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INTRODUCTION

Water is an essential resource for human 
survival, but its quality can be compromised by 
various forms of contamination, making it unsafe 
for consumption and potentially leading to wa-
terborne diseases (WHO, 2011). Ensuring proper 
water treatment is a key priority to protect pub-
lic health (Rhajaoui, 2019). In areas where water 
quality control is inadequate, inappropriate treat-
ment methods often lead to significant problems 
such as corrosion and scaling within water distri-
bution systems, with detrimental consequences for 
both infrastructure and public health (Gholizadeh 

et al., 2017), and the water quality still be affected 
throughout the distribution process.

In the case of Fes City, Morocco, the drinking 
water distribution systems are primarily made of 
galvanized steel, ductile iron and cast iron which 
are particularly susceptible to corrosion and scal-
ing. They can represent more than half of water 
distribution network (Gonzaleza et al., 2013). 
These phenomena can significantly degrade the 
water quality and shorten the lifespan of the dis-
tribution systems. Corrosion occurs when the wa-
ter’s physicochemical properties cause the disso-
lution of the pipe materials while scaling results 
from the precipitation of minerals like calcium 
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carbonate, which can clog pipes and reduce flow 
efficiency. The water distribution system, often 
described as a dynamic reactor, experiences con-
stant physicochemical interactions between water 
and the materials forming the pipes. This inter-
action causes the release of iron or ferrous ions 
into the water, resulting in a metallic taste and red 
water (Zhang et al., 2022). As a result, the qual-
ity of the water delivered to households can differ 
significantly from the quality of the water at the 
treatment station. The conditions influencing wa-
ter quality within distribution networks are com-
plex, and understanding these factors has become 
the subject of extensive scientific inquiry (Ben-
soltane et al., 2018). For Fes City, the corrosion 
and scaling potential of the drinking water are 
critical concerns for operational teams working to 
maintain the integrity of the water supply system.

A major challenge in water distribution sys-
tems, especially those constructed with galva-
nized steel pipes, is the corrosive nature of water. 
Corrosive water can degrade the pipe infrastruc-
ture by dissolving metal components, which not 
only reduces the pipes’ lifespan but also contami-
nates the drinking water with leaches metals, such 
as lead, cadmium, chromium, and aluminum (El 
Baroudi et al., 2024). This type of water, often re-
ferred to as “corrosive water,” poses indirect risks 
to human health due to the presence of dissolved 
pipe materials (Kumar et al., 2023). Furthermore, 
scaling caused by the deposition of minerals can 
lead to flow restrictions and increased mainte-
nance costs, thereby affecting the efficiency and 
safety of the water distribution system.

The calcocarbonic balance, also known as 
the calcium-carbonate balance, in drinking wa-
ter, plays a critical role in water quality control, 
especially within distribution networks. Effective 
management of this balance is necessary to prevent 
both corrosion and scaling, which can compromise 
the water supply infrastructure (Hachemi and Ze-
roual, 2021). Controlling this balance not only 
preserves the structural integrity of the network 
but also reduces scaling in both public and private 
installations (Machkor, 2011). Indices such as the 
Langelier, Leroy, and Larson indices are common-
ly used to assess a water system’s corrosiveness by 
analyzing its physicochemical parameters.

In our study, we analyzed the physicochemi-
cal parameters of the drinking water in Fes City, 
including Langelier index (LSI), CAT, CAT 
saturation, chloride, sulfate, dissolved oxygen, 
residual chlorine, conductivity, turbidity, TH, 

oxidability and temperature. These parameters 
are crucial in understanding the water’s potential 
for corrosion and scaling within the distribution 
network. Multiple linear regression modeling by 
software Statistica 12 and Excel was employed 
to identify the key parameters influencing water 
quality, providing valuable insights to help water 
producers take corrective actions to mitigate cor-
rosion and scaling (Kumar et al., 2023).

The main objective of this study is to assess 
the corrosion and scaling potential of the drinking 
water distribution systems in Fez, It is impera-
tive to consider the multitude of health risks to 
the population and the economic losses incurred 
due to corrosion and scaling of drinking water 
(Yousefi et al., 2016). By focusing on water pa-
rameter data from the city of Fez water treatment 
plant, this research offers a novel application of 
mathematical techniques to better understand and 
manage water quality. Specifically, we use linear 
models to determine the relationships between 
the calcocarbonic balance and water corrosivity 
(Li, 2014), providing a framework for improving 
the management of drinking water distribution 
systems and the water quality.

