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INTRODUCTION

Forests worldwide, covering 3.97 billion 
hectares, or 30.8% of the world’s land surface, 
are facing deforestation (FAO, 2022). Deforesta-
tion is defined as the conversion of forest to other 
land uses, regardless of the causes of conversion. 
Globally, deforestation affected 11 million hect-
ares between 2000 and 2010, and 7.8 million hect-
ares between 2010 and 2020 (FAO, 2022). Agri-
cultural activities account for nearly 90% of these 
losses, with 50% attributed to cropland expansion 
and 38.5% to pasture (FAO, 2022). Deforestation 
is not the only cause of forest loss. Globally, only 
27% of forest loss was associated with deforesta-
tion; the remainder was associated with forestry, 
shifting agriculture, forest fires, and urbanization 
(Curtis et al., 2018). In Morocco, the State forest 
domain covers 9,631.896 hectares, or 13.5% of the 
national coverage, including more than 3 million 
hectares of Alfa, (l’Agence Nationale des Eaux et 
Forets Maroc, 2025). These areas are subject to an 
estimated degradation of 17,000 hectares per year 

(Département des Eaux et Forêts Maroc, 2019). 
Other studies indicate losses of up to 30,000 hect-
ares per year (Benbrahim et al., 2004). The causes 
of this degradation are of human origin (intense 
pressure on forests), natural (persistent drought), 
and management-related (dominance of a repres-
sive approach) (Benzyane, 2007). In the northern 
region of Morocco, known for its biodiversity, 
drought, forest fires, soil erosion and population 
growth are the main causes of the disappearance 
of forests and agro-sylvopastoral lands between 
1984 and 2014 (Chebli et al., 2018). In the Talas-
semtane National Park (TNP), a protected area in 
northern Morocco, forest fires and deforestation 
linked to cannabis cultivation are the main factors 
contributing to deforestation (Castro et al., 2022). 
This deforestation leads to a loss of biodiversity 
and threatens the last endemic species such as the 
Moroccan fir (Abies maroccana Trabut) and the 
black pine (Pinus nigra).

In recent developments in the Landsat Land 
Cover Classification Method, researchers around 
the world proposed a variety of methodologies 
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to assess, model, and predict deforestation. Land 
use land cover (LULC) analysis is the most used 
(García-álvarez et al., 2022). Land cover is de-
scribed as the biological and physical covering 
of the earth’s surface, but land use is defined as 
a region’s present and planned functional dimen-
sions or socioeconomic purposes are used to de-
scribe it. Researchers worldwide studied LULC 
analysis (García-álvarez et al., 2022). The use of 
LULC in several fields is well-established. LULC 
is used to assess vegetation structure and dynam-
ics (El Haj et al., 2023; Nguyen et al., 2023), 
quantify soil erosion and map landslide suscep-
tibility (Acharki et al., 2022; Alaoui et al., 2024; 
Aouragh et al., 2023; Bammou et al., 2024; Es-
smairi et al., 2023), map and model dynamic ur-
ban growth (Araya & Cabral, 2010; Benchelha et 
al., 2022; Farah et al., 2021; Hegazy & Kaloop, 
2015), monitor and model desertification (El Haj 
et al., 2023; Moumane et al., 2022; Muteya et al., 
2023), identify deforestation (Boubekraoui et al., 
2023; Muteya et al., 2023), quantify forest loss 
and gain (Hansen et al., 2013; Kaur et al., 2023), 
map and update species distribution (Ghazi et al., 
2024). Analyze changes in carbon stocks (Ismaili 
Alaoui et al., 2023; Rachid et al., 2024; Raqeeb et 
al., 2024), evaluate the impact of climate change 
on natural resources (M’Barek et al., 2024). In 
addition, LULC data provides important informa-
tion by using change detection techniques (Lu et 
al., 2004). LULC changes are used to assess the 
spatiotemporal characteristics of LULC changes 
in China during 2010-2015 (Jia et al., 2018). The 
evolution of LULC, used to compare land use 
and land cover across different periods, can of-
fer valuable insights into LULC dynamics (Ben-
said, 2025; García-álvarez et al., 2022). Zeng et 
al. (2018) studied land surface temperature (LST) 
changes using Hansen’s global forest change to 
assess the expansion of highland cropland and 
forest loss in Southeast Asia in the 21st century 
(Zeng et al., 2018). Studying LULC changes is 
essential to address global climate change and 
sustainable development (Chang et al., 2018), as 
LULC changes are both the cause and the conse-
quence of climate change (Foody, 2010). Wang 
et al. (2023) conducted an analysis of land use 
and land cover (LULC) changes and their driving 
forces in a typical subtropical region of South Af-
rica (Wang et al., 2023). Seyam et al. (2023) stud-
ied the trends in land use and land cover changes 
in a rapidly developing industrial region of Ban-
gladesh (Seyam et al., 2023).

