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INTRODUCTION

In North Africa, and especially Morocco and 
Algeria, date palm (Phoenix dactylifera) is one 
of the mainstays of food security and an impor-
tant component of economic development. Un-
fortunately, this key crop is in danger from Bay-
oud disease, which is caused by the fungus Fu-
sarium oxysporum f. sp. albedinis (Foa) causing 
vascular wilt of date palm The disease has already 
wiped-out millions of date palms in the region 

and threatens agricultural production and the lo-
cal economy to a large extent [El Hilalai Alaoui 
et al., 2024; Essarioui et al., 2018] The pathogen 
persists in the soil causing complications in its 
management as it also gets transmitted through 
water and contaminated tools [Sedra, 2018].

Current management strategies for Bayoud 
disease of date palm include resistant cultivars, 
and on the other side, chemical treatments. How-
ever, these methods have been proven to have 
limited success. The genetic plasticity of the 
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pathogen makes it difficult for resistant cultivars 
to adapt, and pesticide use gives rise to seri-
ous environmental and sustainability issues [El 
modafar, 2010; Benzohar et al., 2015]. Also, an-
other significant bottleneck in the management of 
this disease is that all the current diagnostic tech-
niques are clinically symptomatic and only iden-
tify the infection after substantial plant damage, 
leaving little time for their management.

Soil microbiome and pathogen suppression 
represent an attractive alternative and promis-
ing approach for the control of Bayoud disease. 
For example, “suppressive” soils can prevent Fu-
sarium oxysporum growth, while “conducive” 
soils can facilitate this pathogen [Ou et al., 2019; 
Todorović et al., 2023]. This property of a few 
soils to suppress pathogen development capacity 
is related to particular plant–microbial communi-
ties able to regulate the rhizosphere environment 
and control pathogens. Yet, the molecular and 
metabolic mechanisms that mediate these interac-
tions are largely unknown [Philippot et al, 2024. 
Trivedi et al, 2020].

Identifying the profiles of community me-
tabolism using assays such as Biolog SF-P2 has 
recently been able to distinguish between sup-
pressive and conducive soils [El Hilali Alaoui 
et al., 2024; Pereyra, 2021]. Nevertheless, the 
need for rigorous diagnostic tools to assess soil 
suppressiveness remains an important, but large-
ly unmet, need.

The rise of machine learning (ML) tech-
nologies has substantially advanced the analy-
sis of large-scale data generated from microbial 
activity. ML models can learn to reveal relation-
ships in more complex datasets, and subsequent-
ly, in a supervised fashion, predict the behavior 
of microbial communities from their associated 
characteristics, employing algorithms such as lo-
gistic regression, random forests, XGBoost, and 
support vector machines (SVM) [Wanget al., 
2024. Mohseni et al., 2024]. These models could 
be applied in the context of Bayoud disease to 
predict the soil suppressive potential of Fusarium 
oxysporum using microbial metabolic profiles.

By leveraging ML models, accurate soil sup-
pressiveness can be predicted and knowledge 
on the microbial traits associated with this resis-
tance will be obtained. For instance, we could use 
feature importance analysis via SHAP (SHapley 
Additive exPlanations) to determine specific met-
abolic markers connected to control of disease 
[Chen et al., 2024; Li et al., 2024].

The main aim of this study was the explora-
tion of ML models in predicting soil suppressive-
ness towards Bayoud disease using the microbial 
metabolic activity [El Hilali Alaoui et al., 2025] 
as determined by Biolog SF-P2 assays and con-
sequently creating a data driven the framework 
which should allow the classification of soils into 
either potential suppressors or activators of patho-
gen proliferation. To this end, we hypothesized 
that ML models are able to identify autosomal 
metabolic indicators that distinguish suppressive 
versus conducive soils and allow for predictive 
rather than retrospective approaches to disease 
management. This framework may be significant 
in the prevention of the disease, as well as in pro-
viding targeted control strategies

MATERIALS AND METHODS

Study sites and soil sampling

This study was conducted in two distinct re-
gions of southern Morocco (Figure 1): Marrake-
ch, characterized by soils naturally suppressive 
to Bayoud disease, and Zagora, where soils are 
conducive to the pathogen [Sedra, 1989]. These 
regions were selected due to their contrasting 
edaphic and climatic conditions, which influence 
microbial community structure and dynamics.

In each region, six soil samples were col-
lected, totaling 12 samples. Each sample was 
composed of two soil cores, taken at a depth of 
0–20 cm and spaced 1 meter apart around the 
base of adult date palm trees. The samples were 
dried, sieved, and stored at -20 °C before further 
analysis. This sampling approach aimed to assess 
the variability in soil microbial communities and 
their potential role in Bayoud disease suppression 
or conduciveness.

Isolation and identification of   
fusarium isolates

To characterize the microbial composition 
of the soils, 60 Fusarium isolates were obtained, 
with 30 isolates from Marrakech and 30 from Za-
gora. Soil suspensions were prepared by mixing 
5 g of soil from each sample in 50 mL of sterile 
deionized water, followed by agitation at 175 rpm 
for 60 minutes at 4 °C (Figure 1). Serial dilutions 
up to 10⁻³ were plated onto peptone pentachlo-
ronitrobenzene (PCNB) Agar Medium (PPA), a 
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selective medium for Fusarium species [Leslie 
and Summerell, 2006; Summerell et al., 2003].

