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INTRODUCTION

Forests are one of the largest terrestrial ecosys-
tems combatting climate change on earth cover-
ing 31% of the Planet’s land surface (Can et al., 
2022). They play an essential role in ensuring the 
sustainability of human civilization and maintain-
ing biodiversity and ecological balance (Molina 
et al., 2019). In recent years, climate change, ex-
treme weather, and deforestation events have all 
contributed to the escalation of this trend. Over 
90% of these fires are caused by humans, where 
the combined effects of anthropogenic factors and 
climate change have contributed to the continuous 
reduction in wild areas (Venkatesh et al., 2020). 
Consequently, several fire management initiatives 
have been implemented, costing billions of dollars 
aiming to prevent or mitigate the devastating im-
pacts of forest fire. The Mediterranean Basin (MB) 

provides crucial habitat for many endangered ani-
mals because of its highly diversified natural veg-
etation. Forest Fires pose a serious concern in MB 
countries given their high probability of occurrence 
and severe impacts. Contingency plans including 
proactive fire prevention strategies and response 
measures are often implemented to mitigate the 
risk of fire occurrence. Forest fires are driven by 
a combination of several factors like topography, 
weather, ignitions sources and fuel contents (Jain et 
al., 2020). Between 2001 and 2023, 1,830 hectares 
of tree cover were lost in Lebanon as a result of the 
escalating challenge with the frequently recurring 
forest fires (Global Forest Watch, 2024). The Med-
iterranean environment of Lebanon, characterized 
by hot, dry summers and strong winds, makes it 
vulnerable for forest fires. Major advancements 
in technology have enhanced the ability to model 
and monitor forest fire allowing for more effective 
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fire management strategies. Developing forest fire 
risk mapping (FFRM) requires identifying forest 
fire inventory as the target variable and other ex-
planatory variables. GIS technology has shown its 
essential role of developing FFRM by effectively 
processing and overlaying geospatial data (El 
Hayfani et al., 2020, Teodoro and Duarte, 2013). 
Furthermore, remote sensing and satellite imagery 
have emerged as essential resources for data col-
lection and creating FFRM as well (Mohajane et 
al., 2021). Integration of machine learning (ML) 
with geographic information systems (GIS), and 
remote sensing to assess fire risk is a data driven 
approach that has been adopted for modeling, lead-
ing to increase interest in applying ML techniques 
to forest fire science and management (Ghali et al., 
2020). For Lebanon, tentative forest fire risk maps 
have been created (Faour et al., 2004; Faour et al., 
2006; Masri et al., 2003). However, these initiatives 
haven’t yet leveraged the potential of ML tech-
niques to enhance the accuracy and the efficiency 
of the model through developing a comprehensive 
FFRM for Lebanon. In recent years, there has been 
an obvious trend in applying ML algorithms in a 
wide range of natural hazards assessment fields 
such as forest fire modeling (Yu et al., 2017, Van 
Beusekom et al., 2018, Adab et al., 2017), flood 
(Tehrany et al., 2015b), water quality modelling 
(Pham et al., 2021), rainfall modeling (Pham et al., 
2019, Pour et al., 2020), landslides (Chen et al., 
2019, Pham et al., 2018a). Studies have shown that 
the use of ensemble/hybrid models, combining sta-
tistical methods and ML techniques, increases the 
modeling performance (Truong et al., 2018, Akay 
et al., 2021). However, existing studies has mostly 
focused on identifying zones prone to forest fire 
without using predictive modeling that estimated 
the risk based on anthropogenic and dynamic en-
vironmental factors. Even though ML approaches 
are widely employed in many studies to classify 
risk zones, there remains a significant opportunity 
to enhance Lebanon’s forest fire risk assessment by 
integrating ensemble ML models with GIS spatial 
analytics and remote sensing. Most studies primar-
ily focus on fire occurrences mapping rather than 
proactive risk forecasting, which is crucial for ef-
fective disaster preparedness and response. This 
study aims to develop a dynamic and data driven 
approach for Lebanon enhancing prediction ac-
curacy, and enabling more effective disaster pre-
paredness and response by integrating ensemble 
ML (XGBoost) with remote sensing and GIS. 
Also, it leverages ML techniques to break down 

the nonlinear relationship between fire events and 
meteorological parameters. By combining Meteo-
rological, topographic and anthropogenic factors, 
this study contributes to proactive forest fire man-
agement strategies in Lebanon.

