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INTRODUCTION

Soil erosion is a critical environmental issue 
that degrades land resources due to natural forces 
such as rain, wind, water flow, ice, and other en-
vironmental agents. This process involves various 
mechanisms, including ablation, sediment trans-
port, scouring, and mass movements. Water-driv-
en erosion occurs when water acts on vulnerable 
soils, a process influenced by the composition of 
the substrate, the shape of the terrain, the presence 

of vegetation, and agricultural practices (Chalise et 
al., 2019; Maidment 1993; Kusi et al., 2023). The 
accurate prediction of erosion-prone areas is cru-
cial for sustainable land and water resource man-
agement, as uncontrolled soil loss leads to signifi-
cant agricultural and hydrological consequences.

To assess susceptibility to erosion and pin-
point high-risk zones, it is essential to analyze 
key contributing factors such as climatic inten-
sity, particularly precipitation, soil erodibility, 
topographical features (such as slope steepness), 
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land use, and vegetation density. Traditional ero-
sion models, including empirical and conceptual 
approaches, have been widely used, yet they of-
ten lack adaptability to local conditions and rely 
on predefined assumptions that may not always 
reflect real-world erosion dynamics. Effectively 
tackling this issue today requires the adoption of 
cutting-edge techniques and sophisticated geo-
graphic information management tools (Pelletier, 
2012; Arnoldus, 1980; Gebrehiwot et al., 2014; 
Hilmi et al., 2023; Ozer et al., 2020).

To estimate water erosion, a variety of predic-
tive models and assessment methods have been de-
veloped worldwide. These models are categorized 
into three main types: empirical, physical, and 
conceptual, with the choice depending primarily 
on data availability. Among these, the revised uni-
versal soil loss equation (RUSLE) model has been 
widely used for mapping and simulating water 
erosion, demonstrating high reliability (Achu and 
Thomas 2023; Ahmad et al., 2023; Ashiagbor et al., 
2012; 2013; Boissy et al., 2022; EL Hadi, 2014). In 
Morocco, several studies utilizing GIS tools have 
applied this model to analyze erosion patterns. Re-
search focused on erosion modeling and its under-
lying causes(Tabyaoui et al. 2016; Elkadiri et al. 
2014; Sadiki,A et al. 2012; El Amarty et al. 2024) 
has been carried out in the Oued Haricha, Oued 
Lkhmiss, and Oued Boussouab catchments, where 
estimated soil losses reach 62.72 t/ha/yr, 36 t/ha/yr, 
and 55.35 t/ha/yr, respectively.

Another widely used approach for mapping 
and modeling soil erosion is the PAP/CAR meth-
od, which has proven effective in numerous studies 
(Tahouri et al., 2022; Tahouri et al., 2019; Lahlaoi 
et al., 2015; Yacine et al., 2019). In Morocco, GIS-
based research has incorporated this methodology 
to assess watershed susceptibility to erosion haz-
ards. For instance, (Mesrar et al., 2015) applied the 
PAP/CAR framework in the Sahla watershed to 
evaluate erosion processes and their contributing 
factors. Likewise, (Boukrim et al., 2016) employed 
this method to produce qualitative erosion maps 
for the Aoudour watershed in the Rif region of Mo-
rocco. Despite its widespread application, the PAP/
CAR approach remains a deterministic model with 
predefined classification rules, limiting its predic-
tive accuracy in heterogeneous landscapes.

Before implementing soil conservation strate-
gies, a comprehensive spatial evaluation of ero-
sion risk is necessary (Akalai et al. 2014; Basha-
rat et al. 2014; Duchemin et al. 2005; Efiong 
et al. 2021). However, traditional models face 

challenges in capturing the complexity of erosion 
dynamics, necessitating the integration of data-
driven methods such as machine learning. Recent 
advancements in artificial intelligence have en-
abled the development of predictive models ca-
pable of capturing intricate relationships between 
multiple environmental variables.

This study aims to compare the predictive 
performance of a traditional deterministic ap-
proach (PAP/CAR) with a machine learning mod-
el (XGBoost) for water erosion assessment in the 
Beht watershed, Morocco. By leveraging remote 
sensing and GIS, this research seeks to:
	• Evaluate the efficiency of PAP/CAR in erosion 

risk assessment and identify its limitations.
	• Assess the predictive capabilities of the XG-

Boost model, trained on diverse environmen-
tal conditioning factors.

	• Determine whether machine learning tech-
niques can enhance the accuracy and spatial 
resolution of erosion risk prediction compared 
to traditional models.

By addressing these research questions, this 
study contributes to bridging the gap between tra-
ditional erosion assessment methods and modern 
computational techniques, offering insights into 
the applicability of AI-based approaches for soil 
conservation and watershed management.

