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INTRODUCTION

The growth performance of aquatic organisms 
is essential for the economic viability of the produc-
tion of aquaculture. Researchers developed growth 
formulas to simulate the growth changes of the 
species of interest throughout its entire lifespan or 
during specific developmental stages within a par-
ticular cultural environment [Sun and Wang, 2024], 
while also modeling it as a function of water quality 
parameters [Musa et al., 2023]. In specific, water 
quality is critical in the intensive pond culture of 
whiteleg shrimp (Litopenaeus vannamei) concern-
ing optimal growth and survival rates [Harlina et 
al., 2022]. Water quality is a term used to indicate 

the acceptability of water for a certain purpose or 
the ability of water to support diverse uses or pro-
cesses [Mustafa et al., 2022]. Intensive whiteleg 
shrimp aquaculture operations frequently fail due 
to poor water quality during maintenance [Iqmah 
et al., 2022]. Poor water quality can contribute to 
the emergence of a wide range of diseases, caus-
ing shrimp stress and even death, while good wa-
ter quality can improve shrimp growth, health, and 
production [Musa et al., 2020; Ritonga et al., 2021]. 

In principle, eco-green cultivation is intensive 
or superintensive shrimp cultivation with a pond 
arrangement design made using the “Silvofishery 
Komplangan models” and a cultivation system car-
ried out using the “hybrid system” that integrated 
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aquaculture ponds and mangrove ecosystems in 
coastal areas [Musa et al., 2020]. Ecogreen aqua-
culture is a system that utilizes the mangrove eco-
system to process incoming water before use or wa-
ter that comes out after being used for cultivation, 
so this cultivation system is allegedly suitable for 
development in coastal areas that are experiencing 
degradation and whose water conditions are de-
creasing due to pollution [Fidari et al., 2020; Musa 
et al., 2023a]. Silvofishery is a fish farming system 
that combines aquaculture with mangrove forests 
to increase aquaculture production and preserve 
the environment [Rangkuti et al., 2015; Kusuman-
ingtyas Perwitasari et al., 2020]. Meanwhile, the 
“komplangan model” itself is a more environmen-
tally friendly construction of pond land, because 
the mangrove land as a conservation area is sepa-
rate from the pond land as a cultivation area which 
is regulated by a water channel with two separate 
gates. The separation of mangrove land and pond 
land in the “komplangan model” is limited by an 
embankment between the two doors, so this pat-
tern can be an environmentally friendly pond man-
agement solution [Paruntu et al., 2016]. There-
fore, the application of environmentally friendly 
aquaculture such as eco-green aquaculture is more 
promising in coastal areas that have experienced 
degradation due to anthropogenic activities, such 
as industrial or domestic pollution and coastal de-
velopment [Mahmudi et al., 2022]. 

In recent, the use of machine learning approach 
in aquaculture sectors has been popular. Machine 
learning empowers computers to assist humans in 
analyzing extensive and intricate data sets. This 
area of research emphasizes the development of 
models, the analysis of data, its classification, and 
the generation of predictions based on that informa-
tion [Sarker, 2021]. This method has been utilized 

to classify the status of shrimp hatchery in Thai-
land [Panitanarak and Kaowleg, 2024], predict-
ing shrimp growth in commercial setting [Yu et 
al., 2006], as well as controlling and intelligently 
monitor water quality in the shrimp pond [Lin et 
al., 2021; Kaur et al., 2023]. However, the applica-
tion of Machine Learning in eco-green aquaculture 
is limited. Hence, this research aims to implement 
and compare several machine learning regression 
models to analyze the growth of whiteleg shrimp 
reared in eco-green aquaculture setting based on the 
condition of water quality aspects. This is important 
to promote the sustainability of shrimp aquaculture 
both economically and environmentally. 

MATERIALS AND METHOD

Study area and data collection

The study was conducted at eco-green aqu-
culture whiteleg shrimp pond owned by Labora-
torium Perikanan Air Payau dan Laut, Universitas 
Brawijaya located in Probolinggo Regency, East 
Java Province, Indonesia (Fig. 1). The data were 
collected from 2021 to 2023 and can be accessed 
at this following link: https://doi.org/10.6084/
m9.figshare.28785923.v1

Techniques for measuring shrimp growth and 
water quality variables

Shrimp growth were measured as average 
daily growth (ADG; gram/day) by using the fol-
lowing formula

 ADG = 𝑊𝑊𝑡𝑡+𝑁𝑁−𝑊𝑊𝑡𝑡
𝑁𝑁  (1) 

𝑀𝑀𝑀𝑀𝑀𝑀 = 1
𝑛𝑛 ∑ |𝑦𝑦𝑖𝑖 − �̂�𝑦𝑖𝑖|𝑛𝑛

𝑖𝑖=1  (2) 