MATERIALS AND METHODS

Study area

The study area lies along the eastern Mediter-
ranean coast at the intersection of Europr,Asia, and 
Africa, with a total surface area of 10.452 km2. Its 
landscape includes elevated mountain chains that 
rise above 2.500 meters. It is composed of eight 
governorates (South, North, Nabatieh, Beirut, 
Bekaa, Akkar, Mount Lebanon and Baalbeck El-
Hermel) and subdivided into 26 districts. With a 
total coastline of 225 kilometers and a maximum 
depth of 80 kilometers, it is bordered by Palestine 
to the southby Syria to the east and north, and by 
the Mediterranean Sea to the west. The Lebanon 
mountain range has the majority of the country’s 
forests with the most biologically diverse slopes 
being the wettest (Zohary et al., 1973). According 
to the 2017 Land use/Land Cover (CNRS, 2017), 
Akkar, Mount Lebanon, and North governor-
ates have the largest concentration of forests and 
shrublands 34.4%, 40.6%, and 33.9% respective-
ly. They cover 29.8% of the country’s area while 

Figure 1. Vegetation map for Lebanon
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grasslands account for only 4.1% of the entire area 
supporting a rich biodiversity (Figure 1). Finally, 
the governorate of Beirut is entirely covered by 
Urban area (Georgia et al., 2022). Based on the 
zohary (2023), Lebanon is situated in the Medi-
terranean climatic zone (Csa), which is known by 
hot, dry summers and warm, rainy winters. Also, 
according to the variation of topography and cli-
mate, it is classified into four bioclimatic zones: 
western mid mountain, coastal, inland plateau, and 
high mountain. As stated in Lebanon’s 4th national 
communication to the United Nations Framework 
Convention on Climate Change (UNFCCC), by 
2040, temperature is expected to rise by 1 °C along 
the coast and 2 °C inland, while rainfall will reduce 
by 10% to 20% (World Bank, 2023). Subsequent-
ly, key sectors like forestry and agriculture will be 
impacted by these climatic changes, especially in 
the case of extreme weather events (World Bank, 
2023). Lebanon’s socioeconomic issues are inten-
sified by the climate change, further exacerbating 
the country’s long-term vulnerability.

Methodology

In this research, a supervised ML design mod-
el is developed to identify and map areas at high 
risk of forest fire throughout Lebanon by analyz-
ing a spatial grid (fishnet) that divides the area 

into distinct cells. It will perform a classification 
task by daily assigning the forest fire risk for each 
cell into one of three classes: Low, Medium or 
High. The study analyzed 13 key factors con-
tributing to fire risk by integrating ML with GIS 
technology and Remote sensing through satellite 
imagery. Different data sources were employed to 
support the identification and mapping process, 
providing a comprehensive evaluation of fire risk 
throughout the country. Data mining is a process 
that employs a variety of data analytic tools to 
discover patterns and correlations within data, 
enabling informed decision making and reliable 
forecasting. Decision tree was utilized to priori-
tize the variables affecting forest fire risk, while 
facing some challenges in data collection. Weath-
er data was collected via online platform, while 
the rest obtained through field data collection and 
satellite imagery enriching the study and enhanc-
ing its accuracy. A summary of the methodology 
is presented in Figure 2.

As you can notice in Figure 2, it shows an 
approach for data processing and analysis, essen-
tial for assessing the risk of forest fire. The first 
step is the collection of native data gathered from 
different sources as shown in Figure 3. The da-
taset consists of 2675166 rows with the follow-
ing attributes (columns), Meteorological factors 

Figure 2. Methodology flow chart
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(wind speed, temperature, solar radiation, rela-
tive humidity, precipitation, dew point), anthro-
pogenic factors (proximity to urban, proximity to 
roads, proximity to agriculture), and fuel types. 
Then, second step it undergoes data preparation, 
which involves organizing and formatting infor-
mation into a usable structure and unified data 
set. This step assures that all datasets are spatially 
aligned and combined, thereby allowing them to 
be combined smoothly using GIS. Furthermore, 
multiple layers are overlaid using spatial integra-
tion to provide a cohesive dataset that captures 
spatial relationships. Following preparation, as a 
third step the data undergoes data processing, an 
important step for refining and cleaning the in-
formation to ensure accuracy and reliability. This 
process ensures the enhancement and accuracy, 
enriching the study and addressing challenges 
associated with data collection. For example, it 
involves checking and handling null values using 
the K-nearest neighbors (KNN) algorithm, ad-
dressing the imbalanced dataset, and identifying 
and removing outliers that could skew the model 
results. The KNN method imputes null values by 
using the nearest neighbors in the feature space 
ensuring the alignment between the imputed val-
ues and the underlying patterns of the dataset. 
After that, the data undergoes a data splitting as 
a fourth step, which is crucial for evaluating the 
model’s reliability and performance. In this step, 
the dataset is typically divided into two subsets: 
one subset comprised 80% of the total data and 
is used for model training, and the other subset 
included 20% of the data and is used for data 
verification and testing. This split ensures that the 
final model is not over fitted to the training data, 
allowing it to generalize well to unseen data and 
enhancing practical applicability. Following data 
splitting, the fifth step is the data modeling and 
analysis. It involves performing an overlay analy-
sis with the administrative database, specifically 
municipalities layer. This step classify each mu-
nicipality into different risk levels based on the 
factors influencing fire risk that is low, medium 
and high risk, which serves as a measure of the 
overall vulnerability to fire events. Finally, these 
are used for additional analysis and visualization 
for the fire risk on a map. The generated map 
helps in decision making and resource allocation 
for fire prevention and response. For the final step 
in the workflow, deployment entails integrating 
the model and GIS maps into a user-friendly plat-
form (dashboard). It can provide continuous alert 