Plates were incubated at 28 °C for 3–4 days, 
and fungal colonies presenting morphological 
characteristics of Fusarium were transferred to 
potato dextrose agar (PDA) for further identifi-
cation (Figure 2). Identification was performed 
based on colony morphology, pigmentation, and 
macroconidial shape, following the criteria de-
scribed by Leslie and Summerell [2006]. All iso-
lates were single-spored before being used for 
further microbiological analysis (Figure 2).

Carbon source utilization analysis using 
Biolog SFP2 plates

Biolog SF-P2 plates (Biolog, Inc. Hayward, 
CA) were used to determine the carbon sources 

utilized by each Fusarium isolate (n = 60). Bio-
log SF-P2 microplates directly assess the growth 
of an isolate on 95 isolates on individual carbon 
sources by comparing turbidity in each well to 
water control. In the SF-P2 panel, 95 carbon sub-
strates were tested which cover 11 carbon groups 
(the number of substrates for each group in paren-
theses): alcohol (3), amide (3), amine (1), amino 
acid (9), aromatic compound (4), carbohydrate 
(41), carboxylic acid (15), ester (3), phosphory-
lated compound (8), and polymer (8). Fungal sus-
pensions were prepared by swabbing spores/my-
celium of 10 days old pure culture of Fusarium 
(grown on PDA) into 1.5 ml of 0.2% carrageenan. 
Sprays were adjusted at an OD of 590 nm of 0.20–
0.24 and diluted in 0.2% carrageenan (13.5 mL). 
100 μl of the resulting microbial suspension was 
injected into each well of a Biolog plate. Plates 

Figure 1. Detailed workflow of soil sampling and Fusarium oxysporum isolation 
from suppressive and conducive soils in Moroccan oasis agroecosystems
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were incubated at 28versusC for five days [18]. 
The Biolog SF-P2 plate generally consists of 95 
different carbon compounds, which were used on 
the Biolog SF-P2 plate and reading of these data 
was performed over 24 h 36, h, 48 h, 60 h, 72 h, 
84 h, and 120 h post-inoculation. For standardisa-
tion of absorbance values, the absorbance of each 
well (only contained water) was removed, then 
negative values were transformed to zero (Fig-
ure 3) [El Hilali Alaoui et al., 2025].

Growth parameters calculated

Several growth indicators were determined 
to evaluate the metabolic activity of Fusarium 
isolates:
 • Niche width (NW): The total number of car-

bon substrates utilized by each isolate.
 • Average growth (AG): The mean absorbance 

value across all utilized substrates.
 • Total growth (TG): The sum of absorbance 

values for all utilized substrates.
 • Growth rate: The rate of increase in total ab-

sorbance per hour.

These parameters were used to compare the 
metabolic capacities of Fusarium isolates from 

suppressive and conducive soils and to investi-
gate their potential role in Bayoud disease sup-
pression or conduciveness [Ahmad et al., 2023].

Modeling and data analysis

The Fusarium soil dataset consists of 60 iso-
lates from two regions (Marrakech and Zagora), 
with 30 isolates per region recorded across eight 
time points. Each Fusarium soil is described by 
105 features, including 95 carbon source utiliza-
tion values obtained from Biolog SF-P2 tests, 11 
carbon group classifications, and three key micro-
biological parameters: NW, TG, and AG. Thus, 
considering these elements, the Fusarium soil da-
taset contains 50,400 numerical values. [El Hilali 
Alaoui et al., 2025].

Before model training, all numerical fea-
tures were normalized using Min-Max scaling to 
standardize the input range and reduce bias from 
highly variable carbon utilization rates. This step 
was essential to ensure comparability between 
different carbon sources and to enhance the con-
vergence of machine learning algorithms.

To predict the presence of Fusarium oxys-
porum f. sp. albedinis, six supervised machine 
learning models were tested: logistic regression 

Figure 2. Experimental process for isolating, identifying, and studying the nutritional behavior of Fusarium 
oxysporum f. sp. albedinis from date palm plants and Fusarium isolates from the studied soils. a: Cultivated date 

palm plots, showing one healthy plot (left) and another affected by Bayoud disease (right), with a suppressive 
soil for Bayoud (right) and a conducive soil (left). b: Image of the rachis of a date palm infected by Bayoud 

disease, clearly showing the Fusarium infection. c: Photos showing the colonies of Fusarium from the studied 
soils, cultivated on selective medium in Petri dishes with microscopic characteristics of Fusarium (mycelium, 

conidiophores, microconidia, and macroconidia) d: Use of Biolog SF-P2 plates to test the metabolic behavior of 
Fusarium isolates
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(LR), naive bayes (NB), k-nearest neighbors 
(KNN), XGBoost (XGB), gradient boosting 
(GB), and support vector machine (SVM). These 
models were selected to capture both linear and 
non-linear relationships in the dataset, leveraging 
different classification paradigms to assess the ro-
bustness of predictive performance (Figure 4).

The dataset was divided into 80% training and 
20% testing, ensuring a balanced representation 
of suppressive and conducive soils [Ahmad et al, 
2023]. Model performance was optimized through 
5-fold cross-validation, which mitigates overfit-
ting and enhances generalizability. Hyperparam-
eter tuning was performed using Grid Search CV, 
optimizing key parameters such as the number of 
estimators for boosting models, kernel types for 
SVM, and the number of neighbors for KNN.

