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INTRODUCTION

Aceh Besar Regency, Indonesia, located in a 
tropical region, experiences two primary seasons: 
the rainy season and the dry season. The transi-
tion between these seasons is often accompanied 
by extreme weather events, one of the most nota-
ble being strong winds. In tropical regions, strong 
winds commonly occur during the transition from 
the dry to the rainy season, influenced by the 
movement of monsoonal winds originating from 
Australia. Generally, these winds are more fre-
quent in mountainous or highland areas, as well 
as regions with minimal vegetation cover. Sev-
eral factors contribute to the occurrence of strong 

winds, including atmospheric pressure variations 
within weather systems, increases in air pressure, 
and the apparent movement of the sun at its zenith 
(solar culmination). The impact of strong winds 
can lead to significant physical and economic 
losses, necessitating effective mitigation mea-
sures to reduce associated risks. In disaster miti-
gation efforts, Indonesia has implemented Law 
No. 24 of 2007 on Disaster Management, which 
emphasizes a paradigm shift from reactive re-
sponse strategies toward proactive risk reduction 
approaches (BNPB, 2012). As key stakeholders, 
local governments are responsible for conduct-
ing systematic and data-driven disaster risk as-
sessments. These assessments aim to identify and 
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understand the characteristics of existing hazards 
while developing effective adaptation strategies 
to minimize long-term impacts on communities 
and their assets. A comprehensive disaster risk 
assessment serves as the foundation for regional 
disaster management planning. It informs the de-
velopment of various policy documents, includ-
ing disaster management plans, risk reduction 
strategies, contingency plans, and post-disaster 
recovery frameworks.

To ensure the reliability and scientific valid-
ity of disaster risk assessments, methodologies 
must be based on accurate and verifiable data. 
As part of Indonesia national priorities, disaster 
management has become a fundamental agen-
da for local governments. Within this context, 
there is an increasing need for expertise in risk 
assessment methodologies and techniques, par-
ticularly concerning extreme weather events. 
One such extreme weather phenomenon of con-
cern is strong winds, defined as winds reaching 
speeds of ≥ 120 km/h. In tropical regions, es-
pecially between the Tropic of Cancer and the 
Tropic of Capricorn, strong winds frequently 
occur due to atmospheric pressure differen-
tials, increases in air pressure, and the appar-
ent movement of the sun, which influences solar 
culmination (Wang et al., 2006).

Several researchers have highlighted the use 
of a geospatial approach for hazard assessment 
by applying overlay techniques within the GIS. 
A self-organizing map, a type of artificial neural 
network, was used to analyze three decades of 
rainfall data in Nigeria, identifying four distinct 
precipitation zones and revealing an increas-
ing trend in rainy days in the northern region 
(Akande et al., 2017). Sentinel-2A data and the 
Vegetation Condition Index were used to moni-
tor agricultural drought in Aceh Besar, revealing 
a mild drought trend and increasing vulnerability 
in paddy rice fields from 2018 to 2022 (Sugianto 
et al., 2023). A GIS-MCA framework incorpo-
rating the analytical hierarchy process (AHP), 
the technique for order preference by similar-
ity to the ideal solution (TOPSIS), and ordered 
weighted averaging (OWA) was applied to map 
flood hazard zones in the Dadu River basin, 
China, identifying high-risk areas and validating 
the approach as effective for flood management 
(Chen, 2022). A GIS-based study assessed flash 
flood vulnerability in the Valea Rea catchment, 
Romania, revealing that 43% of the area is high-
ly susceptible, posing risks to communities and 

