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INTRODUCTION

Morocco’s climate is highly diverse due to its 
unique geographical position, which spans from 
the Atlantic and Mediterranean coasts, across the 
Rif and Atlas mountain ranges, to the desert areas 
in the southeast. This climatic heterogeneity is 
well documented in several studies (Le Houérou, 
1996; Driouech, 2010). Our study area lies in a 
region of Morocco characterized by a semi-arid 
climate, typical of the southwestern part of the 
country, where rainfall is low, irregular, and high-
ly variable in both time and space (Mrabet et al., 
2012). The increasing demand for water—wheth-
er for drinking or irrigation—combined with the 

growing scarcity of water resources, represents 
a critical issue not only for Morocco but also on 
a global scale (WWAP, 2020). This situation re-
quires rigorous, rational, and forward-looking 
water management, both at the individual and in-
stitutional levels. At the local scale, every citizen 
must adopt water-saving behaviors, while at the 
institutional level, particularly within hydraulic 
basin agencies, water management must rely on 
reliable indicators and thorough analysis of his-
torical hydrometeorological data.

The research problem addressed in this study 
is based on several key observations:
1. The very limited number of rain gauges

in the Souss watershed makes point-based
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observations poorly representative of the en-
tire region. This low spatial density is a ma-
jor obstacle to reliably and comprehensively 
characterizing rainfall variability (Nicholson 
et al., 2001).

2.	Observed precipitation time series contain 
significant gaps, undermining the continuity 
of data required for robust drought analysis. 
Even when these gaps are filled using conven-
tional techniques such as bias correction or 
data fusion, the results often remain affected 
by considerable uncertainty (Wilhite & Glantz, 
1985). Moreover, the short duration of avail-
able observed records severely limits the study 
of long-term drought trends, whereas satellite-
based precipitation products (SPPs) typically 
cover periods of at least 40 years.

3.	Selecting the most appropriate temporal and 
spatial scale for calculating drought indices 
presents another major challenge. Most stud-
ies rely on the direct use of the 12-month Stan-
dardized Precipitation Index (SPI-12), which 
may not be sufficient to reliably detect drought 
events – particularly in semi-arid contexts char-
acterized by strong intra-annual variability and 
spatial heterogeneity of rainfall (Vicente-Serra-
no et al., 2010).

4.	At the scale of the Souss watershed, we ana-
lyzed the evolution of drought episodes in 
terms of duration, intensity, and frequency, in 
order to identify structural changes that have 
occurred over the past few decades.

Given these limitations, our study aims to 
propose sound methodological solutions. We first 
evaluated the performance of SPPs to demon-
strate that their direct use without correction—or 
even with conventional corrections—can intro-
duce significant errors in drought analysis. We 
then developed a bias correction method based on 
multiple linear regression, enabling the genera-
tion of a more accurate hybrid product.

Finally, by analyzing SPI results (following 
McKee et al., 1993) and leveraging our in-depth 
knowledge of the study area, we were able to 
revise the standard SPI classification thresholds 
to better fit the specific climatic context of the 
Souss watershed. This adaptation allows for a 
much more accurate characterization of drought 
conditions, in contrast to the original SPI thresh-
olds by McKee et al. (1993), which classify ap-
proximately 90% of the studied years as “near 

normal” – a categorization that does not accu-
rately reflect the observed reality on the ground.

In parallel, we assessed the impact of the 
chosen temporal scale (SPI-06 vs. SPI-12) on the 
detection and characterization of drought events, 
particularly regarding their intensity and duration.

DATA, MATERIALS, AND METHODS

Methodology

The methodology adopted for this study is 
based on the following key components:

Data preparation – we began by preparing and 
formatting the precipitation time series we were 
able to collect, which serve as reference data and 
as a basis for validation.

Downloading satellite precipitation data – 
after analyzing the various available precipita-
tion sources and reviewing several studies on 
their reliability (Behrangi et al., 2011; Sun et al., 
2018), we selected the ERA5, GPM, and CHIRPS 
products. These choices were motivated by their 
demonstrated performance across different cli-
matic zones and their accessibility. The monthly 
time series were downloaded from the Climate 
Engine platform (https://app.climateengine.org/
climateEngine), which provides access to high-
resolution satellite data essential for our analysis 
(Huntington et al., 2017).
	• evaluation and generation of satellite-based 

products – to evaluate the robustness of sat-
ellite-based products against the monthly 
ground-based precipitation time series we col-
lected, we used commonly employed metrics 
such as the coefficient of determination (R²), 
relative bias, root mean square error (RMSE), 
and root mean square (RMS) (Toté et al., 2015; 
Dinku et al., 2008). Following this evaluation, 
we proceeded to generate a new combined 
product based on the previously downloaded 
satellite data sources.

	• model validation – after the evaluation phase, 
the newly generated product was validated over 
periods not used during calibration, as well as 
at stations specifically reserved for validation 
purposes. Once validated, this time series was 
used to characterize drought in the watershed.

	• calculation of the standardized precipitation 
index (SPI) at different time scales – the stan-
dardized precipitation index was initially de-
veloped by McKee et al. (1993) to characterize 
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precipitation deficits and surpluses across dif-
ferent time scales. The Figure 1 summarizes 
the methodology we adopted to achieve our 
objectives.

Data 

Study area

The study area covers the Souss watershed, 
located within the jurisdiction of the Souss Massa 
Hydraulic Basin Agency (ABHSM) in southern 
Morocco (Figure 2). The main rivers in the basin 
are the Oued Souss and the Oued Massa.

Rainfall data

The data used in this study are:
	• satellite precipitation: the primary sources are 

ERA5, and CHIRPS data.

	• ground-based precipitation measured by vari-
ous state agencies: These data are assumed 
to be correct and serve as references and for 
validation.

	• ERA5 is a climate reanalysis model developed 
by the European Centre for Medium-Range 
Weather Forecasts (ECMWF). It uses several 
techniques to measure precipitation, includ-
ing ground-based weather station measure-
ments, satellite data to estimate precipitation 
globally in real-time, and numerical weather 
prediction models to produce precipitation 
estimates. The spatial resolution of the data 
provided by ERA5 is 11 km (Gomis-Cebolla 
et al., 2023). Since the chosen time step is 
monthly, the dataset is quite large. There-
fore, instead of presenting the full table, we 
have provided a download link to access the 
data from the Climate Engine platform (link: 

Figure 1. Flowchart summarizes the methodology

Figure 2. Study area



289

Ecological Engineering & Environmental Technology 2025, 26(6), 286–302

https://app.climateengine.org/climateEngine). 
The parameters to be entered on the platform 
are shown in Figure 3.

