosion potential. Figure 4b displays the drainage 
density value, which ranges from 0 to 2.1 no/km².

Slope

Slope is a key factor influencing the behaviour 
of surface water, determining runoff and infiltra-
tion. Areas of low gradient tend to enhance the 
infiltration process, which could lead to a greater 
danger of flooding due to a decrease in drainage 
(Ikirri et al., 2022). On the other hand, high slope 
areas, generally mountainous (upstream), feature 
a higher runoff rate. Figure 5a Indicates that slope 
values range from 0 to 49 degrees in the upper 
stream plains of the Upper Draa watershed, where 
these values are derived from an elevation raster. 
This variation in gradient greatly influences the 
hydrological processes  in  the  watershed (Khad-
dari et al., 2023).

Flow accumulation

Areas located near flow accumulation paths, 
especially those with substantial upstream water 
volumes, have more susceptibility to flood occur-
rence (Dash & Sar, 2020; Khaddari et al., 2023; 
Vignesh et al., 2021). The factor of flow accumu-
lation, extracted from the DEM, represents the 
total flow from all upstream cells channelled into 
each downslope cell within the resulting image. 

High flow accumulation values indicate areas of 
rigorous flow channels, whereas cells with no 
flow accumulation correspond to elevated top-
ographical features like ridges or peaks. The re-
sulting flow accumulation thematic layer is then 
categorised to 5 categories based on the accumu-
lated water volume, with the maximum values 
corresponding to the lowermost elevations within 
the studied basin (Figure 6a).

Precipitation 

The map illustrates the spatial distribution 
of average annual rainfall in an upper Draa 
water sheet. The various colors correspond 
to different rainfall values, which range from 
101.9 to 258.4 mm. Rainfall is clearly gradated 
on the map, with higher values concentrated 
in the eastern and western. Near the southern 
and western borders, the amount of rainfall 
steadily declines. The regional average yearly 
rainfall varies significantly, as indicated by the 
color variations. The regions with the darkest 
blue hues probably get the most rainfall, whilst 
those with lighter hues get less. 

The Average annual rainfall map was deter-
mined through a multi-step process. Firstly, his-
torical rainfall data was collected from meteoro-
logical stations within the region. Subsequent-
lyThe average annual rainfall for each station 
was determined by the sum of the whole rainfall 
recorded annually and dividing it by the year 
number. Finally, geostatistical techniques, such 
as Kriging, were employed to interpolate rainfall 
values between stations, resulting in a continuous 
surface of average annual rainfall across the en-
tire region (Figure 6b).

Figure 5. Slope map (a) and drainage density map (b)
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Lithology 

The lithological assemblage in the studied re-
gion is varied and includes many different types 
of rock formations. These consist of Quaternary 
deposits such conglomerates (qa), sand dunes 
(D), and alluvium (A-qr). Sandstones, schists (h, 
o, ko, km), quartzites (ko), dolomites (ji2, Ad), 
marls (c, cm, jm, jil), limestones (p, mp, ems, ei, 
cm, cim, jm), and different volcanic rocks (fm, 
tb, xlll, xll). Metamorphic rocks such gneisses, 
micaschists, and migmatites are also present in 
the region (Choubert, 1952) (Figure 6c). The re-
gion’s topography, hydrology, and soil properties 
are greatly influenced by this varied lithologi-
cal framework (Devito et al., 2005). 

Flood-prone map

After processing all input factors, the AHP-
MCDM framework was implemented using the 
designated formula (Equation 4) to systematically 
integrate multiple criteria influencing flood sus-
ceptibility. The weighted overlay of these factors 
was performed in a raster environment utilizing 
the Raster Calculator (Figure 7a), ensuring a spa-
tially explicit representation of flood-prone areas. 
A thorough visual assessment of the generated 
outputs revealed that flow accumulation emerged 
as the most influential determinant of flood risk, 
given its direct correlation with surface runoff 
concentration. Additionally, river density and ele-
vation were identified as key contributing factors, 