METHODS AND MATERIALS 

The area study

The Oued Beht watershed, covering an area of 
4.432 km², is situated upstream of the El Kansera 
dam. It extends in a northwest-southeast direction 
and is bordered to the north by Sidi Kacem and 
Sidi Slimane, to the northeast by Mèknes, to the 
east by El Hajeb, Ifrane, and Jbel Hebri, to the 
south by Mrirt and Oued Oum Rabia, and to the 
west by the urban centers of Oulmes and Khem-
isset. This watershed is a sub-basin of the larger 
Oued Sebou watershed. The hydrographic net-
work originates in the central-northern region of 
Morocco and the western Middle Atlas. The river 
merges with the lower Oued Sebou after passing 
through the central southern Rifain furrow, where 
it receives significant contributions from various 
tributaries. It then traverses the Prérif and the 
southern part of the El Gharb plain, which is part 
of the western southern Rifain furrow (Fig. 1).
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Geologically, the watershed comprises for-
mations ranging from the Paleozoic to the Qua-
ternary periods. The Paleozoic basement and its 
sedimentary cover are overlain by Upper Mio-
cene deposits in the southern Rifain furrow. The 
Oued Beht fluvial terraces, consisting of tiered 
and nested deposits, rest unconformably on the 
Miocene substratum. The watershed spans three 
major geological and structural units: Central 
Hercynian Morocco (Ait Yacine et al. 2019; Hil-
mi et al. 2023; HCEFLCD 2014; Lakhili et al. 
2017), the Middle Atlasic Causse, and the South 
Rifain Sillon. It is predominantly composed of 
impermeable formations from the Primary and 
Permo-Triassic periods of the Massif Central. 
Quaternary basalts, present in some areas along 
the Oued Beht, are of minor geological signifi-
cance (Hilmi et al. 2023). The Paleozoic com-
plex, consisting mainly of Ordovician, Silurian, 
and Carboniferous formations, is dominated by 
shales interspersed with occasional layers of 
quartzite and limestone. Further north, upstream 
from El Kansera, Permo-Triassic red saliferous 
clays are found alongside small basalt outcrops 
of limited extent.

The region experiences a Mediterranean cli-
mate characterized by two distinct seasons: a 
wet, cold period and a dry, hot period. Annual 

precipitation averages around 700 mm across the 
basin, though rainfall distribution is highly irreg-
ular, both seasonally and interannually. Rainfall 
events are often convective in nature, leading to 
thunderstorms that can trigger severe flooding.

Methodologies and data sets

The qualitative evaluation of water erosion 
using the PAP/CAR model relies on an integrated 
analysis of risk-inducing factors, requiring a car-
tographic methodology combined with data pro-
cessing and interpretation. This approach is struc-
tured around three complementary components.

The predictive component focuses on the-
matic mapping of key factors influencing erosion, 
such as lithology, slope gradient, land use, and 
vegetation density. The objective is to delineate 
homogeneous erosion-prone zones and develop 
a cartographic representation of erosion patterns. 
This process involves multiple sequential steps, 
including generating slope and lithology maps, 
producing friability and erodibility maps by 
overlaying slope and lithofacies data, and creat-
ing land use and vegetation cover maps derived 
from Landsat-8 satellite imagery. Additionally, 
a soil protection map is constructed by combin-
ing land use and vegetation cover density data, 

Figure 1. Oued Beht watershed location
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while the final thematic map of erosive conditions 
is obtained by integrating the erodibility and soil 
protection layers.

The descriptive component aims to assess and 
map existing erosion processes, providing insight 
into ongoing soil degradation and the extent of 
exposure to erosion. Meanwhile, the integrative 
component synthesizes findings from both the 
predictive and descriptive approaches to generate 
a comprehensive map of erosion trends. This syn-
thesis enables the evaluation of erosion dynamics 
by categorizing areas based on erosion intensity 
and susceptibility levels. The model’s input pa-
rameters are combined following the PAP/CAR 
framework, which was developed through ex-
tensive studies across various Mediterranean re-
gions to establish correlations between different 
erosion-driving factors.

The PAP/CAR methodology is extensively 
utilized across several regions in the Rif and 
Middle Atlas, particularly within the watersheds 
of Amzaz, Oued Zgane, Sahla, Kharouba, Oued 
Beht, Oued Larbaa, and Assfalou (Iaaich et al., 
2016; Ousmana et al., 2017; Mohajane et al., 
2021; Dallahi et al., 2021; Sadiki et al., 2012; Ta-
houri et al., 2022). However, an evaluation of the 
results reveals certain shortcomings, such as the 
overestimation of the spatial distribution of ero-
sion risk zones. To enhance the accuracy of these 
estimates, this study incorporates machine learn-
ing algorithms, specifically Extreme Gradient 
Boosting to refine the prediction of water erosion 
hazard patterns within the study area. The focus 
is on sheet erosion, with the results compared 
to those obtained from conventional PAP/CAR 
modeling, represented by the water erosion trend 

map, to assess the contribution of machine learn-
ing techniques in improving predictive accuracy.

The data used in this research come from var-
ious sources, including a digital elevation model 
(DEM), a Landsat 8 satellite image captured on 
June 30, 2024, and an inventory of sheet erosion 
patterns documented in the study area up until 
March 2025. Data preprocessing involves sev-
eral stages: (i) initial processing of the DEM and 
Landsat 8 image in the ArcGIS environment. (ii) 
extraction of topographic and climatic variables, 
as well as factors derived from the RUSLE equa-
tion.(iii) preparation of the sheet erosion inven-
tory for modelling (Table 1), and (iv) selection of 
training and testing datasets using a random sam-
pling method, with 70% of the data allocated for 
training and 30% for testing (Fig. 2).

