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INTRODUCTION

Analyzing the wave characteristics at Gale-
song Beach, South Sulawesi, is essential not only 
for effective coastal management but also for un-
derstanding and mitigating land degradation along 
the shoreline. Galesong Beach is highly vulner-
able to seasonal monsoon winds and considerable 
wave activity, which can accelerate erosion, sedi-
ment transport, and shoreline retreat contributing 
to coastal land degradation and loss of productive 
land. The dynamics of wave-induced sediment 
transport and erosion are intricate, as evidenced 
by research in analogous environments like the 
Venice Lagoon. Here, wave-induced bottom shear 
stress is pivotal in sediment resuspension and 

erosion dynamics, which can be represented as a 
Poisson process (Green and Coco, 2014; Carniello 
et al., 2016; Tognin et al., 2024). The migration 
of sandbars, which are spontaneous coastal barri-
ers against erosion, is influenced by wave height, 
period, and sea level. Increased height of waves 
and the decrease in wave periods will cause the 
migration process of sandbars to speed up (Rader-
macher et al., 2018; Rutten et al., 2018; Wang et 
al., 2023). The aforementioned wave-type trans-
formations (Shtremel et al., 2022) occurring in a 
nonlinear manner can evoke periodic sandbar and 
sedimentary rock movements (Shtremel et al., 
2022). These sediment dynamics play a critical 
role in shaping coastal landforms and affect soil 
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structure, biogeochemical properties, and ulti-
mately, the land-use potential along the beach.

Climate change is modifying global wave 
climates, resulting in an increased frequency of 
specific wave patterns that may heighten coastal 
risks in regions experiencing transitional wave 
climates, including land subsidence, saltwater in-
trusion, and the degradation of coastal ecosystems 
(Odériz et al., 2022; Casas-Prat et al., 2024).

The interaction between the storm surges and 
wind waves has significantly raised the heights 
of the coastal water levels, thereby necessitating 
their inclusion in coastal risk assessments (Lin 
and Shullman, 2017; Marcos et al., 2019a). Con-
fusion of wave effects by a storm seen as tsunamis 
interfere with precise hydrodynamic modeling 
and results in erroneous hazard evaluations (Cox 
et al., 2020). The numerical modeling of the flow 
of a wave and the movement of the sea bottom are 
one of the main components needed for the proper 
design of the coastal infrastructure and for the 
proper understanding of the wave dynamics in the 
near-shore region (Lynett et al., 2017). The diffi-
culty of the interconnection of the mean sea level, 
tides, storm surges, and waves leads to the neces-
sity of comprehensive modeling approaches (An-
derson et al., 2021; Idier et al., 2019; Moftakhari 
et al., 2024). Such models are also essential for 
assessing the environmental and socio-economic 
impacts of erosion-induced land loss.

In this context, integrating wave modeling 
into broader environmental assessments can in-
form coastal protection strategies, support land-
use planning, and mitigate degradation in coastal 
regions dependent on marine and agricultural re-
sources (Clarke et al., 2013).

Many models have been developed to pre-
dict wave characteristics under different oceano-
graphic and meteorological situations. The shore 
protection manual (SPM) and coastal engineer-
ing manual (CEM) are the most commonly used 
semi-empirical methods for the estimation of 
wave height and period in coastal engineering 
(Salah, 2015). Unlike other models, these mod-
els can only be used in short-fetch and moderate 
wind conditions and, thus, are only applicable to 
an area like Galesong Beach (Abbasi, 2019). In 
the meantime, the Sverdrup-Munk-Bretschnei-
der (SMB) model is usually used in the case of 
fewer fetches but might not predict accurately 
in the case of monsoon-dominated regions (Ais-
jah et al., 2016). The Pierson-Moskowitz (PM) 
model, which is based on sea states in their fully 

developed stage, is more fitting for offshore wave 
predictions (Salah, 2015).