MATERIALS AND METHODS

Study zone

Fez is located in the northeastern region of 
Morocco and constitutes one of the nine provinces 
of the Fes-Meknes region. It is the second-largest 
city in the country, with a population of 1,365,000 
as reported in the 2022 Moroccan census. The 
prevailing climate is semi-arid continental, with 
distinct seasonal patterns. Summers are charac-
terized by high temperatures and low humidity, 
while winters are cold and wet (Bouizrou et al., 
2021). It is located between parallels 34° 03′ 00″ 
North and meridians 4° 58′ 59″ West, covering an 
area of 424 km². 

The study was conducted at the National Of-
fice of Electricity and Drinking Water in Fes, 
which forms part of the Direction Regional Cen-
tre Nord Fes-Meknes (DR5). That is mentioned 
in the Figure 1. 

Sampling and physicochemical water analysis

Water sample collection for physiochemical 
analysis is a process that needs to be done with great 
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care. Using 2.5 L bottles, samples of the treated 
water were collected from the tap after distribution 
once a week for 6 months  (April 2021 and Sep-
tember 2021), coming from various Fez sources (6 
points). The physicochemical analyses, including 
temperature, dissolved oxygen, LSI, conductivity, 
turbidity, oxidability, dissolved oxygen (O2), TH, 
sulfate (SO4

2-), chloride (Cl-), complete alkalin-
ity title (CAT), complete alkalinity title saturation 
(CATs) and residual chlorine (Cl2) and temperature 
were all measured using the techniques outlined 
by (Rodier et al., 2009). The analytical methods 

employed are presented in Table 1. A total of 156 
samples were collected between April 2021 and 
September 2021. Two indices were employed to 
assess the corrosivity of the water: the Larson in-
dex and the Leroy index (Leroy, 2012).

Evaluation of corrosion/scaling indices

Langelier saturation index

Concerning the calcium carbonate equilib-
rium theory, the Langelier saturation index model 

Figure 1. Geographical location of the city of FEZ (Google Earth and ONEE official website)

Table 1. Analysis methods for physicochemical parameters
Parameters Analysis method Unites

Conductivity Electrochemical (conductivity meter) mS/cm

Turbidity Electrochemical (turbidity meter) NTU

pH/ pHs (LSI) Electrochemical (pH-meter) ---

Dissolved oxygen Electrochemical mg/l

Residual chlorine *DPD test meq/l

Total dissolved solids (TDS) Electrochemical (conductometric) mg/l

Chloride Titrimetric dosing meq/l

Sulfate Nephelometry meq/l

CAT / CATs Titrimetric dosing meq/l

TH Titrimetric dosing meq/l

Oxidability Titrimetric dosing mg(O2)/l

Temperature Electrometric / thermometer °C

Note: *diethyl paraphenylene diamine.
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was employed to ascertain the quality of the wa-
ter in question. The phenomenon currently under 
investigation is the impact of the pH on the equi-
librium solubility of calcium carbonate. The pH 
value at which water is saturated with calcium 
carbonate is known as the saturation pH or pHs 
(Alvarez-Bastida et al., 2013) (Agatemor and 
Okolo 2008). 

The LSI is defined by the Equation 1 (Lestari 
et al., 2023):

	 LSI = pHi - pHs (1) 
 
 
pHs = (9.3 + A + B) - (C + D) (2) 
 
 
A= (Log10 (TDS) - 1)

10 
 (When TDS < 10.000 mg/L) (3) 

 
B = -13.12 × Log10 (°C + 273) + 34.55 (4) 
 
C = Log10 (Ca2+ as CaCO3) - 0.4 (5) 
 
D = Log10 (alkalinity as CaCO3) (6) 
 

Larson index =  [Cl-] + [SO4
2-]   

[HCO3
-]   (7) 
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	 (El Baroudi et al., 2024) 	
The following equation is valid if the pHs is 

higher than 9.3 (Nalivan et al., 2019).
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The Langelier index is a useful indicator of 
water quality. When the index is below -0.3, the 
water is considered aggressive and tends to cor-
rode. Conversely, when the index is above 0.3, 
the water is scaling. In the case of water in equi-
librium, the Langelier index value is 0 (Yousefi 
et al., 2016).