As previously outlined, the validation pro-
cedure involved splitting the inventory data into 
two separate groups: 70% of the data was allocat-
ed for training the model, and the remaining 30% 
was reserved for testing the model’s performance. 
Out of 180 total inventory points, 126 were used 
for training, and 54 were set aside for validation 
(Fig. 3). To evaluate the effectiveness of the sta-
tistical model, along with estimating its variance 
and bias, the training set underwent a resampling 
technique called cross-validation (CV).

Cross-validation is a widely adopted ap-
proach in classification tasks to assess the reli-
ability of a statistical model. This method divides 
the dataset into distinct subsets designated for 
training and testing, ensuring balanced sampling 
and minimizing the chances of overfitting or un-
derfitting during the model’s optimization. In this 
analysis, 10-fold cross-validation (10-fold CV) 

Table 1. Characteristics of predisposing factors to modeling Sheet erosion 
Data Resolution / Scale Source

DEM 30 × 30 https://earthexplorer.usgs.gov

Landsat 8 30 × 30 https://earthexplorer.usgs.gov

Elevation 30 × 30 Derived from the DEM

Slope 30 × 30 Derived from the DEM

Aspect 30 × 30 Derived from the DEM

Factor_R 30 × 30 Rango and Arnoldus Eq (1987)

Factor_LS 30 × 30 Mitasova et al. Eq (1996)

Factor_K 30 × 30 Williams Eq (1995)

Factor_C 30 × 30 De Jong Eq (1994)

LULC 30 × 30 Derived from the Landsat 8

Cover_Density 30 × 30 Derived from the Landsat 8

Lithology 1/50000, Rasterization  30 × 30 digitization of geologic maps 1/50000
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was employed. The dataset was randomly split 
into ten equal-sized subsets, or “folds.” In each it-
eration, the model was trained on nine of the folds 
and validated on the remaining fold. This process 
was repeated ten times, ensuring that each fold 
was used once for testing. The final performance 
of the model was determined by averaging the 
results from all ten iterations, providing a more 
robust and reliable assessment of its accuracy.

Conditioning factors of PAP/CAR modeling

An analysis of the slope distribution map (Ta-
ble 2 and Fig. 4a) for the Oued Beht watershed 

reveals that the majority of the study area is char-
acterized by low to moderate slopes, with gradi-
ents of less than 12%, which cover approximately 
72.53% of the total surface area. Specifically, the 
low-slope class (0–3%) comprises 29.60% of the 
basin’s surface, translating to 1305.19 km², pre-
dominantly situated in the lower-lying regions 
and the primary river valleys. The moderate slope 
class (3–12%) extends across 42.93% of the total 
area, or 1892.74 km², and is spread across most of 
the watershed, significantly influencing soil sta-
bility and surface water runoff dynamics. Steeper 
slopes (12–20%) account for 21.56% of the to-
tal surface area, being concentrated primarily in 

Figure 2. Flowchart of Sheet erosion susceptibility modeling

Figure 3. Sheet erosion inventory map
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the central and upper portions of the basin. Areas 
with very steep slopes (20–35%) cover 5.62% 
of the watershed and are typically found in the 
mountainous regions where the intensity of water 
erosion is notably higher. Finally, extreme slopes 
(> 35%), although comprising only 0.28% of the 

area, are situated in steep, highly vulnerable zones 
prone to significant erosion and soil instability.

The Oued Beht watershed exhibits consid-
erable lithological diversity, which plays a cru-
cial role in determining the susceptibility of the 
area to erosion (Table 2 and Fig. 4b). The most 

Figure 4. Maps of conditioning factors of Sheet erosion (PAP/CAR modeling): (a) slope, (b) lithology, 
(c) erodibility, (d) land use, (e) cover density, (f) soil protection

Table 2. Slope, LS and erodibility proprieties of Oued Beht watershed
Slope_class Slope_Type (%) Slope_State Area in km² Area in %

1 0–3 Low 1305.19 29.60

2 3–12 Moderate 1892.74 42.93

3 12–20 Steep 950.78 21.56

4 20–35 Strong 247.92 5.62

5 > 35 Extreme 12.53 0.28

LS_Class Lithology_Type Lithology_state Area in km² Area in %

5 Alluvial terraces Very weak 370.36 8.40

4 Yellow sandy marls Low 3362.95 76.24

3 Conglomerates, red sandstones Average 323.99 7.35

2 Red conglomerates,basaltic lavas Strong 74.55 1.69

1 basalts, ankaratrites Extreme 279.10 6.33

Erodibility class Erodibility_type Erodibility_State Area in km² Area in %

1 Low (EN) Low (EN) 354.22 8.03

2 Moderate (EB) Moderate (EB) 1196.85 27.13

3 Average (EM) Average (EM) 1734.01 39.31

4 Strong (EA) Strong (EA) 874.43 19.82

5 Extreme (EX) Extreme (EX) 251.38 5.70
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prevalent formation within the region is yellow 
sandy marl, covering 76.24% of the total surface 
area. This material is known for its relatively low 
mechanical strength, which renders it particularly 
prone to differential erosion and landslide occur-
rences. Alluvial terraces, occupying 8.40% of the 
basin’s surface area, are typically found along riv-
er channels and are highly susceptible to weather-
ing and erosion due to their minimal resistance. 
Red conglomerates and sandstones, which cover 
7.35% of the surface, exhibit moderate resistance 
to erosive forces, whereas the red conglomerates 
and basaltic lavas, which constitute 1.69% of the 
total area (or 74.55 km²), offer a higher degree 
of erosion resistance. Finally, basalts and ankara-
trites, though covering only 6.33% of the area, 
represent the most erosion-resistant formations in 
the region, playing a vital role in maintaining the 
structural integrity of the landscape.