𝑀𝑀𝑀𝑀𝑀𝑀 = 1
𝑛𝑛∑ (𝑦𝑦𝑖𝑖 − �̂�𝑦𝑖𝑖)2𝑛𝑛

𝑖𝑖=1  (3) 

𝑅𝑅𝑀𝑀𝑀𝑀𝑀𝑀 = √1
𝑛𝑛∑ (𝑦𝑦𝑖𝑖 − �̂�𝑦𝑖𝑖)2𝑛𝑛

𝑖𝑖=1  (4) 

𝑅𝑅2 = 1 − ∑ (𝑦𝑦𝑖𝑖−�̂�𝑦𝑖𝑖)2𝑛𝑛
𝑖𝑖=1
∑ (𝑦𝑦𝑖𝑖−�̅�𝑦 )2𝑛𝑛
𝑖𝑖=1

 (5) 
 

 (1)

where: Wt+N and Wt denotes average weight of 
s hrimps measured at days t + N and t, 

Figure 1. Research location map
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respectively. Meanwhile, N is number of 
days between two weight measurement. 

On the other hand, various water quality pa-
rameters were assessed through sample analysis. 
Instruments such as a Lutron PDO-520 DO meter 
were employed to record temperature (°C), pH, and 
dissolved oxygen (DO; mg/L). Transparency (m) 
and salinity (ppt) were evaluated using a secchi disc 
and refractometer, respectively. Test kits were uti-
lized to determine concentrations of nitrate (mg/L) 
and ammonia (mg/L). Furthermore, phosphate 
(mg/L), total organic matter (TOM; mg/L), total 
suspended solid (TSS; mg/L) levels were analyz-
ed using colorimetric, titrimetric, and gravimetric 
methods respectively in laboratory. In addition, 
total vibrio (CFU/mL) were counted by using to-
tal plate count technique. 

Data analysis

Data pre-processing

Before the deployment of the machine learn-
ing techniques, the data underwent pre-processing 
step, which involved the elimination of missing 
values and data transformation. The listwise re-
moval method was applied to eliminate any rows 
with missing values. Concurrently, the data un-
derwent normal scale transformation to achieve 
zero mean and a standard deviation of 1.

Machine learning methods for prediction

Supervised learning is a machine learning 
technique that entails deriving a function that as-
sociates input with output, utilizing training data 
composed of labeled input-output pairs. An in-
ferred function is generated from the examination 

of the designated training data and subsequently 
applied to novel, unseen instances. A prevalent 
method in this domain is regression, which em-
ploys an algorithm to elucidate the link between 
dependent and independent variables. Regression 
models facilitate the prediction of numerical val-
ues derived from several data sources. Table 1 
presents instances of diverse regression method-
ologies employed in this approach.

Evaluation metrics for machine learning regression

A total of four metrics – mean absolute er-
ror (MAE), mean squared error (MSE), root mean 
squared error (RMSE), and coefficient of determi-
nation (R-square) – are taken into account when 
assessing the algorithms’ performance. The higher 
the R-square and the lower MAE, MSE, as well as 
RMSE the better. We define these metrics as follows:
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 repre-
sent the i-th observed and predicted data, 
while 
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 is mean of the observed data. 

RESULTS AND DISCUSSION

Descriptive analysis of research variables

The summary statistics of the studied vari-
ables are displayed in Table 2 along with subse-
quently linked to the national standard values for 

Table 1. Regression algorithm of supervised learning
No Algorithm Description

1 Neural network multi-layer 
perceptron (NN MLP)

MLP is a form of artificial neural network made up of an input layer, one or more 
hidden layers, and an output layer, with each layer consisting of connected neurons. It 
employs activation functions and backpropagation to learn patterns from data, making 
it suitable for regressions applications [Gardner and Dorling, 1998]

2 Support vector regression 
(SVR)

SVR is an enhancement to Support Vector Machines (SVM) that may be applied to 
regression situations. It optimizes a function by identifying a tube that corresponds to 
a continuous-valued function while minimising prediction error [Gambella et al., 2021]

3 Decision tree regression 
(DTR)

DTR is a nonparametric supervised machine learning technique that uses a tree-like 
structure to solve regression issues. It predicts the output value by learning basic 
decision rules from the input variables, resulting in a logical chain of decisions that 
leads to the final output prediction [Liu et al., 2016]

4 Random forest regression 
(RFR)

Random forest is a kind of ensemble machine learning technique employed for 
regression analysis as well as classification. It implements the concept of bagging 
(or bootstrap aggregation), which is a way for creating another set of data through 
replacement from a former sample [Borup et al., 2023]
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aquaculture practices in Indonesia as stated in Gov-
ernment Regulation Number 22 of 2021 that can 
be accessed in the following link: https://peraturan.
bpk.go.id/Details/161852/pp-no-22-tahun-2021. 
Most of the water quality metrics conform to the 
standard values, except salinity (below standard), 
carbon dioxide, and ammonia (above normal). 