The limitations of these models in properly 
describing the seasonal wave variations, especial-
ly in regions with strong monsoonal influences, 
have been the main topics of the most recent stud-
ies. For instance, research conducted in the Strait 
of Hormuz proved that the CEM model was very 
effective in predicting wind-induced wave char-
acteristics, while the in-situ buoy measurements 
showed a high correlation and minimal bias er-
rors (Abbasi, 2019). Besides, research carried out 
in Asalouyeh Port, Iran, demonstrated that SPM 
and CEM were more effective than SMB in de-
termining the significant wave height variations 
with JONSWAP spectral method more compati-
ble with long-duration wave predictions (Ahmad-
vand et al., 2024). 

These factors outlined above play a crucial 
role not only in coastal engineering but also in 
better understanding shoreline retreat, sedi-
ment instability, and the degradation of beach 
lands. Since monsoon-induced winds control the 
wave’s height, period, and directional patterns, it 
necessitates the reassessment of the performance 
of the existing wave prediction models in repre-
senting the seasonal and even longer variations of 
the waves. This seasonal variability is illustrated 
in Figure 1, which presents wind rose plots for 
each season, showing dominant wind directions 
and intensities that influence wave generation 
throughout the year. Improved wave prediction 
can aid in early warning systems and communi-
ty-based mitigation for erosion-prone areas. This 
research assumes that SPM and CEM will, in all 
probability, provide comparative data with more 
benefits than the rest of the models that are used 
for forecasting the similarity of ocean waves in 
the monsoon period. In this regard, it is likewise 
thought that the main energy of the wave will be 
achieved in December-January-February (DJF) 
periods, thereby emphasizing the necessity to 
conduct season-specific model calibration in ad-
dition to enhancing predictive accuracy.

This research aimed to analyze the main wave 
features at Galesong Beach and to evaluate the 
effectiveness of four established wave predic-
tion models SPM, CEM, SMB, and PM in cap-
turing seasonal variations in wave characteristics 
influenced by monsoonal wind patterns. Given 
the local conditions and previous applications 
of these models in comparable coastal settings, 
particular attention is given to the performance 
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of SPM and CEM, which are expected to align 
more closely with the wave dynamics observed 
during the monsoon-dominated periods. The sea-
sonal variability in wind forcing, especially dur-
ing the December–February peak, is anticipated 
to significantly influence wave height and period, 
making this period critical for model evaluation. 
Using performance indicators such as RMSE, 
MAE, bias, and R², this study aims to identify 
which model most reliably reflects the observed 
data and thus holds the greatest potential for ap-
plication in coastal planning and risk assessment 
in monsoon-affected regions.

METHODS AND MATERIALS

Galesong Beach, the coast of Takalar Regency 
in south Sulawesi, Indonesia, is a dynamic coast-
al area affected by monsoonal wind patterns. Its 
strategic location within the Indonesian maritime 
zone subjects it to seasonal wave variations influ-
enced by both local and large-scale atmospheric 
circulation. Understanding these changes is cru-
cial for maritime transportation, fisheries, and 
catastrophe risk reduction, as seasonal wave en-
ergy fluctuations affect navigation safety, coastal 
erosion, and fishing activities. The study area and 
specific data collection points along the coastline 

Figure 1. Seasonal wind rose plots depicts wind speed and direction distribution per season: DJF – December-
January-February,  MAM – March-April-May, JJA – June-July-August, SON – September- October-November
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are illustrated in Figure 2, providing spatial con-
text for the observed wave dynamics.

The research was conducted 3.42 km offshore 
from Dermaga Boddia at coordinates 5.323282° 
S, 119.323219° E. The area has significant sea-
sonal fluctuation, marked by heightened wave 
activity during the Northwest Monsoon (De-
cember–February) and more tranquil conditions 
during the Southeast Monsoon (June–August).   
These developments affect coastal erosion, there-
fore changing the resilience and stability of the 
beach. Reducing risk and supporting environ-
mentally friendly coastal development depends 
on accurate wave forecasting models.