infrastructure (Kocsis et al., 2022). A GIS and 
RS-based flood hazard assessment in the Gidabo 
Watershed identified 41.6% of the area as highly 
susceptible, with the risk map validated at 0.943 
ROC accuracy (Diriba, et al., 2024). A GIS and 
MCDA-based study, including IR’AHP, mapped 
urban flood hazard zones in Palilula, Belgrade, 
identifying high-risk areas along the Danube 
and validating results with historical flood data 
(Gigović et al., 2017). GIS and IDW interpola-
tion were used to assess extreme flood impacts 
on agriculture in Quang Nam, Vietnam, reveal-
ing that up to 33% of arable land, particularly 
wet rice fields, is inundated under severe flood 
scenarios (Chau et al., 2013). Landslide hazard 
zonation was evaluated in Meta Robi District, 
Ethiopia, using Grid Overlay and GIS model-
ing, demonstrating that GIS modeling is highly 
accurate and efficient, with 95% of past land-
slides occurring in high-hazard zones (Raghu-
vanshi, 2015). A GIS-based approach utilizing 
remote sensing and AHP was applied to create 
a landslide susceptibility map for Balakot, Paki-
stan, identifying high-risk zones with 76% accu-
racy for hazard mitigation and land use planning 
(Basharat, et al., 2016). The use of remote sens-
ing data for landslide detection, monitoring, and 
hazard prediction in Switzerland was explored, 
leading to the development of a GIS-based ex-
pert tool under HazNETH to enhance natural 
hazard assessment (Metternicht et al., 2005).

A GIS-based multi-criteria framework inte-
grating geospatial data, AHP, and a Social Vul-
nerability Index assessed multi-hazard risk in 
Dharan, Nepal, identifying high-risk zones along 
the Seuti and Sardu Rivers for disaster planning 
(Aksha et al., 2020). A Coastal Vulnerability In-
dex was developed using spatial analysis to as-
sess multi-hazard risks along Bangladesh’s east-
ern coast, revealing that 32% of the coastline is 
highly vulnerable, with results validated through 
field observations (Hoque et al., 2020). A spa-
tial multi-criteria approach using remote sensing 
and AHP was developed to map tropical cyclone 
risk in coastal Bangladesh, identifying high-risk 
areas and validating its effectiveness for disas-
ter planning (Hoque et al., 2018). A GIS-based 
integrated approach for bushfire risk assessment 
was developed, combining spatial data integra-
tion, hazard simulation, and multi-criteria evalu-
ation to support effective risk decision-making 
(Chen et al., 2003). A GIS-based Boolean over-
lay and weighted linear combination (WLC) 



301

Ecological Engineering & Environmental Technology 2025, 26(5), 299–309

method was used to identify suitable rainwater 
harvesting sites in Iraq’s western desert, reveal-
ing that only 6% of the area is highly suitable for 
rainwater harvesting, supporting efficient water 
management in arid regions (Hashim and Sayl, 
2021). Soil suitability for cotton cultivation in 
the Ringanbodi watershed, India, was evaluated 
using GIS-based multi-criteria analysis, reveal-
ing that 49.1% of the area is moderately suitable, 
while 16.6% is unsuitable due to soil limitations 
(Walke et al., 2012). A GIS-based study assessed 
earthquake disaster risk in Bener Meriah, Indo-
nesia, revealing that the 2013 earthquake caused 
significant physical and economic losses, with 
risk levels categorized as medium and low (Far-
han el al., 2024). Remote sensing techniques were 
employed to estimate land surface temperature in 
the Mount Seulawah geothermal area, identify-
ing temperature anomalies and high lineament 
density, indicating strong geothermal potential 
for sustainable development (Akhyar and Sary, 
2024). Planetscope-3A imagery and supervised 
classification were used to map green open spac-
es (GOS) in Banda Aceh, revealing that 35.29% 
of the area consists of GOS, with an overall ac-
curacy of 76.04% (Budi and Akhyar, 2021).

This study aims to analyze extreme weather 
hazards in Aceh Besar Regency, Indonesia, to 
support mitigation planning using geospatial 
analysis with overlay techniques in a GIS. The 
hazard mapping process follows the standards 
established by the Indonesian National Disaster 
Management Agency (BNPB) and consists of 
several analytical stages: (1) generating a slope 
score map, (2) classifying and scoring land cover, 
(3) developing a rainfall score map, and (4) creat-
ing a generalized slope class map. These datasets 
are then integrated to produce an extreme weather 
hazard map for Aceh Besar Regency. The find-
ings of this study are expected to contribute to 
the development of data-driven disaster mitiga-
tion strategies and enhance regional preparedness 
for extreme weather events, particularly strong 
winds, which pose significant risks in Aceh Besar 
Regency, Indonesia.