Larson index

The Larson index model defines the index as 
follows in Equation.7 (Al-Qurnawi et al., 2022):
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The concentrations of chloride (Cl-), sulfate 
(SO4

2-), and bicarbonate (HCO3
-) are expressed 

in mill equivalents per liter (meq/l) (Song et al, 
2019). The water classification can be determined 
by calculating the index, with the following 
categorization:

The Larson index is a useful tool for deter-
mining the corrosivity of water. Values below 
0.8 are considered to be slightly corrosive, while 
those between 0.8 and 1.2 are corrosive, and val-
ues above 1.2 are highly corrosive (Al-Qurnawi 
et al, 2022).

Leroy index

To determine the corrosivity of water, another 
index has been calculated which can be used to 
estimate it. This index, designated the Leroy in-
dex, is defined by the following Equation 8. (Has-
sani et al., 2024):
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The Leroy index is defined as the ratio be-
tween the CAT and the total hardness concen-
tration (TH). This test can be used to determine 
whether a given water is prone to corrosion. The 
results are expressed in mill equivalents per li-
ter (meq/l). The water in question is considered 
slightly corrosive at concentrations between 0.7 
and 1.3, and highly corrosive at concentrations 
above 1.3 (Bakouan et al., 2017).

Modeling

The multiple linear regression model is one 
of the most commonly used statistical techniques 
to analyze multifactorial effects. A multiple linear 
regression (MLR) model is a statistical technique 
used to study and model the relationship between 
variables (Mata, 2011). This statistical technique 
employs several explanatory variables to predict 
the outcome of a response variable (Salhi et al., 
2013) (John et al., 2021).

The MLR analysis establishes a correla-
tion between the factors (parameters) and the 
response, which is the corrosivity index in this 
case. The MLR model can be expressed in math-
ematical terms as the following Equation 9 (Laa-
jine et al., 2022):
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where:	Y the predicted response, Xi the indepen-
dent variables, β0, βi, and βn, the regres-
sion coefficients, k the number of vari-
ables studied.

Model coefficients are calculated using Sta-
tistica 12 and Excel software.

Graphical analysis

To ascertain the veracity of the model, several 
different graphs are employed for the purposes of 
graphical analysis. The Statistica software pro-
vides three graphs: Henry’s line of residual val-
ues, histogram of residual values, and analysis 
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of relationships between residuals and predicted 
values (Bezazi et al., 2015).

RESULTS 

Constitution of the database

The database was constructed through physi-
cochemical analyses collected weekly for six 
months of samples derived from 6 sources. The 
above analyses yielded 156 samples, which are 
presented in Table 2. The values present in this 
table are real and unaltered.

The nature of surface water and groundwater 
can be determined by various indices, which are 
classified as aggressive, neutral, or incrusting. 
The objective of these tools is to provide those 
responsible for water treatment with indications 
of the behavior of water in the distribution net-
work, particularly concerning the formation of 
the carbonate layer (Langelier saturation index) 
and the interaction between water and all oxid-
able metals (Larson and Leroy index). Table 3 
presents the results of the analysis. The depen-
dent variables are calculated according to the for-
mulas presented above.

The results presented in Table 3 indicate that 
the quality of the waters under investigation meets 
the established standards, as the values observed 
fall within the expected range for each index.

Data analysis

We propose linear models for analyzing the 
relationships between a quantitative explanatory 
dependent variable and several quantitative ex-
planatory independent variables (Nakamura et 
al., 2023). These models will then be used to pre-
dict the behavior of each index relating to corro-
sivity and calcocarbonic equilibrium as a function 
of the physicochemical parameters influencing it. 
Tables 4 and 5 present the results of the multiple 
linear regression analysis.