to emergency responders and municipalities. By 
incorporating GIS integration, it allows spatial 
visualization, providing operational anticipation 
tool supporting contingency planning and fire 
mitigation strategies.

Data extraction

Due to the lack of official fire records and a 
centralized fire monitoring system in Lebanon, 
NASA’s Fire Information for Resources Manage-
ment System (FIRMS) was used. This system is 
used extensively throughout the world as a cru-
cial input for automated fire perimeter detection 
(Pinto et al., 2021). It offers information on the lo-
cation of fire events in almost real time, based on 
observations from NASA’s moderate resolution 
imaging spectroradiometer (MODIS) (NASA 
FIRMS, n.d.). Despite being the sole source of 
information, the number of fire events reported is 
still far less than what has actually happened in 
Lebanon over the previous 20 years. Consequent-
ly, a dashboard that compiles all fire incidents re-
ported by the Lebanese Civil Protection Agency 
was created as part of a new adaptive strategy. As 
a result, a new adaptive approach was adopted by 
developing a dashboard that aggregates all fire 
events reported by the Lebanese Civil defense 
on the X platform since April 2024. Sentinel-2 
and Landsat data, supported by Google Earth 
Engine (GEE), were used to map burned regions 
in Lebanon, combining supervised classification 
with spectral indices. Fire polygons were initially 
identified using NASA’s and then manually ad-
justed for accuracy. This procedure ensured the 
reliable mapping of fire-affected regions. Figure 
3 presents the different datasets used in the study 
including meteorological, topographic and satel-
lite data, highlighting their roles in mapping the 
factors that are crucial for fire risk analysis. For 
this study, elevation, aspect, and slope data were 
obtained from the advanced spaceborne thermal 
emission and reflection radiometer (ASTER) 
though NASA’s 3D graphic of the earth digital 
elevation model (DEM) produced by NASA’s 
Terra satellite. It provides high resolution eleva-
tion data with a spatial resolution of 30 meters, 
making it valuable for geospatial analysis. Key 
topographic factors like slope, elevation and 
aspect can be obtained by integrating this data-
set into GIS software, aiding in the analysis and 
modeling. The weather bit API was used to get 
real-time meteorological data in order to fill the 
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gaps in climatic data from different weather sta-
tions around Lebanon. This API pulls data from 
more than 47.000 operational active weather sta-
tions worldwide, along with meso-re-analysis and 
Doppler radar data. For creating a weather map 
for Lebanon, a defined cell grid location is es-
tablished, and a script gets weather data for each 
grid cell. After being saved, this data is utilized 
to generate raster layers that depict the different 
weather parameters. Despite being a paid service, 
the weather bit API was selected because of its re-
liability, offering accurate information. As for the 
influential factors, here is a list for the 13 factors 
included in the risk assessment:

Topography

Slope (degrees)

Slope speaks to the steepness of the land, usu-
ally measured in an angle. It is easier for fire to 
spread on steeper slopes because the flames are 
lower and the potential fuel source “uphill” is al-
ready being pre-heated. It is estimated that wildfire 
spread can double for every 10-degree increase in 
slope. This is because sloped land tends to channel 
both wind and flames upward, increasing fire ac-
tivity by pre-heating vegetation (Rothermel, 1983).

Aspect (degrees)

Aspect describes the direction of slope as 
North (0°), East (90°), South (180°), West (270°), 
with the degrees marking their respective cardinal 

direction (Esri, n.d.). In the northern hemisphere, 
north-facing slopes get less sun while south-fac-
ing slopes receive sunlight and tend to be warmer. 
This difference in exposure will influence wildfire 
behavior: south- and west-facing slopes have dri-
er fuel loads because of more sun and high evapo-
transpiration, particularly during summer months. 
West-facing slopes warm up in the afternoon and 
evening, and east-facing slopes warm up early in 
the day due to cooler nights (Esri, n.d.).