The erodibility of the Oued Beht watershed is 
primarily influenced by the nature of the geological 
materials and the land’s slope characteristics (Table 
2 and Fig. 4c). Low erodibility zones (EN) cover 
8.03% of the total area, predominantly located in 
regions where resistant geological formations are 
present and slopes are moderate. These areas exhibit 
minimal susceptibility to erosion due to the stability 
of the underlying materials and topography.

Moderately erodible regions (EB) represent 
27.13% of the watershed’s surface area. These 
zones are characterized by more pronounced 

weathering, although the erosion process is still 
constrained by the structural integrity of the rock 
formations. In contrast, medium erodibility (ME) 
areas account for the largest portion of the wa-
tershed, encompassing 39.31% of the area. These 
zones are marked by lithological formations that 
are relatively sensitive to erosion, compounded 
by moderate to steep slopes, which create favor-
able conditions for the development of gullies 
and sheet erosion.

Highly erodible regions (EA) cover 19.82% 
of the basin’s total area and are particularly vul-
nerable to water erosion. These areas are typically 
found in sectors with steep slopes and loose, eas-
ily disintegrated materials, making them highly 
susceptible to erosion processes. Lastly, extreme 
erodibility (EX) zones, although constituting just 
5.70% of the territory, represent the most erosion-
prone areas within the watershed. These regions 
experience rapid soil and sediment removal, lead-
ing to geomorphological instability and signifi-
cantly accelerating erosion processes.

An analysis of land use within the Oued 
Beht watershed (Fig. 4d) demonstrates a pro-
nounced prevalence of bare soil and dry crops, 
which together cover 52.36% of the total surface 
area (Table 3). This land use pattern significantly 
heightens the watershed’s susceptibility to water 
erosion, as the lack of dense vegetation cover 
exacerbates the impacts of water abstraction and 
surface runoff. In contrast, areas dedicated to 

Table 3. Land use, cover density and soil protection proprieties of Oued Beht watershed
Land use_class Land use type Area in km² Area in %

1 Arboriculture & Reforestation 44.91 1.01

2 Mattoral with dense cover 151.13 3.41

3 Forest 1050.40 23.69

4 Mattoral with clear cover 25.37 0.57

5 Bare ground/Cultivation in dry 2321.70 52.36

6 Intensive irrigated cultivation 840.22 18.95

Cover density_class Type and state Area in km² Area in %

1 Low < 25% 1230.58 27.90

2 Average 25–50% 2013.15 45.65

3 Strong 50–75% 753.10 17.08

4 Extreme > 75% 413.29 9.37

Soil_protection_class Soil_protection_state Area in km² Area in %

1 Very high 555.93 12.53

2 High 827.26 18.65

3 Average 442.07 9.97

4 Weak 437.91 9.87

5 Very weak 2172.45 48.98
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irrigated crops (18.95%) and woodland (23.69%) 
offer some degree of soil stabilization. However, 
the distribution of these wooded areas is uneven 
across the basin, leaving certain regions, partic-
ularly in the downstream sections, highly vul-
nerable to erosion. The limited extent of mator-
ral (3.98%) and reforested areas (1.01%) further 
emphasizes the scarcity of protective vegetation, 
intensifying soil fragility in areas subjected to 
intensive agricultural practices and human activ-
ity. These figures point to an insufficient natural 
buffer against erosion, exacerbating the vulner-
ability of the watershed’s soils.

Further examination of vegetation cover 
density (Fig. 4e) underscores the uneven distri-
bution of vegetation and its consequent effect 
on soil stability. The low-density cover class (< 
25%) is dominant, covering 27.90% of the area, 
while 45.65% of the basin is characterized by 
moderate vegetation density (25–50%), provid-
ing only a moderate level of protection against 
erosion. In contrast, regions with dense vegeta-
tion cover (> 50%) account for a mere 26.45% 
of the total area, with these dense areas primar-
ily concentrated in forested regions. This im-
balance results in the concentration of erosion-
prone zones in areas with insufficient vegetation, 
where runoff is more likely to occur and lead to 
soil degradation. Overall, the fragmentation of 
vegetation cover across the watershed highlights 
the urgent need for enhanced soil conservation 
strategies, such as expanding forested areas and 
promoting the regeneration of natural vegeta-
tion. Such measures would serve to bolster the 
watershed’s resilience to erosive processes and 
contribute to long-term soil stability.

The integration of these factors into the soil 
protection assessment (Fig. 4f) reveals a signifi-
cant dominance of regions with minimal to low 
protection, which account for 48.98% and 9.87% 
of the total basin area, respectively. These vul-
nerable areas, primarily located in agricultural 
zones and on bare land, face heightened suscep-
tibility to water erosion. Conversely, regions 
offering moderate to high levels of protection 
cover a mere 41.15% of the area, underscor-
ing the disparity in the distribution of stabilized 
land. The findings emphasize the critical need 
for sustainable land management practices, 
such as strategic reforestation efforts, agrofor-
estry initiatives, and erosion control measures, 
to enhance the watershed’s resistance to soil 
degradation.