Moreover, the evolution of LULC and its fac-
tors enables specialists to predict the evolution of 
LULC in the future (García-álvarez et al., 2022; 
Muhammad et al., 2022; Yangouliba et al., 2022). 
The study of past and future changes in LULC is 
crucial for natural resource management, particu-
larly for lake catchment management (Zhao et al., 
2012), provides valuable information on the rate 
and extent of deforestation and its drivers (He et 
al., 2022), assessing island ecosystems and re-
forestation efforts (Lin et al., 2020), simulating 
urban growth (Abuelaish & Olmedo, 2016), as-
sessing and simulating streamflow in watersheds 
(Eshetie et al., 2023), and predicting prompt urban 
growth (Vinayak et al., 2021; Wang et al., 2021). 
With the emergence of new AI-based classifica-
tion techniques (Alshari & Gawali, 2021; Weng 
et al., 2024), the free availability of an archive of 
high-resolution satellite images (Tamiminia et al., 
2020), and the development of cloud computing 
(Amani et al., 2020), the production of LULCs has 
grown exponentially. Google Earth Engine (GEE) 
is a cloud computing platform for global geospa-
tial analysis using Google’s cloud infrastructure. 
Continuously evolving, GEE enables users to vi-
sualize, analyze, and process multi-petabyte geo-
spatial datasets from various providers (Gorelick 
et al., 2017). Its ability to rapidly process satel-
lite imagery and run algorithms through Google’s 
infrastructure makes it particularly well-suited for 
large-scale geographic data analysis (Tamiminia 
et al., 2020). GEE offers an application program-
ming interface (API) that supports JavaScript and 
Python, allowing users to develop custom scripts 
to address big data processing challenges (Curtis 
et al., 2018; Tamiminia et al., 2020). The platform 
is widely used in fields such as agriculture, climate 
change, and land use, and its application to natu-
ral disaster management, especially flood moni-
toring, significantly improves the performance 
of algorithms (Amani et al., 2020; Ghosh et al., 
2022; Pérez-cutillas et al., 2023). The growing use 
of GEE in producing scientific publications on the 
monitoring, modeling, and predicting changes in 
LULC is demonstrated by the impressive num-
ber of publications in this field (Tamiminia et al., 
2020). Although access to GEE is free, it requires 
registration via a personal email account.

Consequently, this study aims to assess for-
est dynamics over 34 years in Talassemtane Na-
tional Park (TNP). We used change detection 
techniques through GEE to assess the tree cover 
dynamic over this period.
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MATERIALS AND METHODS 

Study area

TNP is situated in the Western Rif Mountains 
of Morocco (Figure 1). This region is widely rec-
ognized for its ecological diversity, attributed to its 
unique morphology and favorable climatic condi-
tions. However, it also faces significant environ-
mental challenges, including a high rate of defor-
estation (Boubekraoui et al., 2024; Boubekraoui et 
al., 2024). Created in 2004, the TNP covers an area 
of 64.000 hectares. The park is particularly notable 
for hosting endemic species, such as the Moroccan 
fir (Abies marocana, Pinaceae) (Ben-Said, 2022; 
Lamrhari et al., 2020). The park’s fir ecosystem has 
significant floristic diversity, with approximately 60 
plant species identified (Aafi, 2000). In addition, 
the mixed forest of Moroccan fir and Atlas cedar is 
considered a unique ecosystem in the world (Ben-
Said et al., 2022). Geologically, the park is located 
on a wide limestone ridge and its geomorphology 
presents the highest peaks in the park, with altitudes 
reaching up to 2.159 meters at Jbel Lakraa. From 
a bioclimatic point of view, the climate of the park 
varies from humid to perhumid due to its large area 
(Ben-Said et al., 2024). According to a soil map 
produced by Alaoui et al. (2021), the dominant soil 
types in the TNP are Cambisol, Rendzic Lepto-
sol, Luvisol, Arenosol, and Regosol (Alaoui et al., 
2021). With 105 people per km2 in Chefchaouen 
and 316 people per km2 in Tetouan, the TNP region 
has one of Morocco’s highest population densities 
(Haut-Commissariat au Plan du Maroc, 2024).