	• CHIRPS (Climate Hazards Group InfraRed 
Precipitation with Station data) is a high-res-
olution (0.05°) precipitation product available 
since 1981. It combines infrared satellite obser-
vations and in situ rainfall data to provide qua-
si-global precipitation estimates, particularly 

suited for tropical and semi-arid regions (Funk 
et al., 2015). At the monthly scale, CHIRPS 
is recognized for its good performance in 
capturing precipitation variability, especially 
in areas with a moderate number of weather 
stations. Several studies have highlighted its 
relative reliability compared to other satel-
lite products, especially in complex climatic 
contexts such as East Africa or the Maghreb 

Figure 3. Parameters to enter for downloading ERA5 monthly precipitation

Figure 4. Parameters to enter for downloading ERA5 monthly precipitation
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(Duan et al., 2019; Paredes-Trejo et al., 2017). 
CHIRPS is widely used in drought monitoring 
and assessment, particularly through indices 
like the SPI (Standardized Precipitation In-
dex), thanks to its long and consistent time se-
ries and free availability. It allows for tracking 
the spatiotemporal evolution of drought events 
in regions where ground-based data is scarce 
or incomplete (Shukla et al., 2014). Since the 
chosen time step is monthly, the dataset is 
quite large. Therefore, instead of presenting 
the full table, we have provided a download 
link to access the data from the Climate En-
gine platform (link: https://app.climateengine.
org/climateEngine). The parameters to be en-
tered on the platform are shown in Figure 4.

Materials

Python scripts were developed to perform all 
the necessary calculations, due to the wealth of 
documentation available for this language, the 
variety of its scientific libraries (such as NumPy, 
Pandas, SciPy, and Matplotlib), as well as its per-
formance in executing complex and repetitive 
tasks, particularly in the field of environmental 
data analysis (Van Rossum & Drake, 2009; Oliph-
ant, 2007; McKinney, 2010). Regarding satellite 
data, various platforms now offer the possibility 
to directly download climate parameters, such as 
temperature and precipitation. For this study, the 
Climate Engine platform (https://app.climateen-
gine.com/climateEngine) was used to download 
daily precipitation data from the three satellites 
(Funk et al., 2015).

Theoretical methods

Performance criteria

To evaluate the accuracy of precipitation 
measured by satellites compared to ground-based 
measurements, commonly used performance cri-
teria were applied. These criteria include the cor-
relation coefficient (CC), root mean square error 
(RMSE), normalized mean square error (NMSE), 
and relative bias (BR). These criteria have been 
used in various studies, including the one con-
ducted by Guo et al. (2015).
a)	correlation coefficient (CC) – the correlation co-

efficient highlights the strength of the linear rela-
tionship between the reference precipitation data 
and the satellite data (GPM and CHIRPS).
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where:	R² – correlation coefficient, Cov(x,y) 
– covariance of variables x and y, SPs – 
standard deviation of the satellite-mea-
sured precipitation, SPg – standard de-
viation of the ground station-measured 
precipitation.

b)	root mean square error (RMSE) – the RMSE 
coefficient quantifies the average deviations be-
tween the precipitation values estimated by satel-
lite products and those from the reference data.

	

1 

𝑅𝑅² = 𝐶𝐶𝐶𝐶𝐶𝐶(𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃)
𝑆𝑆𝑃𝑃𝑃𝑃𝑆𝑆𝑃𝑃𝑃𝑃

 (1) 

 
 
 

𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 = √∑ (𝑃𝑃𝑠𝑠−𝑃𝑃𝑔𝑔)
2

𝑁𝑁
𝑁𝑁
𝑖𝑖=1    (2) 

 
𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 = 1/N ∑ (𝑃𝑃𝑃𝑃−𝑃𝑃𝑃𝑃)2

1/𝑁𝑁 ∑ 𝑃𝑃𝑃𝑃 1/𝑁𝑁 ∑ 𝑃𝑃𝑃𝑃  (3) 
 
𝐵𝐵𝐵𝐵 = ∑(𝑃𝑃𝑠𝑠−𝑃𝑃𝑔𝑔)

∑ 𝑃𝑃𝑔𝑔
  (4) 

 

	 (2)

where:	N  – number of data pairs, Ps – satellite-
measured value, Pg – ground station-mea-
sured value.

c)	normalized mean square error (NMSE) – 
NMSE is the RMSE divided by the mean of 
the reference precipitation.
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where:	N – number of data pairs, Ps – satellite-
measured value, Pg – ground station-mea-
sured value.

d)	relative bias (BR) – relative bias is a technique 
used to measure the difference between precip-
itation measurements from satellites and those 
from ground-based instruments. The formula 
applied is as follows:
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where:	Ps – satellite-measured value, Pg – ground 
station-measured value.

Calculation of the SPI indicators

The SPI-12 (over 12 months, equivalent to 
an annual scale) and SPI-06 (over 6 months) in-
dicators were used to characterize drought in the 
watershed at different time scales. For the calcu-
lation of the SPI, we followed the steps below:
1.	Precipitation accumulation: the first step is 

to calculate the cumulative precipitation over 
the chosen period (monthly, seasonal, annual), 
typically expressed in n consecutive months, 
for each year of the reference period. This ap-
proach allows capturing precipitation variabil-
ity over different time scales, thus facilitating 
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the analysis of meteorological and hydrologi-
cal droughts (Guttman, 1999). 

2.	Fitting to a probability distribution: since the 
distribution of precipitation is often asym-
metric, a two-parameter Gamma distribution 
is typically fitted to the precipitation time se-
ries (Thom, 1958). This adjustment provides a 
more realistic representation (Figure 5) of ex-
treme precipitation and their occurrences.