Conditioning factors of machines learning 
modeling

The application of machine learning models, 
particularly XGBoost, to predict water erosion 
patterns in the Oued Beht watershed incorporates 
ten key factors that directly affect the susceptibility 
of soil to erosion. These factors, detailed in Figure 
5, encompass a range of climatic, topographical, 
and environmental parameters, facilitating the ac-
curate modeling of erosion processes. The varia-
tion in the erosivity factor, depicted in Figure 5i, 
reveals a relatively narrow range of values com-
pared to previous studies such as those by Khali 
Issa et al. (2019) for the Oued Lkhmis catchment 
in the Western Rif, where values ranged from 87 
to 113. In comparison, the erosivity factor in the 
present study varies between 162 to 192 for Oued 
Sahla (Central Rif) and 215 to 228 for the Telata 
catchment. Despite some variation, the results in 
this study align closely with other regional stud-
ies that focus on similar catchments.

Erodibility, which measures soil resistance to 
erosion, is determined by factors such as soil tex-
ture, structure, organic matter, and permeability, all 
of which influence the K factor (Iaaich et al., 2016; 
Duiker et al., 2001). In this study, the K factor was 
computed using the Williams equation, consider-
ing the silt, sand, clay, and organic carbon content 
of the soil. The K values range from 0.17 to 0.81 
t·h·ha·ha-1·MJ-1·mm-1, and the map of erodibility 
indicates that the Oued Beht watershed exhibits a 
medium vulnerability to erosion, with only 3.5% 
of the area showing low erodibility (Fig. 5e).

The LS factor, which quantifies the impact of 
topography on erosion, is influenced by both slope 
length (L) and slope gradient (S). Slope length is 
defined as the distance between the runoff source 
and the point where deposition begins, typically 
entering a defined drainage channel (Asmare et 
Hailemariam 2021; Bryan et Poesen 1989). Using 
the digital terrain model with 30-meter resolution, 
various formulas, including those from Wischmeier 
and Smith (1978), were applied to calculate the LS 
factor. The LS values range from 0 to 107 (Fig. 5f), 
with these results generally aligning with those ob-
served in the Oued Sahla watershed (ranging from 
0.48 to 87.9). In contrast, the LS values found in 
this study are higher compared to those in the Oued 
Lkhmiss catchment, where they range from 5 to 55.

The canopy management factor (C) evalu-
ates the rate of soil loss under specific land use 
conditions, reflecting the influence of agricultural 
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Figure 5. Maps of conditioning factors of Sheet erosion (machine learning modeling): (a) elevation; (b) aspect; 
(c) slope; (d) cover density; (e) K_factor; (f) LS_factor

and land management practices on erosion. The C 
factor varies depending on vegetation cover, with 
higher values indicating poorer cover and higher 
erosion risks (De Jong, 1994). The C factor map 
in this study, generated from a Landsat-8 image 
(June 30, 2024), was complemented by field veri-
fication and the calculation of NDVI indices to 
estimate C-factor values. Using the De Jong equa-
tion, the C-factor values show a marked increase 
in the southeastern portion of the watershed, 
where intensive agricultural activities and con-
tinuous cultivation exacerbate erosion risks. Con-
versely, the upstream, eastern, and northern areas, 
characterized by higher altitudes, precipitation, 

and forest cover, show lower C values, indicating 
better soil protection.

Rainfall erosivity, a key factor in water ero-
sion, is the product of total rainfall kinetic en-
ergy (E) and the maximum 30-minute rainfall in-
tensity (I30), as outlined by Renard et al. (1997) 
(Renard et al., 1991; Toy et al., 1999). However, 
data limitations on rainfall kinetic energy and in-
tensity posed challenges for this study. To address 
this, we collected precipitation data over 40 years 
(1983–2023) from various meteorological stations, 
filling gaps through nearest-neighbor interpola-
tion. The R factor, calculated from monthly and 
annual precipitation data, was interpolated using 
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Figure 5. Cont.  (i) R_factor; (j) C_factor; (h) lithology, (k) land use

inverse distance-weighted (IDW) methods. The R 
values for the Oued Beht catchment range from 65 
to 127.5 MJ mm ha-1 h-1 yr-1, with higher values 
observed in the northern and north-western parts of 
the watershed, where precipitation is more abun-
dant, and lower values in the southwestern areas, 
reflecting a decrease in rainfall towards the south.

RESULTS AND DISCUSSIONS

The PAP/CAR erosion trend results from the 
intersection between the map of erosion states 
and the map of current erosion patterns in the 
study area. In contrast, the prediction of erosion 

patterns using machine learning models results in 
a sheet erosion susceptibility map, which is the 
focus of our comparative study. The results ob-
tained are presented in the following sections.