Images composites 

The datasets utilized in this study are im-
ages composites generated using the latest cloud 
masking approach as described by Hermosilla et 
al. (2024) (Hermosilla et al., 2024). Using JavaS-
cript in GEE, we created images composites for 
the years 1990, 1995, 2000, 2005, 2010, 2015, 
2020, and 2024 (Figure 2). 

For 1990 and 1995, the dataset used was 
USGS Landsat 5 Level 2, Collection 2, Tier 1. 
The dataset includes 33 and 29 scenes, respec-
tively, with six spectral bands, derived indices, 
Digital Surface Model (DSM), and slope data. 
For 2000, 2005, and 2010 two datasets were uti-
lized: USGS Landsat 5 Level 2, Collection 2, Tier 
1 and USGS Landsat 7 Level 2, Collection 2, Tier 
1. For 2015, two datasets were used: USGS Land-
sat 7 Level 2, Collection 2, Tier 1 comprising 31 
scenes, and USGS Landsat 8 Level 2, Collection 
2, Tier 1 comprising 33 scenes (Table 1). 

Finally, for 2024, the following datasets were 
utilized: USGS Landsat 8 Level 2, Collection 2, 
Tier 1. The image composite consists of 31 scenes 
with six spectral bands, derived indices, a digital 
surface model (DSM), and slope data. USGS Land-
sat 9 Level 2, Collection 2, Tier 1 consisting of 29 
scenes. Four popular vegetation indices were used 
in this study to enhance classification accuracy and 
image interpretation (Bannari et al., 1995; Lloyd, 
1990; Oldeland et al., 2010; Ouchra et al., 2023; Us-
tuner et al., 2014; Zhang et al., 2021), namely the 
normalized difference vegetation index (NDVI), 
the normalized difference built-up index (NDBI), 

Figure 1. Geographic location of the study area 
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Figure 2. Yearly images collections (a) 1990, (b) 1995, (c) 2000, (d) 2005, (e) 2010, (f),2015, (g) 2020, (h) 2024
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the modified normalized difference water index 
(NDWI), and the bare soil index (BSI) (Table 2).

Topographic variables were also incorporated 
into the classification process to improve accu-
racy (Tadono et al., 2014; H. Wang et al., 2020; 
Wulder et al., 2004). These variables included el-
evation and slope derived from digital elevation 
models (DEMs) (Table 3). The flow chart meth-
odology of the study is presented in Figure 3.

Image classification 

For image classification, we used machine 
learning algorithms running in GEE. GEE offer sev-
eral machine learning classifiers in the ee.Classifier 
package. In our study, we used the ee.Classifier.smi-
leRandomForest a popular supervised classification 
method based on the random forest (RF) algorithm. 
RF is a group learning method that uses multiple 

decision trees to improve classification accuracy 
(Aziz et al., 2024; Lawer, 2024; Ouchra et al., 2024; 
Talukdar et al., 2020). In this study, we adopted only 
two classes: forest and noforest. The adoption of 
these two classes comes from the fact that the study 
concerns the evolution of the forest cover. 