3.	Transformation into SPI – the area under the 
Gamma distribution curve is calculated using 
its cumulative distribution function (Figure 6). 
The obtained value is then projected onto the 
cumulative distribution function of the nor-
mal distribution through a quantile-quantile 
transformation, allowing the SPI value for the 
considered period to be obtained (Edwards & 
McKee, 1997).

4.	Validation of the fit – regarding the quality of 
the Gamma distribution fit, we used the non-
parametric Kolmogorov-Smirnov test, which 
measures the distance between the empiri-
cal precipitation distribution and the theoreti-
cal Gamma distribution. The null hypothesis 
H0H_0H0​ tests whether the empirical cumu-
lative distribution function of the precipitation 
corresponds to that of the Gamma distribution. 
A p-value close to 1 indicates a good fit of the 
model to the observed data (Stagge et al., 2015).

a)	SPI-06 – the SPI index calculated over a 
6-month period (SPI-06) allows for captur-
ing precipitation trends at a seasonal or even 
medium-term scale. It is particularly sensitive 
to recent hydrometeorological conditions, and 
in certain climatic contexts, it proves more re-
sponsive than the Palmer index in detecting the 
onset or end of droughts (McKee et al., 1993; 
Hayes et al., 1999). The SPI-06 is particularly 
effective in highlighting rainfall deficits or sur-
pluses over well-defined seasons. For example, 
an SPI-06 calculated up to the end of March 
accurately reflects the precipitation during the 
wet season from October to March, a crucial 
period for Mediterranean climate regions (Vi-
cente-Serrano et al., 2010). From this times-
cale, it also becomes relevant to relate the SPI 
with hydrological variables such as streamflow 
anomalies or reservoir level variations, de-
pending on regional and seasonal specifics.

b)	SPI-12 – at the 12-month scale, SPI-12 rep-
resents long-term precipitation regimes by 
comparing the cumulative precipitation over 
12 consecutive months to that of equivalent 
periods across the entire available time series 
(McKee et al., 1993). This approach accounts 
for natural seasonal variability by smooth-
ing short-term fluctuations, making SPI-12 
particularly suited for analyzing prolonged 

Figure 5. Adjusted gamma distribution probability density
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hydrological impacts, such as variations in 
streamflow, reservoir levels, or groundwater 
levels (Hayes et al., 1999; World Meteorologi-
cal Organization, 2012).

Since this timescale integrates shorter periods 
that can alternately be surplus or deficit, SPI-12 
values tend to fluctuate around zero, except in 
cases where a wet or dry regime becomes firmly 
established. In some cases, SPI-12 shows a no-
table correlation with other hydrological drought 
indicators, such as the Palmer Drought Severity 
Index (PDSI), providing consistent detection of 
abnormal long-term water conditions (Guttman, 
1998; Vicente-Serrano et al., 2010).

Due to its robustness and ease of application, 
SPI is widely used for drought analysis across dif-
ferent time scales, thus facilitating comparisons 
between distinct climatic regions (Hayes et al., 
1999). The drought levels corresponding to each 

SPI class according to McKee et al. (1993) are 
given in Table 1.

RESULTS AND DISCUSSIONS

Descriptive statistics

To evaluate the performance of the two satel-
lite products (SP), ERA5 and CHIRPS, we used 
standard performance metrics, namely the coef-
ficient of determination (R²), root mean square 
error (RMSE), root mean square (RMS), and 
relative bias (BR). Monthly time series from both 
satellite products, covering the period from 1981 
to 2018, were compared to ground-based obser-
vations from three stations selected to represent 
the different zones of the watershed (Figure 7):
	• Dkhila, located downstream of the watershed, 

characterized by low elevation and proximity 
to the ocean,

	• Imin El Kheng, situated in the central part of 
the watershed,

	• Iguidi, located upstream, characterized by the 
high altitudes of the High Atlas Mountains.

Before running the Python code to calculate 
the performance criteria, we first structured the 
precipitation series for each site: the observed se-
ries (example from the Dkhila site, Table 2), the 
CHIRPS series (Table 3), and the ERA5 series 
(Table 4).

Figure 6. Cumulative distribution function and SPI

Table 1. Drought levels corresponding to each SPI 
class

SPI class Drought levels

SPI≥2.0 Extremely wet

1.5≤SPI<2.0 Very wet

1.0≤SPI<1.5 Moderately wet

−1.0<SPI<1.0 Near normal

−1.5≤SPI≤−1.0 Moderately dry

−2.0≤SPI<−1.5 Severely dry

SPI<−2.0 Extremely dry
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Figure 7. Location of the rain gauges used

Table 2. Observed monthly rainfall at the Dkhila station

 

 

 
  