Water erosion trend (PAP/CAR modeling 
approach)

The erosion status mapping (Fig. 6a) is the result 
of a comprehensive cartographic analysis that incor-
porates multiple factors related to soil protection and 
erodibility. This approach aims to illustrate the intri-
cate interactions between variables influencing water 
erosion and to classify the watershed into homoge-
neous zones based on their susceptibility to erosion.
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The outcomes of this analysis (Fig. 6a and Ta-
ble 4) indicate that approximately 42.37% of the 
watershed is subject to severe erosion, represent-
ed by two high-risk categories: high and very high 
risk, encompassing areas of 1,337.80 km² and 
541.22 km², respectively. These highly eroded re-
gions are predominantly located on steep terrains 
where vegetation is either degraded or absent, with 
significant occurrences of bare soil and badlands. 
In contrast, regions with low to very low erosion 
risk constitute 43.07% of the total watershed area 
(1,909.94 km²). These zones are mainly situated 

in the upper and middle sections of the watershed, 
where vegetation is more intact, including dense 
forests and matorral. Additionally, these areas are 
characterized by geological formations that are 
relatively resistant to erosion, composed of cohe-
sive rock types. The class representing moderate 
erosion risk, covering 14.56% of the watershed 
(645.57 km²), is more dispersed across the region. 
These areas typically occur on moderate slopes (< 
35%), where the soils are moderately weathered 
and have low cohesion. This category is often as-
sociated with cultivated land, including fruit tree 

Figure 6. (a) Erosion state and (b) forms erosion Maps of Oued Beht watershed

Table 4. Erosion state and erosion forms proprieties of Oued Beht watershed
Erosion_class Erosion_state Area in km² Area in %

1 Very low 770.62 17.38

2 Low 1139.32 25.69

3 Notable 645.57 14.56

4 Hight 1337.80 30.17

5 Very hight 541.22 12.20

Forme of erosion class Forme of Erosion_ state Area in km² Area in %

1 040 754.69 17.16

2 050 275.06 6.25

3 D1C1 23.31 0.53

4 D1C2 14.57 0.33

5 D2 22.18 0.50

6 D2C1 260.01 5.91

7 D3C2 87.47 1.99

8 L1 91.92 2.09

9 L1D1 1638.59 37.25

10 L2 36.88 0.84

11 L2D2 1174.66 26.70

12 W1 7.97 0.18

13 W2 11.77 0.27
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plantations and perennial crops, particularly those 
located along watercourses.

The Oued Beht watershed exhibits a range 
of erosive processes, primarily influenced by the 
relief’s topography, the lithological composition, 
and the density of vegetation cover. The erosion 
map (Fig. 6b) results from a synthesis of satel-
lite image analysis and ground-truthing. Spatial 
assessment of erosion forms within the watershed 
reveals a clear dominance of sheet erosion (L1) 
and surface gullying (D2), which account for 
37.25% and 26.70% of the total area, respective-
ly. These erosion types are particularly prevalent 
along riverbanks and in areas experiencing high 
runoff, where the soils, predominantly composed 
of marl and friable materials, are highly prone to 
erosion. The interaction between surface runoff 
and human activities further exacerbates these 
processes, contributing to their rapid expansion. 
These findings align with those from similar re-
gions in the Central Rif, such as the Oued Aou-
dour watershed, and the Tabular Middle Atlas, 
particularly in the Oued Zgane watershed, where 
comparable geomorphological and climatic fac-
tors have resulted in analogous erosion dynamics.

The distribution of deeper gullies, including 
moderate (D3C2) and superficial (D2C1) forms, 
covers relatively limited areas within the water-
shed, accounting for 1.99% and 5.91%, respec-
tively. These types of erosion are predominantly 
found in areas with steep slopes, where the con-
centration of runoff significantly contributes to 
the formation of gullies and ravines. In contrast, 
more advanced forms of linear erosion, such as 
L2 and L2D2, collectively cover approximately 
27.54% of the total watershed area. These ero-
sion types are indicative of more intense erosive 
processes, typically occurring in zones where soil 
stability is weakened due to low material cohe-
sion and sparse vegetation cover. Lastly, deep 
and moderately deep gullies (C1, C2, and C3) 
are relatively rare, occupying 0.53%, 0.33%, 
and 0.50% of the watershed, respectively. These 
forms of erosion are predominantly located in the 
southeastern portion of the basin and a few up-
stream sectors. Their occurrence suggests more 
advanced erosion in localized areas, where the 
interplay between slope, soil composition, and 
runoff intensity creates ideal conditions for the 
development of such features.

Sheet erosion in the Oued Beht watershed ex-
hibits a spatially heterogeneous distribution, in-
fluenced by topographic characteristics and land 

cover. In the upstream areas, mainly located in 
the south and southeast, sheet erosion is relatively 
limited due to the presence of a denser vegetation 
cover, consisting mainly of forest formations and 
matorral. These high-altitude zones also benefit 
from more resistant geological formations, which 
help reduce surface particle detachment. How-
ever, some localized sectors on steeper slopes 
show signs of sheet erosion, particularly in areas 
affected by deforestation and overgrazing.

In the central part of the watershed, which in-
cludes the northeast and northwest regions, sheet 
erosion becomes more pronounced, especially on 
intermediate slopes where the gradient is moderate 
to steep. This zone is characterized by a mix of cul-
tivated lands and bare soils, which facilitates the 
mobilization of surface particles by runoff. Erosion 
is particularly intense in areas dominated by marl 
and clay formations, as these weakly cohesive sub-
strates are highly susceptible to water erosion.

Finally, in the downstream part of the water-
shed, mainly in the north, sheet erosion tends to 
decrease due to the gentler terrain and the pro-
gressive sedimentation of materials transported 
from upstream. However, certain areas near wa-
tercourses and alluvial plains still show signs of 
diffuse erosion, particularly in agricultural zones 
where land management practices do not always 
provide effective soil protection against runoff. 
These observations highlight an erosion dynamic 
driven by the interaction between relief, soil type, 
and vegetation cover, with a decreasing intensity 
of sheet erosion from intermediate slopes towards 
the floodplain areas.