The predictive performance of each model 
was evaluated using accuracy, F1-score, and 
AUC-ROC, which provide complementary in-
sights into classification effectiveness. To further 
interpret model predictions, Feature importance 
scores were computed, identifying the most influ-
ential carbon sources and microbiological param-
eters in distinguishing between suppressive and 
conducive soil environments.

Machine learning models applied

This section summarizes the machine learn-
ing models used to predict soil suppressiveness 
against Fusarium oxysporum f. sp. albedinis 
(Foa), explaining their mechanisms, mathematical 

foundations, and relevance to soil microbial pro-
file analysis [Nemer et al, 2024].

Logistic regression (LR)

The Logistic Regression model is a statistical 
classification technique used to predict binary out-
comes. It models the probability that a given sam-
ple belongs to a particular class using the sigmoid 
function, which transforms linear combinations of 
input features into probabilities between 0 and 1.

The mathematical formulation of logistic re-
gression is given by:

 𝑃𝑃(𝑌𝑌 = 1|𝑋𝑋) = 1
1 + 𝑒𝑒−(β0+∑ β𝑖𝑖𝑋𝑋𝑖𝑖) 

 

𝑃𝑃( 𝑌𝑌 ∣ 𝑋𝑋 ) = 𝑃𝑃( 𝑋𝑋 ∣ 𝑌𝑌 )𝑃𝑃(𝑌𝑌)
𝑃𝑃(𝑋𝑋)  
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𝑁𝑁
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False Positive Rate = 𝐹𝐹𝑃𝑃
𝐹𝐹𝑃𝑃 + 𝑇𝑇𝑇𝑇 

 

 

 (1)

where: P(Y = 1 | X) is the probability of the posi-
tive class, β0 is the intercept, βi are the 
model coefficients, Xi are the input fea-
tures, e is Euler’s number.

This model was chosen because it provides 
interpretable coefficients and is efficient for data-
sets with well-separated classes, such as the pre-
diction of soil suppressiveness based on micro-
biological parameters.

Naive bayes (NB)

The Naive Bayes classifier is a probabilistic 
model based on Bayes’ theorem and the assump-
tion that features are conditionally independent 
given the class label. It computes the posterior 
probability of a sample belonging to a class using:
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Figure 3. Detailed workflow for fungal culture preparation, growth assessment, and metabolic capacity 
comparison for Fusarium oxysporum isolates using Biolog SF-P2 plates
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where: P(Y | X) is the posterior probability of 
class YY given the feature vector XX, 
P(Y | X) is the likelihood, P(Y) is the prior 
probability of the class, P(X) is the nor-
malizing constant.

Naive bayes is computationally efficient and 
works well with high-dimensional data, making 
it suitable for classifying soil microbial profiles 
based on carbon utilization patterns.

K-nearest neighbors (KNN)

The K-Nearest Neighbors algorithm is a non-
parametric classification method that assigns a 
class label to a new sample based on the majority 
vote of its K nearest neighbors in feature space. 
The distance between points is typically mea-
sured using Euclidean distance:
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where: X and X’ are two data points in an n-di-
mensional space.

This model was used due to its ability to cap-
ture non-linear decision boundaries in high-dimen-
sional spaces, such as microbial metabolic profiles.

XGBoost (XGB) and gradient boosting (GB)

Both XGBoost and gradient boosting are 
ensemble learning techniques based on decision 
trees, where multiple weak learners are trained 
sequentially to minimize prediction errors. The 
update rule for boosting is given by:
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where: Fm(X) is the updated model at iteration 
mm, Fm – 1 (X) is the previous iteration, γ 
is the learning rate, hm (X) is the new weak 
learner (decision tree).

XGBoost introduces regularization and par-
allel computation, making it more efficient than 
traditional boosting models. These models were 
selected for their high predictive power and abil-
ity to handle complex relationships in the dataset.

Support vector machine (SVM)

The Support Vector Machine classifier finds 
an optimal hyperplane that maximizes the mar-
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where: αi are the Lagrange multipliers, Yi are 
class labels, K (Xi) is the kernel function, 
b is the bias term.

For non-linearly separable data, SVM uses 
kernel functions such as the radial basis func-
tion (RBF):
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This model was chosen due to its robust-
ness in high-dimensional spaces and its ability 
to handle non-linear relationships in microbial 
metabolic data.

This section provides a structured explanation 
of each machine learning model used in the study, 
along with their mathematical foundations and rel-
evance to soil microbial analysis (Table 1).

Figure 4. Steps in data analysis and machine learning model optimization for predicting 
Fusarium oxysporum f. sp. albedinis (Foa) infection
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Statistical test explanation

To compare the performance of Gradient 
Boosting with other models (XGBoost, SVM, 
Naïve Bayes, KNN, Logistic Regression), a 
paired t-test was performed. This test allows for 
the comparison of accuracy differences between 
gradient boosting and each other model across 
the folds of 10-fold cross-validation. The paired 
t-test was chosen because it effectively com-
pares the differences between paired samples, 
ensuring a robust statistical evaluation of perfor-
mance differences. The assumptions of normal-
ity for the differences in accuracy across folds 
were validated using the Central Limit Theorem, 
which holds given 10 folds.