Figure 6. Flow accumulation (a), precipitation (b), and lithology (c). Abbreviations: A-qr: Alluviums, low terraces, 
D: Sand dunes, qm: Silts, conglomerates, alluviums, qa: Conglomerates (regs, alluvial fans), 

p: Sandstones, limestones, mp: Sandstones, silicifiedlimestones, fm: Phonolites of Siroua, ems: Marly sandstones, 
ei: Limestones, sandstones,marly sandstones, c: Limestones, marls, cs: Clayey sands, more or less sandy 

sandstones, cm: Sandstones, limestones, clays with gypsum, cim: Sandstones, marls, limestones, jm: Marlsand 
limestones, ji3: Argillaceous-sandy detrital series, ji2: Dolomites and limestones, jil:Marly-dolomitic series, 

tb: Doleritic basalts, t: Argillaceous-sandy series, h: Schists, sandylimestones, o: Schists, limestones, ko: Schists, 
quartzites, km: Schists, sandstones, ki: Limestones, schist-limestones, Ad: Dolomites, wine-colored series, 

xlll: Volcanic, volcano-detrital series, yxll: Granites, xll: Volcano-sedimentary series and flysch, 
xi: Migmatites,micaschists, gneisses
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with densely distributed river networks and lower 
elevation zones exhibiting heightened flood sus-
ceptibility. These results are further corroborated 
by Figure 5 and 6 as well as Figure 1 which pres-
ents the spatial distribution of the historic flood-
prone zones across the Upper Draa watershed. 
As shown in Figure 7a, areas classified under the 
highest flood susceptibility category are predomi-
nantly located in the northeastern, the central, and 
the western sections of the study area, aligning 
with regions characterized by hydrological con-
straints and topographical depressions conducive 
to water retention and rapid runoff accumulation.

The statistical breakdown of flood susceptibil-
ity zones, depicted in Figure 7b, provides a quan-
titative assessment of the spatial extent of each 
flood susceptibility class. The findings indicate 
that approximately 75% of the study area falls 
within the medium, low, or very low flood risk 
categories, signifying regions with relatively low-
er vulnerability. Conversely, high and very high-
risk zones constitute nearly 26% of the total area, 
emphasizing the existence of critical flood-prone 
sections requiring immediate attention. Further 
validation of these classifications is presented 
in Figure 7c, which delineates the specific land 

coverage for each risk category. Notably, the very 
high-risk areas span approximately 1,624.17 km², 
while low-risk zones extend across 4,023.10 km². 
These insights highlight the necessity of devel-
oping robust flood mitigation strategies tailored 
to the unique hydrological dynamics of the Up-
per Draa Basin. Effective flood risk management 
in these highly susceptible areas is imperative to 
minimize potential damages, support sustainable 
water resource planning, and enhance regional re-
silience against extreme hydrological events.

Model performance and validation procedures

The area under the curve metric ranges from 
0.5, indicating a random classifier, to 1, represent-
ing a perfect classifier, provides a measure of a 
model’s ability to correctly rank instances based 
on their predicted class probabilities. Generally, 
models with AUC values exceeding 0.7 are con-
sidered acceptable, while those between 0.87 and 
0.9 demonstrate strong discriminative power, and 
values above 0.9 indicate excellent performance 
(Vafakhah et al., 2020). The Figure 8 illustrates 
the performance of the AHP model applied to 
flood-prone area mapping based on the AUROC. 

Figure 7. Flood susceptibility zonation maps based on AHP: (a) flood risk percentage, and (b, c) spatial 
distribution of flood susceptiblity in the basin
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The ROC curve, shown in red, represents the 
true positive rate plotted against the False Pos-
itive Rate, demonstrating the model’s ability to 
accurately identify flood-prone areas. against its 
tendency to classify non-flood-prone areas as 
flood-prone. 