HydroYear Sep Oct Nov Dec Jan Feb Mar Apr May Jun Jul Aug
1980 0.20 71.84 24.77 0.19 0.58 0.61 0.09 0.15
1981 0.28 27.78 1.13 15.97 84.25 7.24 61.63 117.27 0.35 0.00 0.11 0.04
1982 0.94 0.07 49.16 0.02 0.99 36.07 5.12 0.03 13.43 0.27 0.07 0.03
1983 0.02 13.86 243.01 2.50 0.07 9.77 53.46 8.05 0.33 0.07 0.02 0.07
1984 3.01 0.07 151.75 21.48 126.67 23.52 2.72 4.66 0.43 0.04 0.49 0.38
1985 0.03 3.62 17.55 24.22 1.12 172.66 52.41 26.05 0.53 0.64 0.16 0.07
1986 4.65 5.81 3.01 0.00 48.99 23.96 1.54 1.11 3.79 0.20 0.07 0.12
1987 2.50 48.80 49.30 199.00 49.50 73.20 83.50 0.00 51.00 0.00 0.00 0.00
1988 3.00 78.40 163.10 0.00 22.80 12.80 10.70 29.20 2.30 0.80 0.00 2.00
1989 1.70 21.90 150.20 118.90 8.50 0.00 74.40 43.10 0.00 2.60 0.00 0.00
1990 0.00 0.00 1.00 90.00 0.00 101.40 113.10 7.50 0.00 0.00 0.00 0.00
1991 0.90 22.10 5.30 67.70 0.00 17.90 0.90 13.70 0.40 0.00 0.00 0.00
1992 0.00 5.00 0.00 5.10 50.50 12.40 18.10 0.00 22.30 0.00 0.00 0.00
1993 0.00 109.80 82.80 1.20 18.20 17.90 18.80 1.10 0.00 0.00 0.00 0.00
1994 0.00 16.50 1.60 7.00 0.00 13.40 75.70 12.90 0.00 0.00 0.00 0.00
1995 2.20 6.60 100.60 230.00 277.40 46.50 203.00 3.90 49.90 8.10 0.00 0.00
1996 0.00 3.30 41.70 225.30 79.30 0.00 3.60 34.10 0.00 0.00 0.00 0.00
1997 0.80 30.50 2.50 57.20 115.30 139.80 60.40 1.60 0.00 0.00 0.00 0.00
1998 0.00 0.00 0.00 24.70 23.50 1.10 99.30 0.00 0.60 0.00 0.00 0.00
1999 0.00 66.30 0.00 24.60 5.80 0.00 0.00 53.60 0.00 0.00 0.00 0.33
2000 0.00 0.00 0.00 165.10 2.40 0.00 5.00 0.00 0.00 0.00 0.00 0.00
2001 17.30 0.00 4.00 108.81 0.00 25.00 76.80 39.50 0.00 0.00 0.00 0.00
2002 0.00 0.00 105.50 90.40 0.00 5.00 11.10 10.20 0.00 0.00 0.00 1.80
2003 0.00 40.30 64.00 25.31 0.00 109.90 24.40 8.16 21.00 0.00 1.80 0.00
2004 0.00 10.80 61.00 21.90 0.00 84.40 29.60 0.00 0.00 0.00 0.00 0.00
2005 0.00 9.10 24.10 56.50 138.10 21.00 11.10 1.20 0.00 0.00 0.00 0.00
2006 0.00 18.20 11.00 0.00 14.90 27.10 0.00 8.50 0.00 0.00 0.00 11.00
2007 0.60 1.80 27.70 15.30 2.20 19.40 4.20 5.60 0.00 0.00 0.30 0.00
2008 11.70 11.30 56.50 40.10 16.40 140.70 22.90 0.00 0.09 1.60 0.00 0.00
2009 0.30 0.00 0.00 405.80 50.40 294.90 14.40 30.30 0.00 0.00 0.00 19.80
2010 0.00 4.00 237.90 179.30 100.10 0.00 107.60 52.60 61.30 0.00 0.00 0.00
2011 0.00 7.80 23.20 0.00 7.10 0.00 0.20 3.36 0.00 0.00 0.00 0.40
2012 96.40 148.80 17.80 0.00 2.50 9.10 166.40 16.20 0.00 0.00 0.00 0.00
2013 1.90 0.90 0.00 5.60 23.20 0.00 26.20 23.40 0.00 0.00 0.00 0.00
2014 2.60 0.00 391.70 9.40 4.30 0.00 43.30 0.00 0.00 0.20 0.00 10.60
2015 4.90 169.40 5.10 0.00 3.80 37.80 4.80 0.00 26.60 0.00 0.00 0.00
2016 0.00 21.70 76.30 36.40 13.90 155.00 2.10 7.30 0.00 0.00 0.00 2.20
2017 0.00 0.00 8.00 37.20 22.40 148.90 52.50 0.00 0.00 0.00 0.00 0.00
2018 7.60 50.00 37.70 0.00 0.00 0.00 0.00 26.20 0.00 0.00 0.00 0.00
2019 0.00 0.00 0.00 16.30 6.90 0.00 27.67 17.26 24.45 1.25 1.01 0.41



294

Ecological Engineering & Environmental Technology 2025, 26(6), 286–302

Table 3. Monthly rainfall calculated by CHIRPS at the Dkhila site

 

 
 