Distribution of the target variable

One of the first aspects analyzed in this study 
is the distribution of the target variable, which 
differentiates between suppressive and condu-
cive soils in relation to Fusarium oxysporum f. 
sp. albedinis (Foa) infection. The dataset pres-
ents a balanced distribution of both classes, with 
an equal number of suppressive and conducive 

soil samples. This balance is particularly advan-
tageous for machine learning applications, as it 
helps prevent model bias toward a dominant class 
and enhances the generalizability of predictions.

EVALUATION METRICS FOR BINARY 
CLASSIFICATION IN SOIL ANALYSIS

When distinguishing between suppressive 
and conductive soils, evaluating the model’s 
predictive performance using appropriate met-
rics is essential. These metrics offer a detailed 
assessment of how well the model differentiates 
between the two soil types, helping to ensure ac-
curate classification and reliable decision-making 
[Steurer et al., 2021; Cabot et al., 2023].

A well-performing model should not only 
correctly classify soils but also minimize misclas-
sification errors, particularly false positives (in-
correctly identifying conducive soil as suppres-
sive) and false negatives (failing to detect sup-
pressive soil). Since misclassifications can lead to 
incorrect soil management practices such as un-
necessary treatments or overlooking harmful soil 
conditions it is critical to use multiple evaluation 

Table 1. Justification, advantages, and limitations of the models used in the study

Model Justification Advantages in the context of 
the study

Limitations in the context of 
the study

Logistic regression (LR)

Used to model the relationship 
between metabolic 
characteristics (carbon source 
utilization) and the presence 
of Fusarium oxysporum in 
suppressive or conducive soils.

Easy to interpret; Effective for 
binary classification problems; 
Handles linear relationships 
well.

Assumes a linear relationship 
between the explanatory 
variables and the target 
probability; Less effective 
with complex non-linear 
relationships.

Naive bayes (NB)

Based on Bayes’ theorem; 
classifies isolates based on 
the conditional probability of 
metabolic characteristics.

Fast to train, even with a large 
number of variables; Suitable 
for high-dimensional datasets; 
Performs well with small 
datasets.

Assumption of independence 
between features is rarely 
true in microbiology; Sensitive 
to correlations between 
variables.

K-Nearest neighbors 
(KNN)

Classifies isolates based 
on similarity to the nearest 
’neighbors’ in the feature space.

Non-parametric model, suitable 
for complex relationships; Easy 
to understand and implement; 
Adapts well to small datasets.

Slow for large datasets 
(requires distance 
calculation); Sensitive to noise 
and the choice of ’k’ value.

XGBoost (XGB)

An ensemble model based on 
boosting, combining multiple 
weak decision trees to improve 
accuracy.

Highly effective with complex 
non-linear relationships; 
Handles missing values and 
complex variable interactions 
well; Optimized for fast training.

Risk of overfitting if the 
model is too complex; 
Requires careful tuning of 
hyperparameters.

Gradient boosting (GB) Boosting-based model with a 
customizable loss function.

High performance for complex 
classification problems; Models 
non-linear relationships well; 
Works well with small and 
medium-sized datasets.

Slower to train than XGBoost; 
Prone to overfitting if too 
many estimators are used.

Support vector machine 
(SVM)

Used to separate classes by 
maximizing the margin between 
them in a high-dimensional 
space.

Effective for binary classification 
with small datasets; Works well 
in high-dimensional spaces; 
Handles non-linear problems 
with kernel functions.

Computationally expensive 
for large datasets; Hard to 
interpret; Sensitive to kernel 
and regularization parameter 
choices.
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metrics to get a comprehensive understanding of 
model effectiveness.

By analyzing metrics such as accuracy, preci-
sion, recall, F1-score, and AUC-ROC, research-
ers and agronomists can determine whether the 
model provides a balanced and reliable classifi-
cation. These measures help in identifying weak-
nesses in the model and making improvements 
for better soil health monitoring and sustainable 
agricultural practices.

Accuracy

Accuracy represents the overall proportion of 
correctly classified soil samples relative to the to-
tal number of samples. It is a useful metric when 
the dataset is balanced (our case), but it may be 
misleading in cases of class imbalance.
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where: TP (true positives): Suppressive soils cor-
rectly classified as suppressive, TN (true 
negatives): Conducive soils correctly 
classified as conducive, FP (false posi-
tives): Conducive soils incorrectly classi-
fied as suppressive, FN (false negatives): 
Suppressive soils incorrectly classified as 
conducive

Precision

Precision quantifies how many of the samples 
predicted as suppressive soils are suppressive. It 
helps assess the reliability of positive predictions.
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Recall

Recall measures the proportion of actual sup-
pressive soils that the model correctly identifies. 
It is crucial when missing suppressive soils could 
have serious consequences.
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F1-score

The F1-score is the harmonic mean of preci-
sion and recall, balancing both aspects in a single 
measure. It is particularly useful when the dataset 
is imbalanced.
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Receiver operating characteristic (ROC) curve 
& Area under the curve (AUC-ROC)

The ROC curve plots the true positive rate 
(Recall) against the false positive rate (FPR) at 
various classification thresholds, showing the 
trade-off between correctly detecting suppressive 
soils and misclassifying conducive soils.