The AUC value of 0.882 reflects strong dis-
criminatory power, hence indicating that the AHP 
model has a good distinction between flood-prone 
and non-flood-prone areas. This shows that the 
factors considered in the AHP model, such as 
elevation, slope, land use, and distance to riv-
ers, were appropriately weighted to provide re-
liable flood susceptibility mapping. The shaded 
area probably represents the confidence interval, 
showing the range of possible model perfor-
mance. Overall, this ROC curve presents the AHP 
model as an effective tool for the assessment and 
management of flood prone area mapping in the 
Upper Draa watershed

For the validation of flood prone mapping 
based on the application of AHP-MCDM in 
the Upper Draa watershed, historical flood in-
ventories were employed. These inventories, 
detailing flood-prone areas, were supplied by 
the hydraulic watershed agency of Draa Oued 
Noun (DONHBA). Additionally, to this data, a 
field mission was conducted to assess flood risks 
within the study area. The objective of this field 
mission was to observe and document the areas 
affected by flooding, as well as to analyze the 
factors contributing to their vulnerability. The 
severe and unprecedented flooding event that 
occurred on the night of September 8, 2024, in 
the Upper Draa watershed, specifically within 

the Tata, Akka, and Tamanart regions, resulted 
in significant socio-economic and infrastructural 
impacts (Figure 9). The extreme rise in water 
levels in the local wadis surpassed historical re-
cords, leading to the inundation and isolation of 
numerous villages. This flood event also caused 
substantial damage to essential infrastructure, 
further exacerbating the challenges faced by the 
affected communities.

DISCUSSIONS 

This study emphases mapping flood-prone 
zones in the Upper Drâa watershed through an 
AHP-MCDM approach combined with a GIS. 
Seven critical factors influencing flood occur-
rence, including flow accumulation, elevation, 
slope, land use, proximity to river systems, li-
thology, and rainfall, were incorporated into the 
models. The findings underscore the necessity of 
prioritizing regions with high susceptibility for 
targeted interventions aimed at the management 
and restoration of wadi systems, thereby miti-
gating the adverse impacts of flood events. The 
outcomes of this study offer valuable insights 
that can significantly inform decision-making 
processes, particularly through the application 
of flood susceptibility zonation (FSZ) map de-
rived from AHP. Specifically, these maps will 
provide critical information on the percentage 
of flood risk and the spatial distribution of flood 
risk across the basin, thereby enhancing the pre-
cision and efficacy of flood risk management 
strategies (refer to Figure 7). 

Figure 8. ROC curve evaluation susceptibility zonation map
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Several studies are unanimous regarding that 
the arid and semi-arid zones flood risk manage-
ment are more serious on account of peculiar 
climatic and hydrological conditions (Khaddari 
et al., 2023; Swain et al., 2020). Even though 
rainfall events are not frequent, resultant floods 
in such areas are often severe and lead to human 
losses. Therefore, there was a need for adap-
tive flood-risk management strategies that were 
able to incorporate inherent uncertainties in ba-
sin development and variability in climate. The 
AHP-MCDM approach used in this study yields 
an impressive AUC value of 0.882, demonstrat-
ing the method’s effectiveness in flood suscepti-
bility mapping. This performance is in line with 
findings from similar studies in Morocco and in-
ternationally, highlighting the robustness of the 
approach. For instance, Khaddari et al. (2023) 
applied the AHP-MCDM method in the Assaka 
watershed, Morocco, achieving accurate flood-
prone area identification through a combination of 
multi-criteria factors such as topography, hydrol-
ogy, and land use. Similarly, in India, the AHP-
MCDM approach, in conjunction with GIS and 
remote sensing techniques, has been extensively 
validated. A study in Bihar, India, employed AHP 
to assess flood susceptibility, considering several 
geo-environmental factors, e.g., hydrological, 

morphometrical, and anthropogenical factors, 
demonstrating the versatility and reliability of the 
method in diverse environmental conditions. In 
another study, Negese et al. (2022) demonstrated 
the effectiveness of AHP-MCDM in identifying 
flood-prone areas in Dega Damot, Ethiopia, with 
86.83% of the region highly susceptible to flood-
ing. This, along with similar studies, underscores 
the method’s reliability for producing accurate 
flood susceptibility maps in diverse global con-
texts. Moreover, the current study findings can 
contribute to refining the hierarchy of regions 
with flood occurrence by identifying zones re-
quiring urgent hydraulic studies, immediate reha-
bilitation efforts, such as reprofiling riverbeds and 
upgrading drainage systems, and the develop-
ment of hydraulic infrastructure, including dykes, 
dams, bridges, and protective walls. Additionally, 
the current study highlights the importance of 
expansion suitability plaining in facilitating in-
formed forecasting for urban as well as rural liv-
ing spaces, agricultural zones, traffic systems, and 
manufacturing clusters, while taking into account 
the occurrence of natural disasters. Additionally, 
supplying the primary watershed’s flash flood 
channels, with hydrometeorological monitoring 
stations is proposed to enable consistent tracking 
of water flow and levels, complemented by the 