HydroYear Sep Oct Nov Dec Jan Feb Mar Apr May Jun Jul Aug
1980 15.28 77.67 18.84 16.64 0.00 0.00 0.00 0.00
1981 1.01 14.00 48.88 15.89 75.00 23.98 26.20 23.60 9.07 0.00 0.00 0.00
1982 3.28 7.89 34.73 27.61 17.76 33.14 29.97 10.86 8.67 2.01 0.00 0.00
1983 0.00 10.98 49.11 19.22 13.41 11.80 16.18 8.33 8.05 0.00 0.00 0.00
1984 5.12 6.33 62.24 36.43 78.88 30.77 13.98 6.89 5.97 0.00 0.00 0.00
1985 0.00 9.99 41.62 37.44 21.35 38.65 28.04 15.34 9.49 1.93 0.00 0.00
1986 5.82 7.98 16.64 10.54 38.12 16.86 18.97 12.29 10.54 0.00 0.40 0.00
1987 7.31 39.63 39.50 102.46 93.19 61.58 37.46 0.00 5.94 0.00 0.00 0.00
1988 0.00 20.33 123.14 14.89 40.89 32.04 22.61 20.11 0.00 0.00 0.20 0.55
1989 4.28 32.13 87.69 84.52 26.04 0.00 55.77 12.56 5.23 0.00 0.00 0.00
1990 2.78 14.41 20.07 47.50 17.50 40.81 58.30 7.51 0.00 0.00 0.00 0.00
1991 0.00 13.90 31.76 38.13 15.54 29.44 13.28 12.69 0.00 0.00 0.00 0.15
1992 1.34 9.69 12.74 14.63 37.88 11.43 44.38 9.60 7.88 0.00 0.00 1.03
1993 1.57 39.64 54.46 12.70 29.46 21.62 48.72 8.10 6.77 0.00 0.00 0.00
1994 0.00 14.68 18.96 23.02 19.15 22.76 81.24 8.67 0.00 0.00 0.00 0.20
1995 0.00 16.23 55.30 71.82 109.63 26.66 98.87 11.77 11.54 3.21 0.00 0.00
1996 0.00 10.11 41.77 157.10 52.68 13.52 28.31 31.31 8.11 0.00 0.00 0.00
1997 4.10 13.74 25.87 70.11 59.99 62.57 38.16 8.98 0.00 1.86 0.00 0.00
1998 0.00 8.80 14.50 20.02 61.47 21.45 36.15 7.42 6.60 2.07 0.00 1.07
1999 0.00 54.73 22.79 42.17 30.04 14.72 14.32 14.88 5.97 1.45 0.00 0.07
2000 0.00 11.67 16.71 61.33 27.59 9.24 20.02 6.71 0.00 0.00 0.00 0.00
2001 0.00 10.13 24.94 80.28 20.83 20.65 80.57 37.74 0.00 0.00 0.00 0.51
2002 0.69 16.37 77.34 68.02 25.33 25.88 39.56 13.32 0.00 2.12 0.00 0.00
2003 0.00 60.01 44.57 35.32 18.53 54.62 56.71 26.24 6.56 0.87 0.00 0.00
2004 3.56 33.51 23.41 39.41 17.21 64.13 43.58 5.09 6.77 0.00 0.00 0.00
2005 0.00 40.16 30.97 55.77 79.19 39.23 16.74 13.24 0.00 1.17 0.00 0.96
2006 2.34 28.66 26.04 28.20 33.01 25.66 16.79 8.98 0.00 0.00 0.00 0.16
2007 0.00 16.29 37.23 24.69 26.40 58.11 18.34 7.61 5.15 0.00 0.00 0.00
2008 0.00 17.61 54.46 32.12 58.72 85.37 45.73 5.80 0.00 2.65 0.00 0.00
2009 1.43 9.61 19.15 92.29 50.57 142.75 34.60 12.08 7.40 0.00 0.00 0.13
2010 2.41 18.90 34.94 26.97 46.28 17.75 54.34 48.50 32.13 0.00 0.00 0.00
2011 0.00 25.84 54.22 12.47 20.71 9.64 28.77 19.03 4.68 1.91 0.00 0.00
2012 7.63 54.34 28.84 18.39 18.36 23.69 82.99 17.44 0.00 0.00 0.00 0.00
2013 5.65 15.57 28.02 31.65 56.51 19.62 37.68 31.21 9.45 0.00 0.00 0.00
2014 6.15 8.72 223.86 33.06 29.43 13.76 51.64 7.38 0.00 0.00 0.64 0.71
2015 0.00 48.54 26.37 18.50 21.66 33.60 32.50 8.04 17.67 0.00 0.00 0.29
2016 3.46 23.81 109.03 56.58 21.94 56.60 19.52 7.05 5.32 0.00 0.00 0.00
2017 3.20 9.77 33.36 25.62 42.79 43.34 42.73 11.14 5.23 0.00 0.00 0.09
2018 5.17 56.44 84.93 21.68 15.80 14.82 19.77 8.29 6.70 1.28 0.00 0.00
2019 0.00 7.19 17.41 45.39 28.48 12.37 24.37 9.02 11.71 1.86 0.14 0.00

The classic statistical parameters, namely the 
interannual monthly average, as well as the maxi-
mum and minimum values of the three data series 
– observations (Obs), ERA5, and CHIRPS – were 
analyzed for the Dkhila site (Table 5), Imi El 
Kheng site (Table 6), and Iguidi site (Table 7).

The performance evaluation results of the 
SPPs obtained (Table 8) show that the ERA5 
product exhibits a better R² coefficient for all three 
sites: 0.86 at Dkhila, 0.48 at Iguidi, and 0.68 at 
Imi El Kheng, compared to a maximum of 0.541 
for CHIRPS. This indicates that ERA5 better re-
produces the temporal variability of the observed 
precipitation. Furthermore, ERA5 also presents 
lower RMSE values at all three sites, reflecting 
greater overall accuracy. Regarding relative bias, 

CHIRPS generally underestimates precipitation 
(except at Iguidi, where it sometimes overes-
timates), while ERA5 tends to overestimate it, 
especially at Dkhila (+23%). In contrast, the 
bias is nearly null at Iguidi (−1.46%) and nega-
tive at Imin El Kheng (−24.6%), indicating un-
derestimation in that area. At this stage, we can 
conclude that ERA5 is generally more performant 
than CHIRPS in terms of variability and overall 
accuracy, as indicated by the higher R² values and 
lower RMSE, despite a relatively significant bias. 
Based on this conclusion, we generated a new 
satellite product (PS) using linear regression. The 
developed equation is as follows:

	 PS (RLM) = 0.147·CHIRPS + 0.99·ERA5	 (5)
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Table 4. Monthly rainfall calculated by ERA5 at the Dkhila site

 

 
  