 

𝑃𝑃(𝑌𝑌 = 1|𝑋𝑋) = 1
1 + 𝑒𝑒−(β0+∑ β𝑖𝑖𝑋𝑋𝑖𝑖) 

 

𝑃𝑃( 𝑌𝑌 ∣ 𝑋𝑋 ) = 𝑃𝑃( 𝑋𝑋 ∣ 𝑌𝑌 )𝑃𝑃(𝑌𝑌)
𝑃𝑃(𝑋𝑋)  

 

𝑑𝑑(𝑋𝑋, 𝑋𝑋′) = √∑(𝑋𝑋𝑖𝑖 − 𝑋𝑋𝑖𝑖
′)2

𝑛𝑛

𝑖𝑖=1
 

 

𝐹𝐹𝑚𝑚(𝑋𝑋) = 𝐹𝐹𝑚𝑚−1(𝑋𝑋) + γℎ𝑚𝑚(𝑋𝑋) 

 

𝑓𝑓(𝑋𝑋) = sign(∑ α𝑖𝑖𝑌𝑌𝑖𝑖𝐾𝐾(𝑋𝑋𝑖𝑖, 𝑋𝑋)
𝑁𝑁

𝑖𝑖=1
+ 𝑏𝑏) 

 

𝐾𝐾(𝑋𝑋, 𝑋𝑋′) = 𝑒𝑒−γ||𝑋𝑋−𝑋𝑋′||
2

 

 

𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 =  𝑇𝑇𝑃𝑃 + 𝑇𝑇𝑇𝑇
𝑇𝑇𝑃𝑃 + 𝑇𝑇𝑇𝑇 + 𝐹𝐹𝑃𝑃 + 𝐹𝐹𝑇𝑇 

 

Precision = 𝑇𝑇𝑃𝑃
𝑇𝑇𝑃𝑃 + 𝐹𝐹𝑃𝑃 

 

Recall = 𝑇𝑇𝑃𝑃
𝑇𝑇𝑃𝑃 + 𝐹𝐹𝑇𝑇 

 

𝐹𝐹1 = 2 ×  Precision ×  Recall
Precision +  Recall

 

 

False Positive Rate = 𝐹𝐹𝑃𝑃
𝐹𝐹𝑃𝑃 + 𝑇𝑇𝑇𝑇 

 

 

 (11)

The Area Under the Curve (AUC-ROC) 
quantifies the model’s ability to distinguish be-
tween suppressive and conducive soils:
 • AUC close to 1: The model has high discrimi-

native power.
 • AUC around 0.5: The model performs no bet-

ter than random chance.
 • AUC close to 0: The model is making incor-

rect predictions systematically.

RESULTS 

Machine learning models for classification of 
suppressive and conducive soils

The performance of several machine learn-
ing models was evaluated for the classification 
of suppressive (Class 0) and conducive (Class 1) 
soils, using precision, recall, F1-score, and over-
all accuracy as evaluation metrics. As shown in 
Table 2, the results highlight clear differences in 
model performance.

Gradient Boosting and XGBoost achieved the 
highest scores across all metrics, each recording 
an F1-score of 0.99 for both classes. The overall 
accuracy reached 0.99 for Gradient Boosting and 
0.98 for XGBoost, indicating strong and consis-
tent classification results for both suppressive and 
conducive soils.

Logistic regression also showed high perfor-
mance, with an overall accuracy of 0.98. Preci-
sion and recall were equally distributed across 
both classes, confirming the model’s consistent 
behavior in identifying each soil type.

SVM followed with an accuracy of 0.96, 
maintaining stable precision and recall values. 
The KNN model achieved a slightly lower ac-
curacy of 0.94. Although its recall for conducive 
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soils remained high, recall for suppressive soils 
dropped to 0.89, reflecting a higher rate of mis-
classification in that category.

Naïve Bayes reported the lowest performance 
among the evaluated models. Its overall accuracy 
was 0.79, with a recall of 0.60 for suppressive 
soils and 0.98 for conducive soils, indicating an 
imbalance in its classification capacity. All nu-
merical results supporting these observations are 
detailed in Table 2.

Paired t-test results for comparisons of 
gradient boosting with other models

The results of the paired t-test showed that 
Gradient Boosting significantly outperformed all 
the other models (p < 0.05; Table 3). The larg-
est difference was observed against Naïve Bayes, 
with a mean difference of 0.204, t-statistic of 
125.15, and p-value less than 0.001, reflecting 
a substantial accuracy gap (0.99 vs. 0.79). The 
smallest differences were found between XG-
Boost and logistic regression, both with a mean 
difference of 0.01. Although these differences are 
small, they remain statistically significant, with t-
statistics of 4.74 and p-values less than 0.01.

Moderate differences were observed be-
tween KNN and SVM, with mean differences 
of 0.055 and 0.035, respectively. Both com-
parisons showed highly significant results (p 
< 0.001). These results indicate that Gradient 
Boosting is consistently superior across all the 
models tested, confirming its strong classifica-
tion performance.

Comparative analysis of machine learning 
models for soil classification based on ROC 
curves

Figure 5 presents ROC curves for six machine 
learning models applied to soil classification: 
SVM, NB, KNN, LR, XGBoost, and Gradient 

Boosting. Each model’s curve displays the trade-
off between the true positive rate (TPR) and false 
positive rate (FPR), with the area under the curve 
(AUC) serving as a quantitative measure of clas-
sification performance.