Accuracy assessment and hyper-parameter 
tuning 

The choice of training samples is the first step 
in an accuracy assessment, followed by the collec-
tion of data from LULC map (classified data), the 
collection of reference data from either the visual 
interpretation of satellite imagery or data collected 
on-site (reference data), finally the analysis and in-
terpretation of the findings (Congalton & Green, 
2008). but in most research, the error matrix, over-
all accuracy, user accuracy, producer accuracy, and 
Kappa coefficient are among the statistical tools 
that are typically used (Chang et al., 2018; García-
álvarez et al., 2022; Janssen & van der Wel, 1994).
In addition, we used JavaScript through GEE to an-
alyze and visualize the importance of variables in 
the trained classifier. Also, we use single parameter 
tuning to generate a chart of validation accuracy 
versus the number of trees.

RESULTS 

Classification

The results of the classification is presented in 
Table 4. Adopting two classes: forest and no forest 

Table 1. Datasets used to produce Image collection for each year
Year Datasets features Image collection

1990 USGS Landsat 5 Level 2, Collection 2, Tier 1 33 6 Bands + Indices + DSM+ Slope

1995 USGS Landsat 5 Level 2, Collection 2, Tier 1 29 6 Bands + Indices + DSM+ Slope

2000
USGS Landsat 5 Level 2, Collection 2, Tier 1 17

6 Bands + Indices + DSM+ Slope
USGS Landsat 7 Level 2, Collection 2, Tier 1 36

2005
USGS Landsat 5 Level 2, Collection 2, Tier 1 19

6 Bands + Indices + DSM+ Slope
USGS Landsat 7 Level 2, Collection 2, Tier 1 17

2010
USGS Landsat 5 Level 2, Collection 2, Tier 1 16

6 Bands + Indices + DSM+ Slope
USGS Landsat 7 Level 2, Collection 2, Tier 1 16

2015
USGS Landsat 7 Level 2, Collection 2, Tier 1 31

6 Bands + Indices + DSM+ Slope
USGS Landsat 8 Level 2, Collection 2, Tier 1 33

2020
USGS Landsat 7 Level 2, Collection 2, Tier 1 45

6 Bands + Indices + DSM+ Slope
USGS Landsat 8 Level 2, Collection 2, Tier 1 37

2024
USGS Landsat 8 Level 2, Collection 2, Tier 1 31

6 Bands + Indices + DSM+ Slope
USGS Landsat 9 Level 2, Collection 2, Tier 1 29

Table 2. Indices used in the study
Indice Formula

ndvi (nir-red)/(nir+red)

ndbi (swir-nir)/(swir+nir)

mndwi (green-swir)/(swir+nir)

bsi ((swir1+ red ) - (nir + blue)) /(( swir1 +red ) + 
+ (nir + blue))

Table 3. Topographic variables 
Variable Source

Elevation ALOS DSM: Global 30m v3.2

Slope ALOS DSM: Global 30m v3.2
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will allow us to follow the dynamic of the forest 
cover (green color). The table presents the area of 
the forest cover for the period 1990 to 2024 with an 
interval of 5 years (Figure 4). 

The results show a regression of this cover 
over time going from 43682 ha in 1990 to 35522 
ha in 2024, i.e. a regression of 8160 ha constituting 
a rate of 18% of the capital and a rate of 240 ha/
year. This trend reflects the continued degradation 
of forests due to anthropogenic pressures amplified 
by climate change. 

Accuracy assessment 

As mentioned earlier in the method section, 
the accuracy assessment was performed by script 
in GEE to evaluate the accuracy of the generated 
maps. The accuracy results show a high agree-
ment with the reference data. Classification ac-
curacy remains consistently above 91%, with a 
peak at 100% in 2020 and 2024. This indicates 

robust classification performance, validating the 
reliability of the methods used. The kappa statis-
tic, which measures agreement beyond chance, 
demonstrates strong agreement (values ≥ 0.83) 
across all years. The highest values (1.0) were 
observed in 2020 and 2024, further confirming 
the reliability of the classification models. The 
confusion matrices indicate precise classification 
with minimal misclassifications. For example: In 
1990, the matrix [[45,1],[1,42]] shows just 2 mis-
classifications. By 2020 and 2024, the matrices 
[[40,0],[0,35]] and [[46,0],[0,39]] reflect perfect 
classification, with no misclassified samples. As 
for the producer’s accuracy and Consumer’s ac-
curacy, both measures remain consistently high 
over the years, often exceeding 0.86, highlight-
ing the model’s ability to accurately identify 
forested areas (producer’s accuracy) and cor-
rectly classify samples as forested (consumer’s 
accuracy). Finally, the F-score, which represents 
the balance between precision and recall, is also 