HydroYear Sep Oct Nov Dec Jan Feb Mar Apr May Jun Jul Aug
1980 0.49 98.10 14.70 13.41 6.74 6.78 0.46 1.57
1981 4.08 19.48 5.61 38.16 74.46 7.08 105.43 96.84 14.93 0.79 2.51 1.77
1982 2.38 1.72 68.93 1.37 2.60 65.35 23.67 7.28 9.15 2.81 0.62 1.92
1983 2.39 20.37 163.68 28.61 6.68 21.09 52.06 46.12 9.15 2.56 1.46 1.34
1984 6.01 1.48 122.07 9.95 166.61 19.14 4.23 14.83 11.96 5.73 1.88 2.00
1985 2.40 16.65 45.38 39.22 4.46 95.85 80.77 42.21 8.72 10.60 4.43 2.78
1986 10.50 23.07 9.45 0.67 65.92 45.65 23.14 8.75 12.51 2.57 3.61 2.73
1987 21.63 50.49 67.91 210.01 67.44 96.93 68.87 2.50 62.83 8.95 2.92 1.90
1988 7.00 76.53 191.03 0.71 43.14 22.73 25.57 56.24 8.41 5.54 8.80 4.95
1989 5.68 64.77 164.38 118.74 21.67 0.24 62.89 78.06 8.93 2.62 4.51 8.40
1990 6.37 6.97 8.21 89.77 7.00 105.04 109.13 13.65 2.17 4.18 4.93 4.32
1991 9.16 44.34 16.16 54.99 1.64 36.31 17.71 28.52 6.68 3.54 4.23 6.53
1992 2.65 24.81 0.89 13.46 52.15 17.15 42.20 1.53 39.46 2.77 3.95 0.84
1993 5.13 86.52 88.11 1.75 28.84 30.52 32.44 4.13 3.56 3.66 1.51 4.63
1994 7.90 22.88 5.53 5.70 0.18 15.03 64.59 35.46 2.04 2.86 2.62 6.18
1995 18.30 6.69 104.61 162.98 321.68 59.31 168.71 8.46 26.51 15.38 1.25 0.61
1996 8.56 7.91 76.45 276.97 72.59 4.33 45.29 57.08 4.26 3.41 2.28 3.08
1997 16.68 53.27 28.67 65.48 110.75 193.67 23.05 5.36 12.84 5.08 0.92 0.38
1998 5.65 2.61 0.82 48.92 28.99 13.10 59.62 1.84 8.66 1.27 1.17 3.68
1999 2.70 116.98 5.68 30.54 12.90 7.69 3.16 103.27 8.19 3.95 0.50 3.98
2000 2.24 2.78 3.03 149.35 10.38 1.44 20.43 1.51 2.15 0.31 0.46 2.13
2001 16.88 5.07 10.36 105.58 2.98 17.24 83.46 86.41 1.73 1.10 0.26 2.42
2002 3.76 3.48 138.04 65.33 4.18 14.49 35.84 20.06 3.46 7.38 2.50 10.49
2003 6.25 82.91 88.87 41.48 2.17 107.42 37.30 25.59 39.15 6.40 1.14 1.36
2004 4.93 36.67 36.55 44.03 0.26 124.75 46.61 1.06 1.56 7.12 3.02 3.25
2005 2.49 42.74 40.98 50.84 122.06 56.98 25.09 18.15 4.38 3.93 5.79 6.23
2006 6.43 49.94 10.00 3.10 19.23 21.52 2.69 14.79 4.57 2.58 2.39 19.28
2007 4.75 10.32 52.50 31.76 6.59 22.23 7.21 14.31 4.73 0.93 7.01 4.38
2008 35.02 45.15 79.90 38.13 24.12 154.11 28.18 1.47 2.40 17.31 0.72 1.69
2009 17.94 4.21 0.60 261.86 61.68 289.16 41.88 40.85 2.74 3.54 3.25 34.84
2010 9.93 23.80 194.72 109.85 92.91 0.76 91.33 53.60 107.35 9.50 1.33 5.92
2011 1.93 24.71 39.89 0.18 5.57 0.68 6.58 24.32 1.71 3.08 0.52 5.86
2012 64.00 152.50 30.03 0.26 6.45 5.57 166.61 61.70 2.89 1.03 1.73 4.30
2013 13.52 3.67 7.26 8.69 39.24 5.13 43.47 41.89 4.14 1.17 0.30 3.90
2014 22.82 3.36 260.32 21.92 15.13 2.88 56.32 2.02 3.67 4.04 13.97 10.93
2015 6.73 161.45 6.79 0.43 2.12 31.37 18.78 3.86 83.50 1.72 4.72 4.78
2016 5.18 40.64 99.49 53.05 9.21 130.82 5.76 8.97 4.27 3.21 1.31 4.52
2017 3.25 7.00 3.52 30.93 28.02 71.31 93.55 11.59 9.15 2.69 0.27 10.31
2018 25.15 70.88 57.58 0.93 1.61 5.93 23.94 25.00 4.20 1.94 1.11 12.36
2019 2.49 0.54 8.30 34.98 6.56 0.16 20.92 9.70 16.94 1.83 1.76 4.29

Table 5. Statistical parameters of the rainfall series at the Dkhila site

 

 
 

 
  

PS Parameter Sep Oct Nov Dec Jan Feb Mar Apr May Jun Jul Aug
Average 4.19 24.47 56.80 59.70 33.04 46.49 39.84 15.20 6.98 0.41 0.10 1.24
Max 96.40 169.40 391.70 405.80 277.40 294.90 203.00 117.27 61.30 8.10 1.80 19.80
Min 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Average 2.01 22.01 46.09 42.41 37.82 34.06 37.42 13.79 5.72 0.61 0.03 0.15
Max 7.63 60.01 223.86 157.10 109.63 142.75 98.87 48.50 32.13 3.21 0.64 1.07
Min 0.00 6.33 12.74 10.54 13.41 0.00 13.28 0.00 0.00 0.00 0.00 0.00
Average 10.28 36.39 60.06 57.71 38.77 50.46 47.08 27.31 14.31 4.40 2.70 5.42
Max 64.00 161.45 260.32 276.97 321.68 289.16 168.71 103.27 107.35 17.31 13.97 34.84
Min 1.93 0.54 0.60 0.18 0.18 0.16 2.69 1.06 1.56 0.31 0.26 0.38

Obs

CHIRPS

ERA5

The performance of the new PS was evaluat-
ed using the same criteria as before. The obtained 
criteria values (R² = 0.72, BR = 15.71, RMSE = 
24.44, and RSM = 47.38) confirm the robustness 
of this new PS compared to the initial products, 
ERA5 and CHIRPS.

Validation of the new developed satellite 
product

To validate the performance of the new PS, we 
selected representative years containing both wet 
and dry months, distributed at different positions 
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Table 6. Statistical parameters of the rainfall series at the Imin El Kheng site

 

 
 

 
  

PS Parameter Sep Oct Nov Dec Jan Feb Mar Apr May Jun Jul Aug
Average 8.50 27.07 56.21 51.72 29.30 45.87 52.20 16.01 8.73 2.09 0.76 3.98
Max 104.60 160.40 311.50 329.60 200.60 352.30 343.30 100.28 86.80 40.20 9.15 39.70
Min 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Average 16.34 23.84 37.03 43.49 38.38 35.80 51.44 24.27 13.98 1.56 0.33 0.52
Max 34.35 81.44 165.60 111.06 91.13 116.84 116.34 71.33 52.99 6.95 2.68 4.34
Min 8.58 7.47 13.54 17.38 16.92 5.85 18.55 10.11 5.18 0.00 0.00 0.00
Average 8.13 22.69 41.14 31.35 25.21 34.66 30.04 16.32 10.34 3.78 1.10 3.14
Max 45.21 88.63 238.52 126.09 182.19 195.56 115.11 62.48 74.08 20.10 4.43 21.96
Min 0.48 1.25 0.06 0.03 0.33 0.10 2.38 0.27 0.79 0.10 0.05 0.08

Obs

CHIRPS

ERA5

Table 7. Statistical parameters of the rainfall series at the Iguidi site

 