SVM shows a high AUC of 0.96, indicat-
ing a strong separation between soil classes. Its 
kernel-based transformations allow it to capture 
complex patterns effectively. Naïve Bayes, with 
an AUC of 0.79, underperforms due to its as-
sumption of feature independence, which lim-
its its ability to capture feature interactions in 
soil profiles. KNN achieves a high AUC of 0.94, 
benefiting from local pattern recognition but is 
sensitive to hyperparameters like k and distance 
metrics, and struggles with scalability.

Logistic Regression delivers an AUC of 
0.963, reflecting solid performance, though its 
assumption of linear separability of features 
may limit its effectiveness compared to more 
flexible models. XGBoost and Gradient Boost-
ing both reach near-perfect AUCs of 0.99. These 
ensemble methods excel at handling non-linear 
relationships and feature interactions, with XG-
Boost’s robustness to overfitting stemming from 
regularization and tree-pruning techniques, al-
though training cost increases with model com-
plexity. Gradient Boosting’s iterative refinement 
ensures high accuracy but risks overfitting if hy-
perparameters aren’t carefully tuned.

Overall, ensemble methods (XGBoost, gra-
dient boosting) and kernel-based models (SVM) 
show the best performance, particularly for 
complex soil classification tasks. KNN provides 
strong results through local pattern recognition, 
while Logistic regression offers interpretabil-
ity. Naïve Bayes, despite its lower performance, 
serves as a useful benchmark model due to its 
simplicity. These findings highlight that non-lin-
ear and ensemble methods are well-suited for soil 
classification, with XGBoost and Gradient Boost-
ing offering the highest accuracy and robustness.

Table 2. Comparative results of machine learning models for suppressive and conducive soil classification

Model Precision 
Classe 0

Rappel 
Classe 0

F1-Score 
Classe 0

Precision 
Classe 1

Rappel 
Classe 1

F1-Score 
Classe 1 Accuracy

SVM 0.94 0.98 0.96 0.98 0.94 0.96 0.96

XGBoost 1.00 0.98 0.99 0.98 1.00 0.99 0.98

Naïve Bayes 0.97 0.60 0.74 0.72 0.98 0.83 0.79

KNN 0.98 0.89 0.93 0.91 0.98 0.94 0.94

Logistic reg. 0.98 0.98 0.98 0.98 0.98 0.98 0.98
Gradient 
boosting 0.98 1.00 0.99 1.00 0.98 0.99 0.99



308

Ecological Engineering & Environmental Technology 2025, 26(7), 299–315

Confusion matrix for XGBoost model

The confusion matrix for the XGBoost model 
is presented in Figure 6. Out of the total samples, 
the model correctly classified 69 suppressive soils 
as suppressive and 67 conducive soils as condu-
cive. Misclassifications included 5 suppressive 
soils labeled as conducive and 3 conducive soils 
labeled as suppressive. These values align with 
the performance metrics reported in Table 2 and 
support the model’s high classification accuracy.

Feature importance analysis from the 
gradient boosting model

The feature importance scores generated by the 
Gradient Boosting model are presented in Figure 7. 

These scores indicate the relative contribu-
tion of each input variable to the model’s predic-
tions in the classification of suppressive and con-
ducive soils. The figure displays horizontal bars 

representing the importance values, with longer 
bars corresponding to higher impact features. The 
top three features show markedly higher impor-
tance scores compared to the remaining variables, 
indicating a concentration of predictive influence 
among a limited subset of inputs. Feature impor-
tance in the Gradient Boosting model is calculat-
ed using Gini importance, which reflects the total 
reduction in node impurity contributed by each 
feature across all trees in the ensemble. Lower-
ranked features show progressively smaller im-
portance values [Otchere et al., 2022]. 

Feature importance analysis from SHAP 
(SHapley additive explanations)

SHAP values were calculated to assess the 
contribution of each input feature to the predic-
tions made by the soil classification models. 
The SHAP summary plot (Figure 8) displays the 

Table 3. Paired t-test results for comparisons of gradient boosting with other models (XGBoost, SVM, KNN, 
Logistic regression, Naïve Bayes)

Comparison Mean difference (d¯) Std Dev (sd) t-statistic p-value Significant (α = 0.05)?

GB vs. XGBoost 0.01 0.00667 4.74 lt 0.01 Yes

GB vs. SVM 0.035 0.00957 11.55 lt 0.001 Yes

GB vs. KNN 0.055 0.00972 17.92 lt 0.001 Yes
GB vs. Logistic 
regression

0.01 0.00667 4.74 lt 0.01 Yes

GB vs. Naïve Bayes 0.204 0.00516 125.15 lt 0.001 Yes

Figure 5. Comparative performance of machine learning models based on ROC curves for soil classification
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magnitude and direction of each feature’s impact 
on the model’s output. Features with the highest 
SHAP values (it’s worthy to mention these fea-
tures) were consistent with those ranked most 
important in the Gradient Boosting feature im-
portance analysis. These top-ranked features 
show the strongest influence, either increasing or 
decreasing the predicted probability of a given 
class. Several features exhibit a broad range of 
SHAP values across the dataset, indicating vari-
able effects on the model’s output depending 
on the input value. The SHAP analysis also re-
veals that a small number of features (mention it 
please) accounted for the majority of the predic-
tive contribution. 