Elevation (meters)

Elevation refers to the height of the land in 
relation to sea level, this metric greatly influenc-
es the risk of wildfires. For instance, Lebanon is 
made up of a flat coastal zone, hilly region, and a 
mountainous area which means its elevation has 
an impact on local temperature, humidity, and type 
of vegetation. Wildfire activity is typically less in 
higher elevations due to cooler temperatures and 
greater humidity which creates less suitable con-
ditions for wildfires to spread (Rothermel, 1983).

Meteorological 

Temperature (°C)

As vegetation burns, it increases air tempera-
tures, which enables greater moisture capacity – 
resulting in greater reduction of relative humid-
ity – making the vegetation drier and more flam-
mable (Countryman, 1974). While in the night 
period temperatures drops, moisture rise leading 

Figure 3. Sources used to extract the attributes needed for FFRM (dataset)
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to the thermogenic sinks with respect to fire fuels; 
grab grasses and leaves which soak the moisture 
decreasing fire activity (Rothermel, 1983).

Wind speed (m/s)

Wildfire phenomena are highly dependent 
on winds as they are a source of oxygen which 
is supplied to the flames and blown towards un-
burnt areas which dries and pre-heats the veg-
etation resulting into faster fire spread (Albini, 
1976). Winds aid in the broad transportation of 
embers from the main fire and ignite elsewhere in 
the spot fires. On the other hand, the winds on the 
uphill or in the funnel region, the drivers of the 
canyon, tend to behave like a chimney which fur-
ther intensifies the speed at which the fire spreads 
(Sharples et al., 2012).

Relative humidity (%)

Fire ignition and spread potential increases 
along with increase in temperature and in combina-
tion with the decrease in humidity (Viegas, 1998).

Precipitation (mm)

Sprinkled fuels wildfire risk is reduced due to 
raising its moisture content and therefore, making 
them less likely to ignite (Bradstock et al., 2009).

Dew point (°C)

The dew point is the temperature at which 
condensation begins.

Land use and land cover (LULC)

Fuel types

Anthropogenic shifts in land use and land 
cover change pose perhaps the greatest risk to for-
est ecosystems and their vulnerability to wildfire 
(Agarwal, 2002; Kumar et al., 2018). Many stud-
ies have emphasized the significance that LULC, 
land use and land cover, classifications have on 
wildfire risk assessment, as varied land covers 
represent different types of fuels which have vari-
ous characteristics of flammability (Szpakowski 
and Jensen, 2019).

Proximity to urban areas (m)

Areas near urban centers face a danger of wild-
fire when compared with distant rural locations. 
This high risk is primarily the result of human be-
havior, such as the reckless disposal of incendiary 
waste, construction activity, and thermal emissions 
from buildings and infrastructure. The further one 
moves from urban centers, the less they are influ-
enced by such ignition sources and the lower the 
chances of fire outbreak (Raval and Motiani, 2022).

Figure 4. Normalized distribution of some key factors
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Proximity to agricultural lands (meters)

Such areas are closer in proximity to agricul-
tural lands and are more susceptible to wildfire 
than regions that are farther away. This is primar-
ily the case because farming activities frequently 
involve heated machinery, the deliberate burning 
of crop residues, and other practices that may ac-
cidentally start fires. 

Data preparation

A deep data analysis was performed to identify 
patterns and understand the relationships between 
different factors affecting fire risk. In order to iden-
tify the factors significantly contributing to fire 
risk, the study tended to explore the correlation be-
tween each of the individual attributes and the tar-
get variable (fire occurrence). Then outliers were 
identified and removed to maintain the integrity 
of the dataset. The dataset was then standardized 
using feature-engineering techniques, specifically 
normalization (Figure 4) to ensure a unified mea-
surement scale. Fire occurrence was assigned 0 (no 
fire), 1 (near to fire) for grid cells adjacent to fire 
affected cell, representing areas surrounding an ac-
tive grid cell, 2 (has fire) to ensure consistency. By 
ensuring that every feature was on a similar scale, 
this procedure served to reduce bias and enhance 
the accuracy and performance of the model.