Whiteleg shrimp is recognized for its ada-
ptability to a wide array of environmental con-
ditions, including poor salinity. Prior research 
indicated that a salinity level even as low as 1 
ppt in whiteleg shrimp ponds did not signifi-
cantly impact the conversion rate of feed [Jaffer 
et al., 2020]. Furthermore, poor salinity condi-
tions may substantially diminish the organism’s 
growth rate early [Rahi et al., 2021]. On the other 
hand, prolonged ammonia exposure may impair 
normal growth and elevate the susceptibility of 
shrimp to numerous diseases [Liu et al., 2020]. 
Excessive carbon dioxide in the pond adverse-
ly impacted the development, survival, as well 
as wellness of shrimp. The shrimp subjected to 

elevated carbon dioxide levels exhibited im-
pairment to the tubule structure of the hepato-
pancreas along with the cells that regulate diet 
digestion and absorption of nutrients [Casillas-
-Hernández et al., 2021].

Machine learning results in predicting 
Whiteleg shrimp’s growth 

The best hyperparameters for each machine 
learning approach were determined using a grid 
search strategy. A grid search technique entails 
systematically evaluating all potential parameter 
options in a loop and identifying the most effec-
tive parameter. This work employs cross-valida-
tion within the grid search strategy to validate 
model outcomes for every single hyperparameter 
arrangement, aiming to identify the optimum hy-
perparameters. After running cross-validation on 
all possible combinations of model parameters, 
we settled on the parameters with the smallest er-
ror metrics (RMSE) as the best ones. The chosen 

Table 2. Descriptive statistics of research variables
Variable Unit Mean Stdev Min Max Standard

Average daily growth mg/day 0.385 0.300 0.012 1.513 0.22

Temperature °C 28.471 0.634 27.400 29.300 28–32

Transparency cm 35.714 8.693 25.000 55.000 20–40

Total suspended solid mg/L 224.857 45.751 140.000 277.000 < 50

Salinity ppt 24.429 1.690 22.000 26.000 26–32

Dissolved oxygen mg/L 5.714 0.862 4.200 6.700 > 3

Carbon dioxide mg/L 49.736 13.964 24.257 67.062 < 5

Nitrate mg/L 0.682 0.264 0.341 0.961 < 20

Phosphate mg/L 0.256 0.223 0.010 0.711 < 5

Ammonia mg/L 0.398 0.528 0.105 1.671 < 0.05

Total organic matter mg/L 27.989 33.790 7.584 108.704 < 90

Total vibrio CFU/mL 2385.714 1020.697 1000 3900 < 10000

Table 3. Selected hyperparameter of ML regression methods
ML methods Hyperparameter optimization

NN-MLP
Network topology

Hidden layer 1 : 6 neuron
Hidden layer 2: 3 neuron
Hidden layer 3: 5 neuron

Activation function Logistic

SVR

Kernel function Polynomial

C 0.5

Scale 0.001

Degree 3

Decision tree cp 0.03446248

Random forest mtry 7
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hyperparameters for the machine learning regres-
sion methods are presented in Table 3.

Figure 2 presents the results of the training 
and testing (validation) phases for the imple-
mented supervised learning regression method. 
This figure clearly demonstrates that the Random 
Forest model achieves the most favorable train-
ing results, with RMSE = 0.327, MSE = 0.107, 
R-square = 0.130, and MAE = 0.248. Conversely, 
the NN-MLP model produced the least favorable 
training outcomes, with RMSE = 0.349, MSE = 
0.122, R-square = 0.072, and MAE = 0.274. The 
training results indicate that the SVR model out-
performs the NN-MLP model, with metrics as 
follows: RMSE = 0.345, MSE = 0.119, R-Square 
= 0.065, and MAE = 0.269. The training results 
of the Decision Tree regression model are satis-
factory, albeit marginally inferior to those of the 
Random Forest model (i.e., RMSE = 0.329, MSE 
= 0.108, R-square = 0.119, and MAE = 0.245).

In term of testing/validation result, contradic-
tory outcomes are emerged compared to training 
results. Figure 2 shows that during validation 
phase, the best result obtained from NN-MLP with 
RMSE = 0.606, MSE = 0.367, R-square = 0.016, 
and MAE = 0.403. It is followed by the result of 
SVR model (i.e., RMSE = 0.607, MSE = 0.368, 
R-square = 0.001, and MAE = 0.399). Meanwhile, 
the other two model (Decision Tree and Random 
Forest) have lack metrics. 