Figure 3. Flowchart methodology

Table 4. Accuracy assessment results

Year Forest 
area

Confusion 
matrix

Test 
accuracy Kappa Producers 

accuracy
Consumers 
accuracy Fscore

1990 43682 [[45,1],[1,42]] 0.97 0.95 [[0.97],[0.97]] [[0.97,0.97]] [0.97,0.97]

1995 43026 [[45,1],[2,40]] 0.96 0.93 [[0.97],[0.95]] [[0.95,0.97]] [0.96,0.96]

2000 38615 [[40,3],[3,34]] 0.925 0.84 [[0.93],[0.91]] [[0.93,0.91]] [0.93,0.91]

2005 37941 [[51,0],[1,41]] 0.98 0.97 [[1],[0.97]] [[0.98,1]] [0.99,0.98]

2010 36894 [[40,1],[0,41]] 0.98 0.97 [[0.97],[1]] [[1,0.97]] [0.98,0.98]

2015 36271 [[40,1],[6,36]] 0.91 0.83 [[0.97],[0.86]] [[0.87,0.97]] [0.92,0.91]

2020 35722 [[40,0],[0,35]] 1 1 [[1],[1]] [[1],[1]] [1,1]

2024 35522 [[46,0],[0,39]] 1 1 [[1],[1]] [[1],[1]] [1,1]
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Figure 4. Classification result: (a) 1990, (b) 1995, (c) 2000, (d) 2005, (e) 2010, (f) 2015, (g)2020, (h) 2024
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high (≥ 0.91) throughout the period. Perfect F-
scores (1.0) in 2020 and 2024 further validate 
the effectiveness of the classification.

Feature importance 

This analysis identifies the input features 
that contribute the most to the classification pro-
cess, helping to refine the model by removing 
redundant or less impactful features. The script 

serves as a powerful tool for assessing the effec-
tiveness of individual features in a random forest 
model, ensuring that key predictors are appro-
priately prioritized (Figure 5). 

Hyperparameter tuning 

In this study, we used a script written in the 
Google Earth Engine (GEE) JavaScript API that 
allows hyperparameter tuning for the number of 

Figure 5. Feature importance: (a) 1990, (b) 1995, (c) 2000, (d) 2005, (e) 2010, (f) 2015, (g)2020, (h) 2024
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trees in a random forest classifier. It consists of 
creating a list of numbers from 10 to 150 (inclu-
sive), incremented by 10. Each number represents 
a different number of trees to test. The script gen-
erates a graph with the x-axis representing the 
number of trees in the random forest (numTree-
sList) and the y-axis representing the correspond-
ing validation accuracy. This graph is used to 
identify the optimal number of trees to maximize 
validation accuracy (Figure 6). 

Change detection analysis 

Change detection analysis was performed us-
ing the categorical change method through a Java 
script in GEE. This analysis identifies the type of 
change that has occurred between two land cover 
maps (Figure 7). Moreover, the study provides 
more detail about the change by producing a tran-
sition matrix (Figure 8). The largest reduction oc-
curred between 1995 and 2000, with a significant 

Figure 6. Hyperparameter tuning: (a) 1990, (b) 1995, (c) 2000, (d) 2005, (e) 2010, (f) 2015, (g) 2020, (h) 2024
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loss of 4,411 hectares. However, the rate of de-
cline appears to have stabilized after 2010, sug-
gesting possible improvements in conservation 
efforts or a reduction in external pressures.

DISCUSSION 

The TNP is renowned as a biodiversity re-
serve but remains vulnerable to deforestation. It 

faces significant environmental challenges, in-
cluding a high deforestation rate (Boubekraoui 
et al., 2024; Boubekroui et al., 2024). This study 
employed supervised classification and change 
detection techniques on the GEE platform, uti-
lizing a merged composite cloud-masked im-
age to produce LULC maps and detect temporal 
changes. The results revealed a substantial loss of 
tree cover within the TNP, which was quantified, 
mapped, and analyzed spatially and temporally. 