XGboost

In this paper, XGBoost ML method for fore-
casting forest fire risk was implemented to ensure 
accuracy and resilience. It is an advanced version 
of Gradient Tree Boosting, increasing its scalabil-
ity and efficiency for big datasets. It is widely 
used for forecasting modeling in fields like cli-
mate science, finance and forest fires prediction. 
The influence of the system has been extensively 
recognized in a variety of data mining and ML 
challenges. Consider the challenges hosted by 
Kaggle, a platform for ML competitions. Among 
the 29 winning solutions recently published on 
Kaggle’s blog, 17 utilized XGBoost. Eight of 
these solutions relied solely on XGBoost, while 
the majority combined it with other ensemble 
methods. These results show that our approach 
may provide state-of-art solution. The main 
reason for XGBoost’s success is its scalability 
across various scenarios. The system is capable 
of handling billions of examples in distributed or 

memory-limited settings and operates more than 
ten times faster on a single machine than other 
widely used solutions.

Compared to random forest, XGBoost typical-
ly delivers superior accuracy because of boosting, 
whereas it requires more tuning and longer train-
ing times. Random Forest, on the other hand, of-
fers greater stability and faster training that is more 
suitable for baseline models and simpler appli-
cations. Which affects our case study, because it 
entails complex interactions between several en-
vironmental factors. When compared to LightG-
BM, XGBoost is slower but typically more robust 
and generalized. In summary LightGBM is better 
for large scale and time sensitive taks, while XG-
Boost is the best suited for scenarios where peak 
predictive performance is crucial and computing 
factors allow fine-tuning. Which aligns well with 
our study’s objective of predicting forest fire risk 
with high accuracy by properly tuning and hand-
ling of complex spatial and meteorological data.

XGBoost builds an additive extension of the 
object function by minimizing a loss function. 
Given that the only focus of XGBoost is on deci-
sion trees as base classifiers, the tree’s complexity 
is controlled using a variant of the loss function.  
The objective function in XGBoost includes two 
parts, loss function (1) and regularization term (2):
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where:	 L(yi,F(xi)) – loss function that measures 
the model’s performance that is the differ-
ence between the actual value yi and the 
predicted value F(xi); Ω – regularization 
term which controls the complexity of the 
model; T – number of leaves of the tree; ω 
– output scores of the leaves; λ – penalizing 
parameter, penalizes the squared weight of 
the leaves (leaves with large weights) to 
prevent overfitting; γ – regularization pa-
rameter that regulates the tree’s complexity.

Finally, the split gain equation is used to de-
termine the best split at each node. The informa-
tion gain for each split is calculated as: 
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                              𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺 =  1
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2
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2
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(4) 

 
 

	 (3)

where:	GL,GR – gradients sum for the right and 
left child nodes; HL,HR – Hessians sum for 
the right and left child nodes.
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XGBoost improves decision tree-based learn-
ing through regularization strategies and compu-
tational optimizations. It combines a loss function 
with a pre-pruning technique, where the parameter 
gamma (γ) regulates tree complexity by figuring 
out the minimal gain needed for node complexity. 
Another regularization technique that improves 
generalization is shrinkage, which reduces the 
step size. Additionally, it employs randomization 
techniques such as subsampling of training data 
at different levels, to reduce overfitting and speed 
up training. Moreover, it optimizes split finding 
by employing a compressed column-based struc-
ture that pre-sorts data to avoid redundant sorting 
processes. This enables efficient parallel execu-
tion, minimizing computational complexity while 
maintaining high predictive performance. 

The below parameters were tuned for XG-
Boost in this study:
	• the minimum loss reduction: gamma,
	• the learning rate: learning_rate,
	• the maximum depth of the tree: max_depth,
	• the subsampling rate: subsample,
	• the fraction of features to be calculated at each 

split: colsample_bylevel.

The XGBoost model, recognized for its effi-
ciency and speed, was used for managing miss-
ing data and capturing complex features relation-
ships. The model can generate predictions without 
explicit imputation, because it handles missing 
values by figuring out the optimal split direction 
when encountering those allowing predictions 
to continue smoothly. Additionally, its gradient 
boosting mechanism creates trees sequentially, 
correcting errors from earlier trees and capturing 

complex patterns in the data. The method ef-
fectively captures complex relationships while 
avoiding overfitting by the combination of feature 
selection, regularization techniques and efficient 
split finding algorithms.

Data analysis

 Shapely additive explanations (SHAP) values 
utilized to improve the interpretability of the mod-
el and get a better understanding of how each fac-
tor contributed to the prediction outcomes. SHAP 
is a visualization tool used to interpret the results 
of ML models, especially complex ones like XG-
Boost. SHAP is a visualization tool used to inter-
pret the result of ML models, especially complex 
ones like XGBoost, by assigning a value for each 
factor for a particular prediction. This technique 
aids in visualizing and measuring how various in-
put factors affects the model’s prediction of a cer-
tain class. SHAP values breakdown each factor’s 
contribution to a particular prediction, improving 
the interpretability of the model’s output. 