Figure 9. Observations of flood event impact on several regains within study area [Medias-Weather]
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creation of a publicly accessible web mapping 
platform for real-time flood event updates. While 
the efficacy of MCDM has been well established, 
the integration of more advanced techniques in 
future studies, mainly those leveraging AI is pro-
jected to significantly enhance the accuracy as 
well as the effectiveness of flood prone mapping 
studies. For instance, ML models can refine pre-
dictive capabilities by integrating and modeling 
relationships of diverse factors influencing flood 
dynamics. Another strategy to compliment this 
perspective is by a synergistic integration of RS 
data and real time management systems, foster-
ing the development of a dynamic as well as a 
preferred high-resolution data set. Such an ap-
proach would enhance modeling approach preci-
sion, enabling also the formulation of data-driven 
flood prone mapping strategies in similar regions 
worldwide. This reflects a convergence of cut-
ting-edge technological frameworks with inter-
disciplinary methodologies in bridging data sci-
ence with environmental monitoring principles.

CONCLUSIONS

This research successfully applied the AHP-
MCDM approach integrated within a GIS frame-
work to map flood-susceptible areas in the Upper 
Drâa watershed. The study made a significant con-
tribution in obtaining a reliable flood-prone zona-
tion map, based on the integration of seven key 
factors, namely slope, flow accumulation, eleva-
tion, land use, proximity to river systems, lithology, 
and rainfall. These factors were weighted as well as 
analysed via AHP approach, yielding a FSM with 
high spatial accuracy, as confirmed by the strong 
performance evaluation. The AUC value indicates 
the model’s robust discriminatory power, effectively 
identifying flood-prone zones in the studied UDB 
and enhancing decision-making for flood monitor-
ing strategies. The main findings are as follows:

The FSM clearly identifies areas most prone 
to flooding, enabling targeted interventions in 
these high-susceptibility regions. These areas, 
which are especially vulnerable to flood events 
(11% of the total basin surface), should focus on 
the restoration of wadi systems, the construction 
of hydraulic infrastructure such as dams, dykes, 
and bridges, and urbanization planning aimed at 
enhancing flood resilience.

The quantitative evaluation of the integra-
tion of geospatial data and AHP-MCDM model 

demonstrates its effectiveness in flood suscep-
tibility mapping, with an AUC value of 0.8820. 
This high value indicates the model’s strong 
discriminatory power in accurately identifying 
flood-prone zones, underpinning its reliability for 
decision-making processes in flood prone man-
agement realm. The performance assessment fur-
ther supports the application of AHP in similar 
flood mapping studies.

The findings of this study are crucial for refin-
ing flood monitoring and managing practices in 
the UBD region. By providing an accurate zon-
ing map, our research supports decision-makers 
in effectively and sustainably allocating resources 
for flood risk reduction. The study highlights the 
value of using GIS-based mapping approaches 
for better/sustainable flood forecasting, and miti-
gation planning.

This study establishes the foundation for 
subsequent research endeavors that seek to 
integrate cutting-edge technology like sophis-
ticated artificial intelligence and real-time hy-
drometeorological monitoring systems. These 
technologies have the potential to greatly im-
prove FSM accuracy, aid in the creation of 
early warning systems, and eventually increase 
community resilience while lowering the risk 
of disasters. To sum-up, this study’s findings 
enhance flood control in the UDB and offer a 
paradigm that can be used in other analogous 
areas. Flood risk management will be greatly 
enhanced by the suggested incorporation of 
cutting-edge modeling algorithms and the con-
ception of web-based systems for a real-time 
flood monitoring. This would increase commu-
nity resilience and sustainable development.
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