MATERIALS AND METHODS

In this study, extreme weather hazards, specif-
ically strong winds, were analyzed using a scor-
ing method based on three key parameters: land 
openness, slope gradient, and annual rainfall. The 
scoring framework follows the guidelines out-
lined in BNPB Regulation No. 2 of 2012. The 
hazard mapping process relies on spatial data, as 
presented in Table 1, to systematically assess and 
classify areas at risk of extreme weather events. 
Aceh Besar Regency was selected as the study 
area (Figure 2).

All analytical processes were conducted us-
ing GIS, as seen in Figure 1. Before initiating the 
analysis, it is essential to standardize the coordi-
nate system for all datasets by reprojecting them 
to the Universal Transverse Mercator (UTM) or 
World Mercator coordinate system. This stan-
dardization ensures that mathematical analyses 
can be performed directly using a uniform unit 
of measurement in meters, thereby improving the 
accuracy and consistency of spatial calculations.

Slope analysis, DEM data was analyzed to 
generate slope information, which serves as a 
key parameter influencing the potential impact of 
strong winds in a given area. Regions with gentle 
slopes are more susceptible to strong winds com-
pared to steeper terrains.

Land cover classification, land cover data 
was analyzed to classify different types of land 
cover relevant to extreme weather conditions. 
The classification was divided into three catego-
ries, each assigned specific scores and weights, 
as shown in Table 2.

Rainfall data mapping, annual rainfall data 
was obtained from the most recent datasets pro-
vided by authorized institutions such as the Me-
teorology, Climatology, and Geophysics Agency 
(BMKG). If unavailable, alternative data sources, 
such as CHIRPS (Climate Hazards Group Infra-
Red Precipitation), were used. In this study, an-
nual rainfall data from CHIRPS for the period 
1988–2017 in Aceh Besar Regency was utilized. 
The next step involved normalizing rainfall values 

Table 1. Spatial data for extreme weather hazards
Type Form Source

Administrative boundaries GIS vektor (Polygon) BIG/Bappeda

Land cover GIS vektor (Polygon) BIG/KLHK/Bappeda

Annual rainfall map GIS vektor (Polygon) BMKG/ CHIRPS 2 USGS

DEM (Digital Elevation Model) GIS raster (Grid) LAPAN/NASA/JAXA
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by dividing the recorded precipitation by 5000 
mm, which represents the approximate maximum 
annual rainfall in Indonesia.

Hazard index calculation, as previously men-
tioned, the Extreme Weather Hazard Index was 
determined through an overlay of the three key 
parameters: slope, land cover, and annual rainfall. 
The hazard classification follows BNPB Regula-
tion No. 2/2012, with the following thresholds are 
low hazard as ≤ 1, moderate hazard as 1 ≤ 3, high 
hazard as > 3.

Slope class generalization, the hazard index 
calculation may produce sporadic hazard pixels, 
which require generalization to enhance spatial 
consistency. To address this, slope class general-
ization was performed using DEM data, ensuring 
a more cohesive and interpretable hazard map.

RESULTS AND DISCUSSION

The extreme weather hazard analysis was 
conducted through the processing of digital el-
evation model (DEM) data to generate a slope 
map, which serves as a key parameter in assess-
ing the potential impact of strong winds. Addi-
tionally, land cover classification was performed 
based on BNPB Regulation No. 2, allowing for 
the evaluation of regional vulnerability levels. 
Furthermore, annual rainfall mapping was carried 
out using CHIRPS data from 1988 to 2017, nor-
malized against the maximum recorded rainfall in 
Indonesia. The overlay of these three parameters 
are slope, land cover, and rainfall, produced an 
extreme weather hazard index categorized into 
three risk levels: low, moderate, and high. To re-
fine the results and eliminate the presence of spo-
radic hazard pixels, a slope class generalization 
process was applied. The final hazard distribution 
can be observed in Figure 3.