As shown in Figure 5, according to SHAP 
summary plot, the most influential factors for the 
‘low’ fire risk class (class 0) are temperature, el-
evation and dew point. While high dew point and 
temperature values drove predictions away from 
the low risk category, high elevation values were 
linked to a higher likelihood of low fire risk.

As shown in Figure 6, according to SHAP 
summary plot for the ‘moderate’ fire risk class 
(class 1), elevation, solar radiation and dew point 
were the most influential factors. Higher solar 
radiation levels and lower elevation values were 

Figure 5. SHAP feature impact for low fire risk (class 0)
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strongly linked to a higher likelihood of fall-
ing into the moderate risk category. In addition, 
higher dew pint values contributed positively to 
the forecast of moderate fire risk. These trends 
highlight the complex interaction between me-
teorological and topographic factors influence the 
likelihood of fire risk in the class.

As for Figure 7, the SHAP summary plot for 
the ‘high” fire risk class (class 2) showed that el-
evation, temperature and drought resistance were 
the most influential factors. While low drought 
resistance contributed significantly to classify ar-
eas as high risk, high temperature and low eleva-
tion values were linked to a higher probability of 
high fire risk. These findings demonstrate that the 

model can accurately capture significant spatial 
and climatic trends and are aligned with the en-
vironmental factors typically favorable to severe 
fire occurrences.

RESULTS AND DISCUSSIONS

Data splitting: train and test sets

Two subsets of the dataset were randomly 
selected: 20% for testing and 80% for training. 
This 80/20 split was selected to give the model 
a significant amount of data for learning while 
keeping enough data for assessing how well 

Figure 6. SHAP feature impact for moderate fire risk (class 1)

Figure 7. SHAP feature impact for high fire risk (class 2)
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it performed on samples that had never been 
seen before. During the training phase, a k-fold 
cross-validation strategy was used to further en-
hance the model’s capacity for generalisation and 
lower the possibility of overfitting. In particular, 
the training data was split into five equal parts (k 
= 5). The model was then trained and validated 
five times, using the remaining four folds as the 
training set and a different fold as the validation 
set each time. To produce a more solid and trust-
worthy estimate of the model’s performance, the 
outcomes from each iteration were then averaged.

Applying and evaluating XGboost ML model 

After installing XGboost library in Python, 
and after having our data loaded and prepared, 
XGboost model could be trained. At that point, 
we could make predictions using the obtained fit 
model on the test dataset. 

For this experiment, the scikit-learn pack-
age for the XGBoost was used. The optimum pa-
rameters were estimated by applying Optuna for 
the training set and numerous parameter values 
was explored. Optuna is an open-source frame-
work for hyperparameter optimization developed 
to automate the process of determining the best 
hyperparameters for ML models. It is a helpful 
approach for complex models like XGBoost, and 
other deep learning models because it employs an 
adaptable, effective and scalable method for hy-
perparameter tuning. The best set of parameters 
extracted are shown in Table 1.

To thoroughly evaluate the performance of 
the model, a set of evaluation metrics were estab-
lished, including precision, accuracy, recall and 
the area under receiver operating characteristic 
curve (ROC-AUC). These comprehensive evalu-
ation measures were essential for capturing the 
model’s capability to distinguish between places 
that are prone to fire and those that are not.  The 
evaluation metrics show that the model demon-
strates remarkable accuracy and reliability. The 
confusion metrics shows high precision across the 
three different classes: 0 (no fire), 1 (near to fire), 
2 (has fire) showing strong identification of actual 
fire risk scenarios. As observed in Table 2, vari-
ous evaluation measures were derived, allowing 
for better insights. However, in our case, we are 
primarily concerned with minimizing false nega-
tives (FN), because missing an actual fire could 
have serious consequences, potentially leading to 
uncontrollable fires. In this regard, metrics like 
ROC and recall are critical for predicting natural 
hazards. The ROC curve provides a comprehen-
sive analysis of the model’s ability to distinguish 
between fire and non-fire events, while recall rep-
resents the proportion of actual fire occurrences 
correctly identified by the model. The recall val-
ues reported in the classification report for classes 
0, 1, and 2 were 0.93, 0.94, and 0.96, respectively, 
demonstrating the model’s effectiveness in accu-
rately predicting fire events with a mean squared 
error (MSE) of 0.0875 (Table 2).