Correlation matrix analysis for soil 
classification models

The correlation matrix for the input features 
used in the soil classification models is shown in 
Figure 9. The matrix displays pairwise Pearson cor-
relation coefficients, ranging from -1 to 1, repre-
senting the linear relationships between variables.

The matrix displays pairwise Pearson correla-
tion coefficients, ranging from -1 to 1, representing 
the linear relationships between variables. Several 
feature pairs exhibit strong positive correlations, 

with coefficients above 0.8, such as the relationship 
between B_7 and C_2 (r = 0.79), indicating a sig-
nificant linear relationship between Fusarium iso-
lates and carbon source utilization. A smaller num-
ber of feature pairs show moderate to high negative 
correlations, like between C_1 and A_6 (r = -0.24), 
suggesting a weak negative association. Most re-
maining feature combinations demonstrate weak or 
negligible correlations, with values close to zero. 
These results indicate varying degrees of linear as-
sociation among the Fusarium soil features.

DISCUSSION

Bayoud disease, which is caused by Fu-
sarium oxysporum f. sp., Cactoblastis cactorum 
(Berg), and Cactoblastis albedinis (Foa) continues 
to be an important pest of date palm, especially 
in North Africa. These results suggest that func-
tional profiles of stimulated microbes reflect the 
metabolic activity patterns within the soil and can 
be effective predictors of soil suppressiveness, 
which can be used as a foundation for better mod-
eling for disease management. This is an impor-
tant stride towards the multidisciplinary merger of 
microbial ecology and machine learning in agri-
culture-related soil-borne pathogens.

Figure 6. Confusion matrix for XGBoost model – classification of suppressive and conducive soils
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The strong predictive performance of XG-
Boost and Gradient Boosting emphasizes the 
benefit of ensemble-based approaches for com-
plex microbial metabolic data. The AUC values 
of both models were greater than 0.99, confirm-
ing that our models could capture non-linear 
relationships and complex feature interactions. 
Our findings confirm other studies that found that 
ensemble methods outperform more classical 

statistical approaches for problems in the fields 
of plant pathology and soil health assessment 
[Wang and Zou, 2024]. That consistent predic-
tion performance of SVM and KNN strongly 
evidence supports microbial metabolic diversity 
of predictive index may be an essential driver 
of soil suppressiveness. Although the perfor-
mance of Naive Bayes is still relatively low, this 
reinforces the concept that microbial metabolic 

Figure 7. Feature importance analysis for soil classification models using Gradient Boosting – key variables 
influencing disease suppression and conduciveness; give the significance of features: meaning of each, the codes 
on the x-axis of the graph (A, C, D, GR4, etc.) represent the observations corresponding to the sources of carbon 

and carbon group classifications from the Biolog SF-P2 plates. Each of these codes is associated with specific 
Fusarium soil isolates

Figure 8. SHAP value analysis for soil classification models – understanding feature contributions and non-
linear interactions. Abbreviations names as shown in Figure 7
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interactions are not independent, making proba-
bilistic models less appropriate for this form of 
data [Li et al., 2023].

A comparison of these two approaches 
showed that the most important features influ-
encing soil suppressiveness were carbohydrate 
utilization and amino acid metabolism (SHAP 
analysis). This observation agrees with the stud-
ies that demonstrated that microbial competition 
for carbon resources increases soil resistance to 
pathogens [Malik et al., 2020; Xu et al., 2024). 
This carbohydrate metabolic dominance also 
suggests the presence of a competitive microbial 
environment for readily available carbon sources 
that may inhibit the colonization of Foa by creat-
ing an antagonistic soil environment. In a similar 
vein, greater amino acid metabolism may also 
reflect elevated microbial activity and metabolic 
flexibility, which in turn may further aid in patho-
gen suppression.

Classification models used molecular ecolog-
ical networks of metabolic profiles to separate 
suppressive and conducive soil types. Suppres-
sive soils exhibited greater microbial diversity, 
wider niche width, and increased utilization of 
carbohydrates. These patterns are consistent with 
the concept of “soil immunity” that suggests di-
verse microbial communities form ecological bar-
riers that inhibit pathogen establishment [Li et al., 
2024; Ding et al., 2022]. The additional evidence 

of functional redundancy and microbial compe-
tition proposed as the mechanisms of pathogen 
inhibition was further proved by the presence of 
higher growth rates and total metabolic activity in 
the suppressive soils [Kinkel et al., 2011].

The correlation analysis showcased additional 
information on the basic biological mechanisms 
of soil suppressiveness. Our results showed both 
a wide breadth of niche width among groups as 
well as strong positive correlations between car-
bohydrate utilization patterns, niche width and 
total growth, further indicating that metabolic 
versatility facilitates soil resilience. On the other 
hand, low associations between overall amino 
acid utilization patterns and pathogen suppres-
sion suggest that amino acid metabolism may not 
be a primary player in disease suppression. These 
findings conform to previously observed work, 
where soil suppressiveness was driven by meta-
bolic diversity, rather than the diversity of indi-
vidual metabolites [Bi et al., 2021].