 

 
  

PS Parameter Sep Oct Nov Dec Jan Feb Mar Apr May Jun Jul Aug
Average 11.09 30.67 50.56 42.39 29.62 46.18 45.96 17.13 9.82 4.02 3.38 6.07
Max 65.60 151.79 245.10 229.50 221.06 345.10 192.25 78.65 134.40 46.96 19.50 30.80
Min 0.00 0.00 0.00 0.00 0.00 0.00 0.90 0.00 0.00 0.00 0.00 0.00
Average 23.35 29.27 45.99 59.62 51.75 70.07 145.35 63.77 57.78 5.14 0.73 4.01
Max 54.77 96.33 193.15 137.91 127.51 137.29 303.33 132.92 207.44 17.26 5.21 11.46
Min 10.79 10.41 16.50 23.87 21.85 13.24 59.82 32.32 24.84 0.00 0.00 0.00
Average 24.35 32.34 35.04 23.45 22.97 33.58 38.62 24.03 18.05 14.59 8.01 17.10
Max 140.57 88.31 232.34 80.79 103.79 113.73 119.98 104.98 102.03 117.44 41.00 62.72
Min 3.31 1.41 0.14 0.06 0.10 0.70 5.80 2.43 5.11 0.90 0.41 3.39

Obs

CHIRPS

ERA5

Table 8. Performance criteria results calculated
Site PS R² Biais relatif % RMSE RMS

DKHILA
CHIRPS 0.54 -15.99 34.78 32.90

ERA5 0.86 23.15 18.59 55.05

Iguidi
CHIRPS 0.22 88.36 46.87 66.26

ERA5 0.48 -1.46 30.64 34.78

Imin Elkheng
CHIRPS 0.47 -4.99 35.75 33.45
ERA5 0.68 -24.61 28.06 34.46

in the time series and across different sites. 
These include:
	• the year 1988, located at the beginning of the 

series, at the Dkhila site (Figure 8),
	• the year 2000, a dry period, at the Iguidi site 

(Figure 9),
	• and the year 2008, considered as wet, 

at the Imin El Kheng site (Figure 10). 
The analysis of the three graphs shows that the 
developed PS performs better in reproducing 
the observed precipitation compared to the 
ERA5 and CHIRPS products.

Calculation of SPI

Critique and adjustment of the limits of SPI 
classes

The standard classes of the standardized pre-
cipitation index, particularly the range from -0.99 

to +0.99 defined as representing near-normal 
conditions, present certain limitations when ap-
plied to semi-arid regions such as the Souss River 
Basin.

After analyzing the results at the SPI-06 and 
SPI-12 time scales, we found that this interme-
diate class is largely dominant, which does not 
accurately reflect the basin’s climatic realities. In 
fact, several years with values close to the lower 
bound (-0.99) were classified as “normal,” al-
though these years actually experienced signifi-
cant water deficits.

These limitations are not unique to our study 
and have been highlighted in several research 
works. For instance, Vicente-Serrano et al. (2010) 
emphasized the limitations of SPI in arid and 
semi-arid climates, particularly its low sensitiv-
ity to small precipitation amounts, which leads 
to underestimation of drought periods. Guttman 
(1999) showed that the global calibration of SPI 
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Figure 8. Comparison of PS relative to the measured series, year 1984/85, Dkhila station

Figure 9. Comparison of PS relative to the measured series, year 2000/01, Iguidi station

Figure 10. Comparison of PS relative to the measured series, year 2008/019, Imin EL Kheng station

does not adapt well to the asymmetric precipita-
tion distributions typical of arid regions, compro-
mising the interpretation of results. Naresh Ku-
mar et al. (2009) also pointed out that SPI is not 

always representative in semi-arid climates and 
recommended adjusting classification thresholds 
to better detect abnormal drought conditions. 
Based on these findings, and to better characterize 
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local climatic conditions, we adjusted the “near-
normal” class by narrowing its interval from 
[-0.99, 0.99] to [-0.5, 0.99] Ttable 3). This adjust-
ment allows for better identification of slightly 
dry years, which are particularly important in a 
semi-arid context.

Figure 11. Results of SPI-06 calculation

Furthermore, since our study focuses on 
drought characterization, we decided to group 
all years with SPI > 1 into a single “wet year” 
class (Table 9), without distinguishing higher 
wetness levels, which were considered less rel-
evant to our objective.
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Table 9. Adjusted SPI classes
SPI class Drought levels

SPI≥1.0 wet

−0.5≤SPI<1 Near normal

−1.5≤SPI<−0.5 Moderately dry

−2.0≤SPI<−1.5 Severely dry

SPI<−2.0 Extremely dry

a)	Results of SPI-06 calculation – based on the 
newly adjusted SPI, we proceeded to cal-
culate the SPI-06 by first accumulating the 
precipitation over six (06) months of each 
hydrological year, covering the period from 
October of year n to March of year n+1. 
The results obtained from this approach are 
presented in Figure 11.

Figure 12. Results of SPI-12 calculation
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Table 10. Different drought episodes of the two 
indicators SPI-06 and SPI-12

Date SPI-06 SPI-12
1980 Moderately dry Moderately dry
1981 Near normal Near normal
1982 Moderately dry Moderately dry
1983 Near normal Near normal
1984 Near normal Near normal
1985 Near normal Near normal
1986 Moderately dry Moderately dry
1987 Wet Wet
1988 Near normal Near normal
1989 Near normal Near normal
1990 Near normal Near normal
1991 Moderately dry Moderately dry
1992 Moderately dry Moderately dry
1993 Near normal Near normal
1994 Moderately dry Moderately dry
1995 Wet Wet
1996 Near normal Near normal
1997 Near normal Near normal
1998 Moderately dry Moderately dry
1999 Moderately dry Moderately dry
2000 Moderately dry Moderately dry
2001 Near normal Near normal
2002 Near normal Moderately dry
2003 Near normal Near normal
2004 Near normal Moderately dry
2005 Near normal Near normal
2006 Moderately dry Moderately dry
2007 Moderately dry Moderately dry
2008 Near normal Near normal
2009 Wet Wet
2010 Wet Wet
2011 Severely dry Severely dry
2012 Near normal Near normal
2013 Severely dry Severely dry
2014 Near normal Near normal
2015 Moderately dry Moderately dry
2016 Near normal Near normal
2017 Near normal Near normal
2018 Moderately dry Moderately dry

Table 11. Percentage of drought classes (period 
1980–2018)

Drought levels SPI-06 SPI-12

Wet 12% 10%

Near normal 53% 53%

Moderately dry 31% 33%

Severely dry 4% 4%

Extremely dry 0% 0%

b)	Results of SPI-12 calculation – the results of 
the SPI-12 index calculation (Figure 12) indi-
cate that the Oued Souss watershed has experi-
enced several periods of drought, characterized 
by varying durations and intensities.