Moreover, the ROC curve demonstrates that 
each class achieved an almost flawless AUC of 
0.99, emphasizing the remarkable capability of the 
model to distinguish between different fire risks 
without producing false classification (Figure 8).

 The integration of advanced technologies 
is essential for developing FFRM. The result-
ing map effectively identifies areas with varying 
levels of fire risk by leveraging GIS for spatial 
analysis, remote sensing for data collection and 
the power of ML techniques like XGBoost. The 
use of these technologies ensures that the map 

Table 1. Default values and optimum values for each 
parameter after optimization

Parameter Default value Best values

Gamma 0 1

Learning_rate 0.1 0.0172

Max_depth 3 20

Colsample_by level 1 0.48

Subsample 1 0.849

Table 2. Model’s performance report
Parameter Precision Recall F1-score

Low risk (0) 0.97 0.93 0.95

Moderate risk (1) 0.92 0.94 0.93

High risk (2) 0.94 0.96 0.95

Accuracy 0.94

MSE 0.0875
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accurately reflects real world conditions by cap-
turing critical details such as vegetation changes 
(Figure 9). Additionally, this map is crucial tool 
for strategic planning and offers value beyond 
merely identifying risk. It can be used by emer-
gency response teams, stakeholders and local 
authorities to allocate resources efficiently and 
prioritize fire risk areas for preventive actions. 
By addressing risks before escalating into active 
fires, this strategic use of the map greatly enhanc-
es the response operations.

Validation of forest fire risk susceptibility map

Model Validation is critical to ensure that its 
predictions accurately mirror real-world fire inci-
dents. This includes evaluating the model’s out-
puts by comparing the anticipated fire risk areas 
with the actual fire occurrences. The effectiveness 
and accuracy of the model in detecting high risk 
areas can then be assessed by this comparison. Ad-
ditionally, it aids in refining the model, ensuring 
that it offers reliable insights for risk assessment.

In this study, the model was run to predict the 
fire risk zoning for some days during the summer 
of 2024, as a spot check, to verify the accuracy 
of the FFRM. Then the anticipated fire risk zones 
were validated by the actual fire events by over-
laying the events on the risk map (Hagos et al., 
2022; Ogato et al., 2020). The percentage of the 
area for each fire risk zone was then calculated 
using the spatial analyst tool in GIS as described 
in Equation 4.
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(4) 

 
 

	 (4)

The FFRM generated from this evaluation 
categorizes the area into three different zones, 
high, medium and low risk alongside with fire in-
cidents from the specified dates during summer 
2024 (Figure 9).

The risk maps in Figure 9 illustrate the spatial 
distribution of forest fire risk across Lebanon on 
three distinct dates: June 6, 2024, June 30, 2024, 
and July 12, 2024. These maps highlight how en-
vironmental conditions, seasonal variations, and 
human activities contribute to dynamic changes in 
fire risk levels. The validation of the model was 
done by comparing the predicted against the actual 
fire occurrence. To assess the accuracy of the mod-
el, the spatial distribution of anticipated high-risk 
areas was analyzed against actual fire incidents.

June 6, 2024 Validation: the map indicates 
that the majority of Lebanon’s wooded areas were 
at moderate to low risk of fire. High-risk zones 
(red) were primarily concentrated in the central 
and southern Lebanon. Validation using recorded 
fire occurrences showed a small number of fires, 
aligning with the model’s prediction.

June 30, 2024 Validation: The fire risk in-
creased significantly, particularly in northern and 
central Lebanon. Previously medium-risk areas 
were reclassified as high-risk, indicating intensi-
fying fire hazards. The model’s accuracy was fur-
ther validated by actual fire incidents, as 18 fires 
occurred within high-risk zones, compared to 2 

Figure 8. Model testing ROC-AUC
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in medium-risk and 1 in low-risk areas (Table 1). 
July 12, 2024 Validation: fire risk remained high, 
with severe conditions especially in central and 
southern regions where dense vegetation and dry 
weather conditions persisted. Fire incidents during 
this period confirmed the intensity of the fire sea-
son. Validation showed 16 fires in high-risk zones, 
3 in medium-risk, and 2 in low-risk areas (Table 1).

The validity of the model was confirmed by 
comparing its predictions with real-time fire oc-
currences, revealing a strong correlation between 
the results and actual fire events. The analysis of 
fire incidents further demonstrated the model’s 
reliability. This analysis underscores the impor-
tance of continuous monitoring integrating real 
time data for enhancing fire risk assessment and 

Figure 9. Forest fire risk maps of the specified dates
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emergency response strategies. Public access to 
this forest fire risk map can play a vital role in 
community awareness and readiness. By pro-
viding an online interactive dashboard, rapid 
response will be enhanced by taking actionable 
insights for decision-making taking into consid-
eration the capacities and vulnerabilities particu-
larly within the high-risk areas. This proactive 
community involvement helps in lowering the 
susceptibility to forest fires. The following table 
categorizes the area into three different levels of 
fire susceptibility (Table 3).