Sheet erosion susceptibility mapping using 
XGBoost (machine learning modeling approach)

Hyperparameter impact on model performance

Figure 7 presents a scatter matrix illustrating 
the interaction between the various hyper param-
eters of the tested XGBoost model. The objective 
of this analysis is to identify the optimal combina-
tions that enhance model performance, measured 
by Accuracy and Kappa.

The detailed results in the hyperparameter table 
indicate that the best configuration corresponds to 
eta = 0.05, max_depth = 22, gamma = 0, colsam-
ple_bytree = 1, min_child_weight = 2, and sub-
sample = 0.5, with the number of iterations set to 
200. This configuration achieved a maximum Ac-
curacy of 0.9002 and a Kappa of 0.6004, indicat-
ing a significant improvement compared to other 
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tested configurations. Conversely, certain combi-
nations, particularly those with high eta values (≥ 
0.3) and shallow tree depth (max_depth ≤ 6), led to 
lower performance, with a minimum Accuracy of 
0.6971 and a negative Kappa of -0.0066, indicat-
ing the model’s inefficacy under these conditions.

The impact of subsample and colsample_
bytree is also evident: partial data and column 
sampling (subsample = 0.5 and colsample_by-
tree = 0.75) tend to enhance model robustness 
by limiting overfitting. However, an excessive 
reduction in these values leads to performance 
degradation. The min_child_weight parameter 
also influences model stability: a higher value 
(min_child_weight = 2) appears to promote bet-
ter generalization of predictions. Finally, a second 
optimization was conducted by fixing the best-
performing hyper parameter values: eta = 0.05, 
max_depth = 6, gamma = 0.1, colsample_bytree 
= 0.75, min_child_weight = 1, subsample = 1, 
and nrounds = 200. This configuration resulted in 
an Accuracy of 0.8469 and a Kappa of 0.1931, 
slightly lower than the previously obtained maxi-
mum performance but offering greater stability, 
with a reduced AccuracySD of 0.1584.

Variable importance in the optimized XGBoost 
model

Figure 8 illustrates the importance of the vari-
ables used in the XGBoost model after a complete 
hyper parameter optimization. The objective of 
this analysis is to identify the most influential fac-
tors in predicting the studied phenomenon. The 
results show that slope is the most significant vari-
able, followed by elevation. This dominance can be 

explained by the fact that slope directly influences 
erosion and runoff processes, while elevation can 
serve as an indirect indicator of the topographic 
and climatic conditions of the study area.

The parameters of the revised universal soil 
loss equation, exhibit-varying levels of importance. 
Among them, Factor_LS is the most influential, 
supporting the idea that terrain morphology plays 
a key role in the studied phenomenon. Factor_K 
and Factor_R show moderate influence, suggest-
ing that soil resistance to erosion and rainfall in-
tensity have a notable but lesser impact compared 
to topographic variables. In contrast, Factor_C, 
which represents the effect of vegetation cover, has 
relatively low importance, possibly due to a homo-
geneous vegetation cover in the study area.

Other variables, such as lithology and cover 
density, have a weaker influence, indicating that 
their contribution to the prediction is less signifi-
cant compared to topographic and climatic fac-
tors. Finally, the classes of the Aspect parameter 
(I1, I3, I5, I6) appear to be the least influential in 
the model, suggesting that slope orientation has a 
limited impact on the studied phenomenon. This 
low importance may be explained by the lack of a 
strong correlation between terrain orientation and 
the processes at play in the study area.

These results confirm that topographic fac-
tors (slope, elevation, LS) are the primary de-
terminants of the modeled phenomenon, while 
erosion-related parameters (RUSLE factors) have 
a secondary yet non-negligible contribution. Ana-
lyzing variable importance helps optimize the se-
lection of parameters to include in the model and 
enhances its predictive robustness.

Figure 8. Variable importance in the optimized 
XGBoost model

Figure 7. Hyper_ parameters of XGBoost model
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ROC curve for the optimized XGBoost model

The performance and reliability assessment 
of the XGBoost model is based on the analysis of 
the Receiver Operating Characteristic curve and 
the Area under the Curve value. As shown in Fig-
ure 9, the optimized model achieves an AUC of 
0.96 on the test dataset, demonstrating its strong 
discriminatory power. This high performance is 
attributed to the rigorous selection of condition-
ing factors and the optimal tuning of hyper pa-
rameters, ensuring effective classification and im-
proved prediction of high-risk areas.

The most influential variables, such as slope, 
elevation, and the RUSLE equation parameters, 
have significantly contributed to enhancing the 
model’s robustness by capturing the spatial dy-
namics influencing the studied phenomenon. The 
relative importance of these factors, as revealed 
in the previous analysis, has helped refine classi-
fication accuracy and minimize prediction errors.

Additionally, the tuning of key hyperparam-
eters, including eta = 0.05, max_depth = 22, gam-
ma = 0, subsample = 0.5, and colsample_bytree = 
1, has ensured a well-balanced trade-off between 
bias and variance, reducing overfitting while 
maximizing model generalization. The optimized 
tree depth and adjusted data sampling have nota-
bly reinforced the model’s ability to learn com-
plex relationships without compromising predic-
tion stability.