As a general rule, a drought class, when it oc-
curs, affects all the stations. We estimated that it 
would be appropriate to assign to each year the 
class most commonly observed across the major-
ity of sites (Table 10).

Over the 39-year period from 1980 to 2018, 
4 years (approximately 10%) were classified as 
wet according to the SPI-06 or SPI-12 indices. In 
contrast, 18 years (about 53%) showed near-nor-
mal conditions according to SPI-12, compared to 
51% based on SPI-06. The frequency of moder-
ate drought ranges from 38% according to SPI-12 
to 33% according to SPI-06 (Table 11). Severe 
drought occurred during approximately 5% of the 
analyzed period. As for extreme drought, it never 
affected the entire watershed; rather, it appeared 
in localized areas, notably in 2011 in regions such 
as Amsoul and the surroundings of the Imin El 
Kheng and Dkhila dams.

Regarding the duration of drought episodes, 
whether considering the actual duration (num-
ber of consecutive years of drought) or the time 
between two episodes, our results show several 
notable trends.

We found that moderate drought episodes 
tend to last longer. This is the case for the episode 
extending from 1999 to 2003, which lasted for 
three consecutive years, unlike isolated drought 
years observed in 1980, and 1982. This prolonged 
episode was followed shortly by another two-year 
episode (2006 and 2007), illustrating the tempo-
ral proximity between dry periods.

As for the duration between two drought epi-
sodes, we observe a significant shortening over 
time. This confirms an increased recurrence of dry 
episodes, with shorter return periods and longer 
durations, highlighting a concerning climate dy-
namic in the basin. From 2008 onwards, after the 
exceptionally wet years of 2009 and 2010 – con-
firmed by both SPI-06 and SPI-12 indicators at the 
national level – the climate regime shows marked 
irregularity. This variability is manifested by the 
appearance of very wet years, such as in 2009 and 
2010, as well as extreme drought episodes (Table 
12), with an intensity never recorded before 2008.

These extreme episodes were notably ob-
served in 2011, at the Amsoul, Abdelmoumen, 
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Table 12. Résultats de SPI-06 période 2008-2018

 

 

 

Date Aoulouz Amsoul Bge Abdelmoumen Taliouine Bge Imin El KhengIguidi Immerguen Pont TaroudantBge Aoulouz Bge Dkhila
2008 0.84 0.31 0.37 0.44 0.43 0.46 1.00 0.48 0.94 0.37
2009 2.04 1.99 2.27 2.79 2.23 2.08 1.60 2.69 1.95 2.23
2010 1.44 1.14 1.20 1.18 2.33 1.69 1.26 1.35 1.27 1.80
2011 -1.33 -2.12 -2.37 -1.33 -1.49 -1.63 -1.78 -1.44 -1.23 -2.03
2012 2.07 0.61 0.12 1.66 1.05 0.83 1.59 0.23 2.11 0.66
2013 -1.34 -1.59 -1.63 -1.08 -1.64 -2.20 -0.93 -1.30 -1.29 -1.67
2014 1.27 0.99 0.47 0.46 0.72 0.18 0.76 0.95 1.49 1.13
2015 -1.35 -0.40 -0.34 -2.09 -0.77 -1.22 -1.45 -1.28 -1.14 -0.03
2016 0.23 1.40 0.39 0.24 0.66 0.00 0.44 0.73 0.44 0.46
2017 0.94 0.07 -0.21 -0.15 0.02 -0.76 1.03 -0.45 0.81 0.26
2018 -0.29 -0.16 -0.82 -0.28 -0.91 -0.37 -0.20 -0.56 -0.47 -1.20

and Dkhila dam stations, and in 2013, at the 
Iguidi station (Table 12).

The results obtained through this work en-
courage us, as water resource managers in a semi-
arid watershed, to exercise caution in managing 
the volumes stored in the reservoirs. It is essential 
to take into account the increasing irregularity of 
drought episodes. These episodes are character-
ized by an increase in their duration, as well as a 
growing intensity, which further complicates the 
planning and securing of water resources.

CONCLUSIONS

Through this work, we have developed a ho-
mogeneous and rigorous methodology aimed at 
utilizing satellite data for drought assessment in 
a watershed subject to a semi-arid climate. This 
approach provides a relevant solution to the is-
sue of limited access to ground-measured climate 
series by relying on satellite data while proposing 
a framework to assess their reliability.

In order to improve the accuracy of satel-
lite precipitation, we developed a new satellite 
product by combining ERA5 and CHIRPS data 
via multiple linear regression. This new product 
has improved the accuracy of satellite precipi-
tation estimates, with an R² reaching 0.71. This 
improvement helps overcome two major limita-
tions: gaps in ground measurement series and the 
low density of measurement stations.

We also compared the results of SPI on two 
scales (6 months and 12 months). The results 
showed that these two indices generally identify 
the same episodes in terms of duration. How-
ever, the SPI-06 tends to amplify the intensity 
of events, making it particularly useful and well-
reflecting the reality experienced in the optimiza-
tion of water resource management in a context of 
high seasonal variability.

The chronological analysis identified the 
emergence of severe droughts starting from 
2011, with notable peaks in 2011 and 2013. 
These results suggest an intensification of 
drought episodes over time, with an increase in 
their duration, the appearance of more severe 
drought classes, and a reduction in the time in-
terval between two episodes.

Our study thus opens up promising perspec-
tives for spatio-temporal monitoring of drought in 
under-instrumented areas, particularly in the con-
text of climate change, where semi-arid regions 
are becoming increasingly vulnerable to hydro-
logical hazards.
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