Understanding coastal wave dynamics and rais-
ing the model accuracy depends on the inclusion of 
wave elements, including wind. With great respect 
for spatial wave distributions, satellite altimetry 
has been widely used to describe wind speed and 
major wave height. Nevertheless, data limitations 
and land contamination still plague near-shore 
regions (Mitsopoulos and Peña, 2023). High-res-
olution hindcast models like SCHISM combined 
with WindWingModel enhance near-shore wave 

predictions and coastal hazard assessments in the 
setting of climatic variability (Mentaschi et al., 
2023). Using models like SWAN, global datasets 
including the Copernicus ERA5 downscaled yield 
improved wave data for coastal uses (Bellotti et 
al., 2021). Furthermore produced by the Coordi-
nated Ocean Wave Climate Project (COWCLIP) 
are standardized wave climate datasets, thereby 
facilitating coastal risk assessment and broad-scale 
wave climatology study (Morim et al., 2022). 

Wave prediction models 

This study evaluated four widely used wave 
prediction models. Each is intended to estimate 
wave height and period based on wind forces 
and other oceanographic variables. The signifi-
cant wave height (Hs) and wave period (Ts) were 
calculated using four-wave prediction models, 
each of which offers unique advantages for wave 
forecasting. The shore protection manual (SPM) 
is primarily used for fetch-limited wave growth, 
where the wave height and period are determined 
as follows (1):

Figure 2. The study area and data collection locations
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where:	g is acceleration due to gravity (m/s2), F is 
fetch (m), U is wind speed (m/s), the SPM 
model is widely used in coastal engineer-
ing applications to provide practical pre-
dictions of wave behavior near shorelines 
(Karimpour and Chen, 2016).

1.	CEM incorporates the frictional velocity (u*) 
and drag coefficient (Cd), which refine the 
wave-prediction process (2):
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This model accounts for more complex coastal 
interactions, making it effective in locations 
with irregular bathymetry (Kazeminezhad et 
al., 2005; Yeganeh-Bakhtiary et al., 2023).

2.	SMB is an empirical model designed for fetch-
limited waves, assuming that the wave height 
and period grow in response to wind forcing:
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The SMB model provides a simplified ap-
proach for estimating the wave parameters in 
enclosed basins and coastal regions  (Aisjah et 
al., 2016; Alhodairy and Sadeghi, 2019).

3.	Pierson-Moskowitz (PM) applies to fully de-
veloped sea conditions, assuming that waves 
reach equilibrium with wind forcing (4).
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This spectral model is commonly used for 
deep-water wave prediction (Alves et al., 2003; 
Higgins and Siderius, 2019).

Each wave prediction model was applied to 
simulate wave conditions at Galesong Beach us-
ing historical wind and ocean data for seasonal 
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 is the mean of observed data. These 
metrics were computed seasonally and 
then averaged to provide a performance 
score per model.

RESULTS AND DISCUSSION

Results

The main objective of this research is to evalu-
ate seasonal wave characteristics at Galesong 
Beach and assess the performance of various wave 
prediction models in capturing these dynamics. 
The results provided a comprehensive analysis of 
seasonal wave height variations, directional trends, 
model validation, and statistical performance, of-
fering insights into the reliability of different pre-
diction methods for coastal management.

Wave variability

Based on the geographical location of the 
study area facing west, the waves that occur in 
the area are generated by winds blowing from the 
Makassar Strait, especially during winds from 
the southwest, west, and northwest (Table 1). 

Wave height is strongly influenced by seasonal 
winds, namely DJF (December-February), MAM 
(March-May), JJA (June-August), and SON 
(September-November). The wave rose plot (Fig-
ure 3a) shows that the dominant wave direction 
shifts with the direction of the monsoon winds, 
DJF showing waves from the west and northwest 
due to the strong monsoon wind.

Temporal trends in wave height and period

The time-series analysis in Figure 4 high-
lights the seasonal fluctuation of wave heights, 
with pronounced peaks occurring in DJF and JJA, 
which correspond to the most energetic monsoon 
seasons. These peaks are driven by strong mon-
soonal winds that generate higher wave energies, 
significantly affecting coastal dynamics. The ob-
served variations indicate that wave energy fol-
lows a predictable seasonal pattern, which is cru-
cial for understanding wave-induced coastal pro-
cesses, such as erosion and sediment transport.