Finally, the shape of the ROC curve, charac-
terized by a sharp rise toward the top-left corner, 
indicates that the model achieves high sensitivity 
with a low false positive rate. This result highlights 
the effectiveness of the adopted methodological 
choices, confirming that the XGBoost-based ap-
proach, combined with a rigorous variable selec-
tion and fine-tuned hyperparameter optimization, 
has led to a reliable and precise classification of 
the studied areas.

Sheet erosion susceptibility mapping 

The sheet erosion susceptibility map, illus-
trated in Figure 10, presents the spatial distri-
bution of erosion risk predicted using the op-
timized XGBoost model. The color gradient, 
ranging from black (low susceptibility) to yel-
low (high susceptibility), highlights the hetero-
geneity of erosion-prone areas within the study 
region. This mapping is primarily influenced by 
key environmental conditioning factors, partic-
ularly the parameters of the RUSLE equation, 
as well as topographic variables such as slope 
and elevation.

The results align with the variable impor-
tance analysis, which identified topographic 
factors as the dominant contributors to the Figure 9. The ROC curve with AUC

Figure 10. Sheet erosion susceptibility map (XGBoost) for the Oued Beht watershed
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erosion process. Specifically, high suscep-
tibility zones are concentrated in areas with 
steep slopes and elevated terrains, where run-
off intensity and soil instability are more pro-
nounced. In contrast, low susceptibility areas 
correspond to flatter terrains, where erosion 
risk remains minimal.

The model’s high predictive accuracy, re-
flected by a strong AUC ROC score, is attrib-
uted to the optimal tuning of hyperparameters, 
including those related to model learning, tree 
depth, regularization, and data sampling. This 
fine-tuning has significantly improved the 
model’s generalization ability while mitigat-
ing overfitting, ensuring a robust and reliable 
spatial classification. These findings confirm 
that XGBoost, when combined with a rigorous 
selection of conditioning factors and a well-
calibrated optimization process, serves as a 
powerful tool for mapping sheet erosion sus-
ceptibility. This approach provides valuable 
insights for environmental risk management 
and the development of effective soil conser-
vation strategies.

The spatial distribution of sheet erosion, as 
illustrated by the PAP/CAR model and the sus-
ceptibility mapping using the XGBoost-based 
machine learning approach, reveals significant 
consistencies as well as notable differences. 
The PAP/CAR model classifies erosion forms 
based on observed geomorphological features, 
highlighting the dominance of sheet erosion 
(L1 and L2 classes) in the central and south-
eastern parts of the watershed. These areas 
correspond to moderate-to-steep slopes with 
heterogeneous lithology, particularly marl and 
clay formations, which are highly susceptible 
to surface runoff. The classification also iden-
tifies localized areas of more advanced ero-
sion (L2D2) in the northern and northeastern 
regions, indicating zones where sheet erosion 
transitions into more severe linear erosion 
processes. However, this approach is largely 
based on expert-based classification and direct 
field observations, which may limit its capac-
ity to capture fine-scale variations in erosion 
susceptibility.

In contrast, the XGBoost model generates 
a continuous susceptibility map based on ma-
chine learning predictions, providing a more 
detailed and probabilistic assessment of sheet 
erosion risk. The results indicate a strong agree-
ment with the PAP/CAR model in terms of the 

general distribution of high-risk zones, par-
ticularly in the central and southeastern parts 
of the watershed. However, the machine learn-
ing model captures finer variations within these 
zones, highlighting micro-scale heterogeneity 
driven by slope gradient, land cover, and soil 
texture. The XGBoost model also extends high 
susceptibility predictions to additional areas in 
the northwest and near river networks, suggest-
ing that these regions, though less highlighted 
in the PAP/CAR classification, could also be 
prone to sheet erosion under certain conditions.

Overall, while both approaches confirm 
the influence of topographic and lithological 
factors on erosion susceptibility, the machine 
learning model provides a more detailed spatial 
representation, benefiting from a data-driven 
approach that optimizes the weighting of differ-
ent conditioning factors. The PAP/CAR model 
remains valuable for conceptualizing erosion 
processes but may require further refinement 
when applied to predictive mapping.

CONCLUSIONS

This study highlights the importance of in-
tegrating traditional erosion assessment meth-
ods with advanced machine learning models 
to enhance predictive accuracy. The compara-
tive analysis of the PAP/CAR model and XG-
Boost underscores the strengths and limitations 
of each approach. While PAP/CAR effectively 
classifies erosion-prone zones based on geo-
morphological criteria, it may overestimate 
risk areas due to its reliance on expert-based 
classification. Conversely, the machine learn-
ing model refines spatial predictions by opti-
mizing the weighting of key environmental fac-
tors, providing a more detailed and probabilis-
tic erosion susceptibility map.

The results confirm that topographic factors, 
particularly slope and elevation, play a domi-
nant role in erosion susceptibility, followed by 
soil properties and rainfall intensity. The high 
predictive performance of XGBoost, validated 
through cross-validation and ROC analysis, 
demonstrates its effectiveness in capturing 
complex spatial patterns of erosion risk. These 
findings support the integration of data-driven 
approaches in environmental risk assessment, 
offering valuable tools for decision-makers in 
soil conservation and watershed management. 
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