Limitations 

The validation period was relatively short, 
which may introduce seasonal bias. During this 
period, most of the fire events reported by field 
missions were too small in size and intensity to be 
detected by satellite sensors, which may affected 
the completeness and accuracy of the fire mapping 
and validation process. Despite the model’s high 
accuracy, it does not include uncertainty estima-
tion, which will be addressed in future research 
to increase the reliability of the prediction model.

Future work

Future studies should consider comparing 
XGBoost with other ML models like SVM, Ran-
dom Forest, Adaboost and other techniques. This 
comparison can assist in identifying the best al-
gorithm in terms of speed, accuracy and scalabil-
ity for forest fire risk forecasting in Lebanon. 
Exploring these models will improve the know-
ledge of their strengths and limitations and aid 

in developing more optimized and adaptable 
models. While the validation was conducted on 
three different dates (June 6, June 30, and July 
12, 2024), these were chosen to reflect different 
phases of fire season in Lebanon. However, this 
limited timeline may introduce seasonal bias. To 
further enhance model resilience and better cap-
ture inter seasonal variability, future research is 
recommended to extend the validation period, 
supported by developing an active, real-time 
dashboard that shows the forest fire risk map on 
a daily basis, enabling continuous monitoring and 
evaluation by linking it to the missions of First 
Responders. Forecast reliability and interpretabil-
ity would be enhanced by integrating prediction 
uncertainty into the XGBoost model. This could 
be accomplished through some methods like, 
Quantile regression or applying bootstrapping to 
train several models on resampled data and exam-
ine prediction distributions. 

CONCLUSIONS

The model has successfully demonstrated 
the development and application of a compre-
hensive FFRM for Lebanon, by the integration 
of advanced technologies including GIS, remote 
sensing and XGboost ML model. By analyzing 
13 factors affecting forest fire risk across Leba-
non: temperature, relative humidity, wind speed, 
solar radiation, precipitation, dew point, prox-
imity to roads, urban and agriculture, elevation, 
aspect, slope and fuel type, the model achieved 
high prediction accuracy of 94%, enabling accu-
rate classification of fire risk areas and provided a 

Table 3. Distribution of forest fire risk per area in Lebanon for the specified dates
Days Fire susceptibility Frequency Area (Hectares) Area (%) Number of fire incidents

Day 1
(06.06.2024)

URBAN 9546 102948.962368 15.92 Null

Low risk 21679 475299.397048 73.51 1

Medium risk 5369 64564.01078 9.98 1

High risk 304 3808.395165 0.59 10

Day 2
(30.06.2024)

URBAN 9489 101,382.62 15.68 Null

Low risk 18867 343,493.43 53.14 1

Medium risk 6835 110,754.83 17.13 2

High risk 1707 90,989.88 14.06 18

Day 3
(12.07.2024)

URBAN 10790 132,007.67 20.42 Null

Low risk 25172 475,551.35 73.55 2

Medium risk 157 10,373.04 1.60 3

High risk 779 28,688.70 4.43 16
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robust tool for mitigation efforts and strategic fire 
management in Lebanon. To validate the mod-
el’s performance, fire risk anticipations for three 
dates were compared with actual fire events. The 
analysis focused on the alignment between the 
recorded fire events and the predicted high-risk 
zones, providing an evaluation for the accuracy 
of the model. These results validate the model’s 
capability in improving emergency response and 
resources allocation in addition to its potential 
to contribute to enhancing forest fire manage-
ment in Lebanon. Hence, this map might assist 
disaster risk reduction committees, emergency 
response teams, and other stakeholders in pre-
venting or mitigating forest fire risk. Based on the 
above, ensemble ML method is employed to ac-
curately forecast fire risk in Lebanon. It proposes 
a holistic approach for handling the complexity 
of forest fire risk in Lebanon. Moreover, the final 
dashboard is an invaluable asset for enhancing 
community awareness and proactive engagement 
for mitigating the risk of fires before they could 
escalate. Nevertheless, the application of ensem-
ble machine learning models, highlighted the ef-
fectiveness of integrating different techniques to 
enhance reliability and accuracy of the fire risk 
forecasting. Future work should focus on contin-
ually updating real-time data and improving the 
predictive models by adding more variables and 
exploring newer ML techniques to contribute in 
the enhancement of forest fire science.
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