Figure 4, general distribution of low area (km²) 
of extreme weather hazard are the average low 
area per village is 0.198 km², but the data shows 

Figure 1. Process flow for creating extreme weather hazard index

Figure 2. Study area

Table 2. Land cover classification parameters
Land cover type Score

Forest 0.333

Plantation/Agricultural land 0.666

Shrubland, grassland, dry fields 1
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Figure 3. (a) Digital elevation model, (b) land cover map, (c) landuse score map, (d) rainfall map, (e) slope map, 
(f) slope region map, and (g) nibble slope map
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high variation, as indicated by a standard devia-
tion of 1.057 km². The minimum value is 0 km², 
meaning some villages have no low-lying areas, 
while the maximum value is 11.44 km². Preva-
lence of zero low area of extreme weather hazard 
is out of 604 villages, 533 villages (88.2%) have 
0 km² of low area. This suggests that only a small 
percentage of villages actually contain significant 
low-lying land. Villages with the largest low areas 
of extreme weather hazard are Suka Tani (11.44 
km²), Bak Sukon (10.18 km²), Bueng (9.02 km²), 
Meunasah Bak U (8.24 km²), Siron Krueng (7.95 
km²). These villages have significantly larger 
low-lying areas compared to the majority of oth-
ers. Possible implications are the high number of 
villages with zero or minimal low areas suggests 
that most areas in this dataset are located in el-
evated or non-flood-prone regions. The few vil-
lages with high low-area values might be more 
vulnerable to water accumulation and potential 
flooding, especially during heavy rainfall. 

General distribution of moderate area of ex-
treme weather hazard (km²) are the average mod-
erate area per village is 3.90 km², but there is a 
high variation, as indicated by a standard devia-
tion of 13.59 km² (Figure 4). The minimum value 
is 0 km², meaning some villages have no moder-
ate area, while the maximum value is 197.59 km². 
Prevalence of zero moderate area are out of 604 
villages, 46 villages (7.6%) have 0 km² of moder-
ate area, which is significantly lower compared to 
the “low area” category. This suggests that most 
villages in this dataset contain at least some mod-
erate-lying areas. Villages with the largest mod-
erate areas are Bueng (197.59 km²), Suka Tani 

(168.12 km²), Bak Sukon (112.66 km²), Meurah 
(74.36 km²), and Lamtamot (61.08 km²). These 
villages have significantly larger moderate ar-
eas of extreme weather hazard compared to the 
majority of others. Possible implications are the 
presence of larger moderate-lying areas suggests 
these villages might be situated in gently slop-
ing or undulating terrains, which could influence 
land use patterns such as agriculture, settlement 
expansion, or conservation areas. Villages with 
higher moderate areas of extreme weather hazard 
may also play a role in water retention and drain-
age, impacting flood management strategies.

The analyzed data includes various villages 
in Lhoong sub-district, each exhibiting different 
levels of extreme weather hazard risk. Examining 
the relationship between village elevation and vil-
lage names provides insights into the geographi-
cal characteristics and elevation distribution pat-
terns in the region. Some villages have relatively 
low elevation values, while others show higher 
values. Specifically, Meunasah Krueng Kala and 
Jantang both have an elevation of 0.096952 km², 
Baroh Krueng Kala has 0.581713 km², Tunong 
Krueng Kala has 0.775618 km², and Sungko Mu-
lat has 0.387809 km². The analysis reveals varia-
tions in elevation among villages in Lhoong sub-
district. While some villages exhibit low eleva-
tion values, others are significantly higher. 

The histogram represent in Figure 5a, the dis-
tribution of low area of extreme weather hazard 
(km²) across various villages. The data appears 
to be right-skewed, meaning that most villages 
have relatively small low areas, while only a 
few villages have significantly larger values 

Figure 4. Extreme weather hazard map for Aceh Besar
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(Ammatawiyanon et al., 2022; Handiani et al., 
2022). The presence of a long tail on the right 
suggests that there are some villages with larger 
low areas, which could be considered outliers. 
A majority of villages have low values of low 
area of extreme weather hazard (km²), cluster-
ing around the lower end of the distribution. The 
highest frequency occurs in the 0–0.5 km² range, 
indicating that most villages have small low-
lying areas. The variation in low areas among 
villages could be influenced by geographical 
factors such as topography, river proximity, and 
land use (Dai et al., 2017; Gao et al., 2023). 
Some villages may be located in naturally lower 
regions, while others have minimal low-lying 
areas due to elevation differences.