The observed and modeled wave heights 
shows that some models, particularly SPM and 
CEM, align more closely with the observed 

Figure 3. (a) Wave rose plots, represents the distribution of wave height and direction; (b) visible signs of coastal 
abrasion along the shoreline at Galesong Beach, indicating the physical impact of intensified wave activity

Table 1. Percentage of wave height and direction during 2010–2023

Wave direction
(deg)

Wave height (m)

0.0–0.4 0.4–0.8 0.8–1.2 1.2–1.5 1.5–1.9 >1.9 Total

Northwest 29.02 9.89 2.26 0.14 0.09 0.04 41.47

West 38.07 6.88 1.74 0.56 0.18 0.04 47.50

Southwest 11.02 0.00 0.00 0.00 0.00 0.00 11.02

Total 78.13 16.77 4.00 0.70 0.28 0.09 100
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trends. These models effectively capture seasonal 
wave behavior, making them more reliable for 
wave forecasting on the Galesong Beach. The 
deterministic and not dependent on time (SMB) 
model struggles to accurately represent the chang-
es in wave periods, which reveals the ability to 
simulate the full spectrum of wave dynamics with 
limitations. The contradiction underscores the ne-
cessity of better model calibration for a more ac-
curate prediction of the periods of waves.

Figure 5 further concentrates on the month-
ly wave fluctuations as December, January, and 
February had the greatest wave heights and June 
to September had lower wave energies. This 
trend affirms the fact that the waves are seasonal 

dependent and makes the season-specific wave 
modeling approaches all the more necessary. It 
should be noted that to predict fog, we must mod-
ify the model to take into account the monsoonal 
conditions. Coastal facilities benefit from the im-
plementation of these models in that they provide 
better planning for maritime activities, shoreline 
protection, and disaster risk reduction strategies.

Wave model validation and performance 
assessment

Figure 6 represents a comparative analysis of 
the modeled and observed wave heights and pe-
riods, where model accuracy is measured by the 
distance from the identity line. The results show 

Figure 4. Time-series comparisons of observed vs. modeled wave height and period – demonstrates seasonal 
trends and long-term accuracy of the models

Figure 5. Monthly variations of average wave height and period – highlights seasonal wave fluctuations
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that SPM and CEM models have the highest cor-
relation with the observed data, and, therefore, 
they are the most reliable in capturing seasonal 
wave variations. Conversely, SMB model has 
substantial differences, especially in the wave 
period estimation; therefore, it is unsuitable for 
coastal conditions at Galesong Beach. In Figure 7, 
these results are further supported by some statis-
tical performance metrics such as RMSE, MAE, 
bias, and the coefficient of determination (R²). 
The SPM model turned out to be the best-per-
forming model, with an RMSE of 1.44 m and the 
highest R² (0.63) for wave height forecasts. The 

CEM model was very close to it, while the SMB 
and Pierson-Moskowitz (PM) models showed the 
highest errors and biases, which rendered them 
not very suitable for precise wave forecasting. 

To extend the analysis of model perfor-
mance, Figure 8 presents scatter plots comparing 
observed wave height and period data from Co-
pernicus with simulated outputs from the SPM 
and CEM models over several years. The visual 
comparison reveals a strong alignment between 
the observed and modeled values, particularly 
for average conditions, although some discrep-
ancies appear under high-energy wave scenarios. 

Figure 6. Validation plots comparing modeled vs. observed wave height and wave period (collected from https://
cds.climate.copernicus.eu/datasets), providing a quantitative assessment of model accuracy. The black dashed 

line represents the trendline, indicating the general agreement between modeled outputs and observed data

Figure 7. Performance metrics (RMSE, MAE, Bias, R²) – evaluate and rank the models  
based on statistical validation criteria
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These differences highlight the models’ overall 
robustness in capturing general trends, yet also 
suggest limitations in simulating extreme wave 
events with high accuracy. The spread of the data 
in the scatter plots reflects variability in both the 
observed and modeled outputs, underscoring the 
importance of continued refinement in model 
calibration. These variations are a reminder of 
the inherent uncertainties in wave forecasting, 
especially during extreme events. Incorporat-
ing higher-resolution datasets and improving 
parameterization techniques could reduce these 
uncertainties and enhance the predictive capa-
bilities of wave models. Given their relatively 
strong performance, the SPM and CEM models 
are recommended as primary tools for coastal 
management and disaster preparedness in the 
Galesong Beach area.