The present study has proven the feasibil-
ity to use machine learning modeling to predict 
soil suppressiveness directly from information 
on microbial metabolic activity, thus constitut-
ing a useful tool for early disease risk assessment. 
Ensemble models can capture complex interac-
tions between microbes, which is a key advan-
tage over traditional diagnostic approaches that 
often depend on identification based on visual 

Figure 9. Correlation matrix of input features in soil classification models – insights into redundancy, 
multicollinearity, and model performance; abbreviations names as shown in Figure 7
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symptoms or pathogen isolation [Leslie and Sum-
merell, 2006; Summerell et al., 2003]. The iden-
tification of key metabolic pathways linked with 
pathogen suppression additionally provides prac-
tical applications for defining targeted soil health 
practices [Jagadesh et al., 2024]. For instance, 
enhancing the soil resilience to Foa and lower-
ing the chemical control requirement are could 
be accomplished by encouraging beneficial mi-
crobe’s consortia that benefit carbohydrate and 
amino acids metabolism [Vishwakarma et al., 
2020]. This is in agreement with previous stud-
ies [Mendes et al., 2011; Raaijmakers and Maz-
zola, 2016] that have shown the effects of soil 
microbial diversity and metabolic activity in soil 
disease suppression (Table 1). Pseudomonas spp. 
have been recognized as important indicators of 
soil suppressiveness based on their ability to pro-
duce antibiotics and/or effectively colonize roots 
[Mendes et al., 2018]. Berendsen et al. [2012] 
stated that Increased microbial diversity improves 
the resilience of soil through ecological competi-
tion, thereby restricting pathogen establishment. 
This study build on these results by revealing the 
metabolic pathways including especially carbo-
hydrate and amino acid metabolism that are criti-
cal to soil suppressiveness.

This excellent predictive performance of XG-
Boost and Gradient Boosting is consistent with 
previous plant pathology studies showing that en-
semble models offer superior predictive perfor-
mance compared to tree models [Pereyra, 2021]. 
As previously noted, ensemble methods have 
a more reliable performance than linear models 
when predicting plant disease outbreaks because 
they consideration of complex interactions of 
features [Wang and Li, 2025]. Here we extend 
these findings to soil-borne diseases providing 
evidence that microbial functional diversity mea-
sured through redox enzyme activity can be mod-
eled at ensemble scales.

This is a tiny step in the right direction, but 
does have several issues. However, the data is 
only for two areas (Marrakech and Zagora), 
potentially affecting the generalizability of the 
models. To confirm the robustness of the predic-
tive models, a sampling of soils over multiple 
regions with diverse soil should be conducted 
for future studies. Furthermore, the temporal 
fluctuations of microbial populations, which 
could also lead to changes in soil suppressive-
ness happened to be not considered in the ex-
isting model. Longitudinal data could enhance 

predictive performance by capturing the dynam-
ics of microbial interactions that may change 
according to various environmental conditions 
and seasons.

There are also limitations in terms of the 
focus on patterns of metabolic activity, Meta-
bolic profiles are functional, but cannot give 
the complete picture of microbial community 
structure and genetic diversity. Metagenomic 
and metabolomic data are often complementary, 
and their combined use has the potential to pro-
vide a broader view of the mechanisms of soil 
suppressiveness [Yang et al., 2023]. In addition, 
machine learning can be computationally ex-
pensive, and balancing model complexity with 
soil health assessment needs to be carefully 
weighed. XGBoost and Gradient Boosting are 
ensemble models that consume a lot of resourc-
es in decoding the parameters which may restrict 
their adoptability for large-scale agricultural use 
[Araújo et al., 2023].

Thus, the incorporation of machine learning 
into microbial metabolic profiling could have 
powerful applications to sustainable agricul-
ture. It provides early warning to detect a risk 
of disease; so farmers could take preventative 
action before they see any signs of symptoms. 
Second, it encourages less expensive chemical-
based treatments that can disturb beneficial soil 
microbial communities. Finally, this same set of 
metabolic markers most likely associated with 
soil suppressiveness can also guide the formu-
lation of biological applications and soil man-
agement options to induce microbial resilience. 
In the end, ML-based soil diagnostics may help 
promote scientific technologies for sustainable 
agricultural practices that enhance soil quality 
and mitigate crop losses due to soil-borne patho-
gens [Sharma et al., 2024; Prasad et al., 2024].

CONCLUSIONS

This study indicates the strong predictive 
skills of machine learning algorithms, espe-
cially XGBoost and Gradient Boosting, in clas-
sifying soils dependent on their suppressiveness 
to Fusarium oxysporum f. sp. albedinis (Foa). 
Remarkably high AUC-ROC values (surpass-
ing 0.99) and balanced precision-recall metrics 
validate their trustworthiness in distinguishing 
between soil types. SHAP analysis further rec-
ognized key metabolic markers linked to disease 
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suppression, underscoring the importance of mi-
crobial diversity, carbohydrate utilization, and 
practical redundancy in suppressive soils.

The ability to categorize soils based on their 
metabolic profiles represents a significant stride 
ahead in sustainable disease administration, of-
fering early identification of Bayoud disease 
risks while reducing the necessity for chemical 
treatments. Yet the scope of sampling requires 
broadening and integration of metagenomic 
information would strengthen the model’s re-
silience. Accessible AI-driven diagnostic tools 
for farmers will enrich soil health management 
and reinforce agricultural adaptability to climate 
change. Comprehending soil metabolic profiles 
at many locations and times utilizing metage-
nomic data could substantially boost the model’s 
skill in forecasting Bayoud disease risk, support-
ing proactive and targeted administration deci-
sions by farmers to improve yields and bolster 
ecosystem services.
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