The histogram reveals in Figure 5b, that the 
majority of villages have relatively small moder-
ate area values, with a high concentration in the 
lower range of the distribution. The frequency 
decreases as the moderate area increases, indicat-
ing a right-skewed distribution. This suggests that 
while most villages have small to moderate areas 
of gently sloping terrain, a few villages possess 
significantly larger moderate area extents. The 
statistical parameters derived from the dataset 
support this observation are the mean moderate 
area per village is approximately 3.90 km², with 
a standard deviation of 13.59 km². A significant 
proportion of villages exhibit moderate areas 

below 5 km², suggesting a dominance of small-
sized moderate terrain regions. The maximum ob-
served value is 197.59 km², which is substantially 
higher than the mean, indicating the presence of 
outliers. Approximately 7.6% of villages have 
zero moderate area, highlighting regions that lack 
transitional terrains.

Figure 5c illustrates that the majority of vil-
lages have relatively small high-elevation ar-
eas, with the highest frequency occurring within 
the 0–2 km² range. While some villages exhibit 
larger high-elevation areas, their frequency is 
significantly lower, indicating that villages with 
extensive high-elevation areas are less common. 
The peak frequency within the 0–2 km² range 
suggests that most villages in the study area have 
small high-elevation areas. Additionally, as high-
elevation area size increases, the number of vil-
lages decreases, demonstrating an inverse rela-
tionship between elevation area size and village 
frequency. A few villages exhibit exceptionally 
large high-elevation areas, which are represented 
on the right tail of the histogram. These villages 
can be considered outliers, as their high-elevation 
areas are significantly larger compared to most 
other villages in the region.

Table 3, Most sub-districts exhibit a larger pro-
portion of Moderate Area compared to Low and 
High Areas. For example, Kota Jantho (518 km²), 
Seulimeum (327 km²), and Lembah Seulawah 

Figure 5. Histogram distribution of across villages: (a) low area (km²), (b) moderate area (km²), and high area (km²)
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(270 km²) have the highest moderate land cover-
age. This suggests that these areas consist of land 
with moderate environmental or land-use char-
acteristics, possibly including agricultural land, 
mixed-use forests, or transitional zones between 
urban and rural areas. The presence of Low Area is 
highly uneven across sub-districts. Some regions, 
such as Montasik, Sukamakmur, Darul Imarah, In-
gin Jaya, and Darussalam, report no low area cov-
erage, while Lhoknga (28 km²), Kota Jantho (27 
km²), and Kota Cot Glie (24 km²) have relatively 
high low area coverage. This might indicate dif-
ferences in land use planning, geographical condi-
tions, or zoning regulations. The High Area distri-
bution follows a different pattern, with the highest 
values observed in Seulimeum (58 km²), Lembah 
Seulawah (32 km²), and Indrapuri (27 km²). These 
sub-districts might contain rugged terrain, conser-
vation zones, or areas designated for specific land 
uses such as protected forests or hilly landscapes. 
Some sub-districts exhibit unique distributions 
(Figure 6). For instance, Pulo Aceh has a signifi-
cantly low High Area (2 km²) despite having a 
relatively moderate amount of Low and Moder-
ate areas. Similarly, Leupung has a higher Low 

Area (26 km²) but relatively small High Area (5 
km²), possibly due to its coastal and hilly geogra-
phy. More urbanized or coastal sub-districts, such 
as Baitussalam, Krueng Barona Jaya, and Peukan 
Bada, tend to have lower values for all categories, 
particularly in High Areas. This may indicate land 
limitations due to population density, infrastruc-
ture, or coastal landforms.

Several studies have analyzed extreme 
weather hazards using geospatial or GIS-based 
approaches across different regions. For instance, 
a study in Arkansas employed GIS-based regres-
sion analysis to assess the influence of topogra-
phy, land cover, and other factors on hazard miti-
gation and building code improvements (Rowden 
and Aly, 2018). Similarly, another study predicted 
extreme wind speeds in Switzerland using GIS 
and generalized additive models, regionalizing 
wind statistics based on topographic and land-
scape variables (Etienne, et al., 2010). In Aus-
tralia’s Great Barrier Reef, researchers analyzed 
cyclone-induced reef damage using a cyclone 
wind hindcasting model within GIS to reconstruct 
high-energy wind and wave conditions over time 
(Puotinen, 2007; Duvat el al., 2019). A separate 