DISCUSSION

The results of this study underscore the signif-
icance of seasonality in shaping wave character-
istics at Galesong Beach and emphasize the need 
for predictive models that are well-calibrated to 
local oceanographic conditions. The observed 
dominance of waves during DJF and JJA aligns 

with the prevailing monsoonal wind patterns, 
corroborating previous findings that highlight the 
impact of seasonal monsoons on wave energy 
(Salah, 2015; Abbasi, 2019). Among the evalu-
ated models, SPM and CEM consistently demon-
strated superior accuracy in simulating seasonal 
wave heights and periods, validating their appli-
cability to Indonesian coastal environments. This 
is consistent with Elbessa and Salah (2024), who 
reported that parametric models, including SPM 
and CEM, yielded more accurate long-term pre-
dictions compared to spectral-based models in 
monsoon-dominated regions.

However, the limitations observed in models 
such as Sverdrup-Munk-Bretschneider (SMB) 
and PM, particularly in estimating wave peri-
ods and extreme events, suggest that further 
refinement is necessary to improve their predic-
tive performance under high-energy scenarios. 
These findings are consistent with Ahmadvand 
et al. (2024), who emphasized that traditional 
spectral models tend to underestimate extreme 
wave conditions. While the SPM and CEM mod-
els showed robust correlation with Copernicus-
derived observations, the discrepancies under 
high-wave conditions indicate potential for en-
hancing model performance through integra-
tion with high-resolution datasets and climate 

Figure 8. Scatter plots comparing observed wave data from Copernicus with simulated results from the SPM and 
CEM models. The figure illustrates the agreement between observed and modeled wave height and period
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forecast assimilation. The importance of empiri-
cal adjustments and hybrid techniques is also 
supported by Aisjah et al. (2016), who showed 
improved wave height prediction in the Java Sea 
using a modified SMB model.

CONCLUSIONS

This study effectively analyzed the seasonal 
wave dynamics at Galesong Beach and evaluated 
the performance of four widely used wave predic-
tion models. The research confirmed that the high-
est wave energies occur during the DJF months, 
corresponding to the dry season, which plays a 
significant role in sediment transport, erosion, and 
maritime activities in coastal regions. The find-
ings demonstrate the importance of understanding 
seasonal wave patterns for better coastal manage-
ment, as they directly influence shoreline dynam-
ics and contribute to coastal land degradation.

The evaluation of model performance re-
vealed that the SPM and CEM models outper-
formed the others in terms of accuracy in pre-
dicting wave heights. The study found that the 
RMSE, MAE, bias, and R² values for these mod-
els showed reliable alignment with observed 
wave data. In contrast, the SMB and PM mod-
els exhibited higher error margins, particularly 
in wave period estimations, which limits their 
effectiveness in capturing the seasonal wave 
variations present at Galesong Beach. Through 
this analysis, the study fills a significant gap 
in understanding the role of seasonal variabil-
ity in wave dynamics and its implications for 
coastal risk assessment and infrastructure de-
velopment. The results contribute new insights 
into how the SPM and CEM models, when cali-
brated for monsoon-affected regions, can offer 
reliable tools for wave prediction and coastal 
protection planning. By enhancing the accuracy 
of these models, this research provides a solid 
foundation for future coastal hazard mitigation 
strategies in regions experiencing similar cli-
matic conditions. The current study successfully 
achieved its goal of evaluating wave prediction 
models and providing insights into seasonal 
wave dynamics at Galesong Beach. The findings 
highlight the critical importance of selecting ap-
propriate models that account for regional con-
ditions, ensuring more accurate predictions for 
coastal management and the protection of vul-
nerable coastal areas.
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