To mitigate overfitting issues, Figure 3 pres-
ents the learning curves of the implemented 

models on the training and testing samples. The 
results indicate that neither of these four models 
demonstrate overfitting. Nevertheless, the SVR 
model exhibits a reasonably excellent match; yet, 
its instability is a significant concern, since its 
performance can decline with a rise in the train-
ing sample size. Conversely, the NN-MLP along 
with Random Forest models demonstrate a strong 
fit and considerable consistency.

Figure 4 visualizes the overall importance 
of the 11 variables for accurate prediction of the 
shrimp growth. Both NN-MLP and SVR model 
indicate that DO, nitrate, and TOM as the top 
three important variables. Meanwhile, vibrio 
and nitrate have higher importance value based 
on the result of Decision Tree and Random For-
est. By combining these finding, we can infer that 
DO, nitrate, and vibrio are the water quality vari-
ables which highly influence the prediction daily 
shrimp growth in studied area. 

Re & Díaz (2011) showed that the capacity of 
shrimp to obtain energy and allocate it efficiently 
for growth is influenced by environmental factors. 
The level of oxygen is a critical factor that affects 
the metabolism of the organism. When the ex-
penses related to the consumption and processing 
of ingested food exceed what can be supported 
by oxygen intake, shrimp cease feeding, prioritiz-
ing growth over the potential energy gain from 
food. Elevated oxygen levels enhance the feed 
conversion ratio as well as correlate with feed 
availability [Rahmawati et al., 2021]. Numerous 

Figure 2. Evaluation metrics comparison of the applied machine learning regression models
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Figure 3. Learning curve of machine learning regression models

Figure 4. Water quality variable importance in predicting shrimp growth
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investigations have shown that organisms in 
aquaculture have trouble metabolising food under 
low oxygen conditions, as oxygen is crucial for 
metabolic processes [Álvarez et al., 2023].

The setting up of elevated oxygen levels in 
the pond has significantly improved growth con-
ditions by reducing total bacteria, viruses, and 
diseases, while also enhancing feed conversion 
efficiency, thus promoting optimal shrimp growth 
[Patkaew et al., 2024]. The study conducted by 
Nonwachai et al. (2011) indicated that increased 
oxygen levels lead to higher immune variable 
levels, evaluated via total haemocyte count, per-
centage phagocytosis, bactericidal activity, phe-
noloxidase activity, and superoxide dismutase 
activity. Shrimp exhibited effective physiological 
responses and demonstrated robust resistance to 
the pathogen when maintained at optimal stable 
oxygen levels. Elevated oxygen concentrations 
facilitate bacterial autolysis, improve biologi-
cal lysis processes, and result in reduced sludge 
generation. The noticed conditions resulted in a 
decrease in entire vibrio as well as viral infection 
concentrations in shrimp [Ahmadi et al., 2018].

Moreover, a study performed by [Musa et 
al., 2024]reported the disease outbreak that oc-
curred in eco-green aquaculture pond at 2022. 
The disease may cause by vibrio organism and 
resulted to early harvest at the eight weeks. The 
pond was identified by the emerging of blue-
green algae dominance and thus making the 
shrimp more prone to viral infection [Anderson 
et al., 2012]. Therefore, the result if this study 
strengthen that the total vibrio factor highly de-
termine the successfulness of shrimp aquacul-
ture venture in eco-green system. 

On the other hand, the high intensification of 
shrimp resulted in demanded high concentration 
of artificial feed and thus resulted to large number 
of feed left-over. This will cause the release of ni-
trogen compound in the environment, especially 
in shrimp-rearing pond [Musa et al., 2023b]. One 
of the substances from nitrogen in aquatic ecosys-
tem is nitrate [Wasielesky et al., 2017]. Previous 
research indicated that prolonged exposure to ris-
en nitrate levels (> 6.67 mg/L) adversely affects 
shrimp growth and disrupts immune function 
by compromising gut microbiota homeostasis 
[Prates et al., 2024]. Following nitrate exposure, 
the shrimp exhibited reduced growth; however, 
they subsequently regained their ability to grow 
when returned to control nitrate mechanisms 
[Huang et al., 2020].

CONCLUSIONS

Modelling whiteleg shrimp growth is impor-
tant to ensure the profitability of this commod-
ity’s aquaculture venture. The shrimp growth can 
be modelled as the function of water quality vari-
ables. In this study, we used several machine learn-
ing regression models to analyze the effect of water 
quality factors on whiteleg shrimp growth reared 
in eco-green aquaculture system. The results 
showed that among the five machine learning tech-
nique that utilized in this study, model produced 
by decision tree and random forest outperformed 
those of NN-MLP and SVR during training phase. 
However, during validation or testing phase, the 
results were reversed. In further, the modelling re-
sults suggested that DO, nitrate levels, and Vibrio 
presence are the water quality variables that highly 
affect the daily growth predictions of shrimp in the 
eco-green system. 
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