Table 3. The impact area of extreme weather hazard analysis (in km2)
Sub-district name Low (km2) Moderate (km2) High (km2)

Lhoknga 28 182 24

Indrapuri 3 172 27

Seulimeum 2 327 58

Montasik 0 44 19

Sukamakmur 0 34 10

Darul Imarah 0 11 13

Peukan Bada 2 25 6

Mesjid Raya 0 111 15

Ingin Jaya 0 10 14

Kuta Baro 0 47 13

Darussalam 0 28 11

Pulo Aceh 3 77 2

Lembah Seulawah 6 270 32

Kota Jantho 27 518 31

Kota Cot Glie 24 264 30

Kuta Malaka 0 19 4

Simpang Tiga 0 21 6

Darul Kamal 0 19 5

Baitussalam 0 10 9

Krueng Barona Jaya 0 3 3

Leupung 26 135 5

Blang Bintang 0 29 13
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study developed an integrated monitoring and 
forecasting system for managing seaport safety 
under extreme wind events, which was tested 
using selected intense weather cases (Repetto 
et al., 2017; Athanasatos et al., 2014; Rawson 
et al., 2021). Furthermore, hurricane exposure 
modeling in Cusuco National Park, Honduras, 
integrated a wind pressure and exposure model 
with historical hurricane data to assess risk levels 
(Batke et al., 2014). Coastal vulnerability to tropi-
cal cyclones in Odisha, India, was also evaluated 
using a GIS-based approach, applying the coastal 
vulnerability index (CVI) to quantify risk levels 
(Sahoo and Bhaskaran, 2018). Additionally, haz-
ardous weather events affecting river transport in 
Novi Sad, Serbia, were analyzed using GIS, geo-
statistics, and numerical methods to assess port 
vulnerability and adaptation strategies (Komazec 
et al., 2024). These studies highlight the versatil-
ity of GIS-based approaches in analyzing extreme 
weather hazards, emphasizing their role in haz-
ard prediction, vulnerability assessment, and risk 
mitigation across diverse geographic regions.

CONCLUSIONS

This study has analyzed the distribution of 
extreme weather hazards in Aceh Besar using a 
geospatial approach with GIS-based overlay tech-
niques. The results indicate significant variations 
in low, moderate, and high hazard areas across dif-
ferent villages, highlighting the influence of topo-
graphical and environmental factors. The findings 
reveal that low-hazard areas are generally minimal 

across most villages, with 88.2% of villages having 
no significant low-lying zones. However, a few vil-
lages, such as Suka Tani, Bak Sukon, and Bueng, 
exhibit substantial low-hazard areas, suggesting 
potential vulnerability to water accumulation and 
flooding. The distribution of moderate-hazard ar-
eas presents a different pattern, with an average of 
3.90 km² per village but a high variation, indicat-
ing a mix of gently sloping terrains. Villages like 
Bueng, Suka Tani, and Bak Sukon contain the 
largest moderate-hazard areas, which may influ-
ence land use and flood management strategies. In 
contrast, high-hazard areas are less frequent, with 
a majority of villages exhibiting small high-terrain 
zones, suggesting that steep terrains are relatively 
rare. The histogram analysis further supports these 
findings, showing a right-skewed distribution for 
low and moderate hazard areas, meaning that most 
villages have small hazard zones, while only a few 
have large extents. This pattern suggests that ex-
treme weather hazards are concentrated in specific 
locations rather than evenly distributed across the 
region. These results emphasize the importance 
of targeted disaster mitigation strategies. Villages 
with extensive low-hazard areas require enhanced 
flood risk management, while those with moder-
ate-hazard zones should focus on land use plan-
ning and erosion control. Further studies should 
explore the relationship between hazard distribu-
tion and environmental factors such as river prox-
imity, land cover changes, and climate trends. In-
tegrating these insights into regional disaster pre-
paredness plans can enhance community resilience 
and reduce the adverse impacts of extreme weather 
events in Aceh Besar.

Figure 6. Sub-districts affected by extreme weather hazards
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