Figure 7. Change detection analysis result: (a) 1990–1995, (b) 1995–2000, (c) 2000–2005, (d) 2005–2010, 
(e) 2010–2015, (f), 2015–2020, (g) 2020–2024

b)
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In 1990, TNP’s tree cover was estimated at 43,682 
ha, representing 70% of the park’s area. By 2024, 
this had decreased by 8.160 ha, corresponding to 
a 18% loss, with the most significant reduction 
occurring between 1995 and 2000. These find-
ings align with other studies and reflect broader 
regional and global trends in forest degradation. 
While several studies have assessed Moroccan 
forest degradation trends, few have quantified 
this regression. Castro et al. (2022), using global 
forest change data, estimated an average annual 
loss of 106 ha within the park, ranging from 6 to 
300 ha/year, with wildfires accounting for 49% of 
this loss (Castro et al., 2022). Another study re-
ported an 8.39% gross loss of Western Rif forest 
cover (equivalent to 272.37 km2) between 2001 
and 2020, identifying TNP as one of 26 defor-
estation fronts in the region (Boubekraoui el al., 
2023). Furthermore, the Tangier-Tetouan-Al Ho-
ceima (TTA) region recorded an average of 39.78 
km2/year of burned areas, with forests comprising 
74% of these losses (Boubekraoui et al., 2023). 
These studies also examined the primary driv-
ers of deforestation in the region. Boubekraoui 
et al. (2024) identified four primary drivers of 
deforestation in the TTA region between 2001 
and 2020: wildfires (35.2%), agricultural expan-
sion (30.6%), logging (13.2%), and infrastruc-
ture development (10.1%) (Boubekraoui et al., 
2024). Particularly in TNP, the main drivers of 
this degradation are forest fires combined with 
land clearing by local populations seeking to ex-
pand their cannabis cultivation areas (Ben-Said 
et al., 2020; Castro et al., 2022; Chergui et al., 

2018; Gatchui et al., 2014). Moroccan authori-
ties, Non-Governmental Organizations and local 
forces are urgently called upon to intervene to 
stop this hymoragia and to prohibit any practice 
incompatible with the environment and likely to 
lead to the disappearance of this beautiful eco-
system and to preserve its option value for future 
generations. urgent action must be taken, includ-
ing adopting a framework for participatory forest 
restoration and promoting a social participation 
in forest restoration (Derak et al., 2018, 2024). 
A key limitation of this study was the inability 
to differentiate between permanent land conver-
sion and temporary forest loss, coupled with 
the lack of detailed identification of the primary 
drivers of deforestation. Finally, the adoption of 
an advanced approach that integrates SAR data 
with Landsat optical imagery offers more accu-
rate insights into forest mapping and their spa-
tiotemporal changes (Chen et al., 2018). 

CONCLUSIONS

The loss of forest cover poses a significant 
threat to the survival of humanity, the environ-
ment, and the global climate, contributing sub-
stantially to global warming. Quantifying this 
threat scientifically at local, regional, and global 
scales has historically been challenging. Howev-
er, advances in remote sensing technologies and 
the accessibility of high-resolution satellite imag-
ery have addressed these constraints. In our study, 
we leveraged cloud-masking image collection 

Figure 8. Distinguish between tree cover loss (red) and gain (blue)
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through the GEE platform to assess deforesta-
tion in the TNP between 1995 and 2024. This ap-
proach proved especially valuable given the ab-
sence of updated national data since the 2004 Na-
tional Forest Inventory. By utilizing these tools, 
we were able to calculate the extent and loss of 
forest cover within the TNP, providing critical in-
sights for forest management.

The methods and findings of this study pro-
vide a valuable resource for decision-makers 
and forest managers to track deforestation trends 
and assess the effectiveness of conservation and 
restoration efforts. These tools not only enhance 
understanding of forest ecosystem dynamics but 
also support evidence-based strategies for sus-
tainable forest management. In addition, the re-
sults of this study can be utilized to predict future 
land use and land cover changes, providing valu-
able insights for sustainable forest management 
and conservation planning. 
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