As demonstrated in Table 4, the coefficient 
of determination R2 is equal to 92.02%, indicat-
ing a high degree of explanatory power of the 
dependent variable Y (Larson index) by the in-
dependent variables Xi (parameters). Moreover, 
the standard deviation, (σerr = 0.047), is notably 
low. It can be concluded that the model is both 
explanatory and predictive, at least in terms of 
the standard error.

Table 2. Results of physicochemical parameters with Moroccan MAV water standards
Parameters Minimum value Maximum value Mean

(of 156 samples) MAV**

Temperature (°C) 15 19.5 17.25 ˂25

TH (meq/l) 4.28 7.6 5.86 2˂TH˂6 *

O2 dissolved (mg/l) 7.98 8.5 7.61 5˂O2˂8

LSI -0.37 0.34 0.02 -0.3˂LSI˂0.3 *

TDS (mg/l) 436.15 911.87 593.45 ˂ 2000

CAT (meq/l) 4.23 5.82 4.89 ˂ 4.2 *

CATs (meq/l) 3.82 5.4 4.60 ---

Chloride Cl- (meq/l) 0.05 2.14 1.13 ˂ 7.05

Sulfate SO4
2- (meq/l) 0.12 1.42 0.69 ˂ 5.21

Cl2 residual (meq/l) 0.3 0.9 0.59 ˂ 1

Conductivity (mS/cm) 0.61 1.203 0.83 ˂ 2.5

Oxidability (mg(O2)/l) 0.72 3.22 1.56 ˂ 5

Turbidity (NTU) 0.3 0.95 058 ˂ 0.5

Note: *rule of good practice, **maximum admissible value.

Table 3. Maximum and minimum index values

Indices Minimum value Maximum value Mean
(of 156 samples) RGP*

Larson index (meq/l) 0.002 0.679 0.18 0.8 to 1.2
Leroy index (meq/l) 0.622 1.173 0.85 0.7 to 1.3
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The results of the linear regression, presented in 
Table 5, indicate that the coefficient of determina-
tion for this model is close to 1 (R² = 0.9876), sug-
gesting a good fit. Moreover, the error is minimal.

Mathematical analysis of results

To test whether there is a statistically signifi-
cant association between the response and each 
descriptor, the p-value associated with the de-
scriptor is compared to the 0.05 level of signifi-
cance (Cordero-Ahiman et al., 2021). This com-
parison indicates the risk of falsely concluding 
that an association exists at the 5% level, which is 

the level of significance commonly used in statis-
tical hypothesis testing. The results presented in 
Table 6 indicate a statistically significant associa-
tion between the response, Larson index, and the 
factors influencing it. This conclusion is support-
ed by the p-value, which indicates a significant 
difference at α = 0.05 level (Laajine et al., 2022). 
From Table 6 we conclude that there are seven 
significant parameters, namely CAT, TH, DO, 
Chloride, LSI, Conductivity and Sulfate, as dem-
onstrated in Figure 2. The Larson index is posi-
tively influenced by chloride, sulfate, and con-
ductivity concentration, which is consistent with 
its role as an indicator of water ionic corrosivity. 

Table 4. Multiple linear regression for the LARSON index
Para-
meter (SO4

2-) Turbidity Tempe-
rature Conductivity LSI Cl2

residual
Oxida-
bility Cl- O2 

(dissolved) TH CATs CAT β0

βi 0.2889 -0.0185 0.0013 0.0823 -0.0113 -0.0032 -0.00014 0.1567 -0.0491 -0.0265 0.0025 -0.0350 0.4458

Sβi 0.0312 0.0356 0.0044 0.0611 0.0332 0.0354 0.0101 0.0076 0.0296 0.0094 0.0138 0.0139 0.2918

R2 σerr F ddl SCEm SCEr

0.920=92.02% 0.047 137.4312 143 3.6557 0.3169

Note: Sai is the standard deviation of the coefficients, F: Fischer-Snedecor number, ddl: the degree of freedom 
(n-p-1) / n=number of trials; p=number of parameters, SCEm: squared sum of total deviations and SCEr: squared 
sum of residual deviations.

Table 5. Multiple linear regression for the LEROY index
Para-
meter (SO4

2-) Turbidity Tempe-
rature Conductivity LSI Cl2

residual
Oxida-
bility Cl- O2 

(Dissolved) TH CATs CAT β0

βi -0.0597 -0.0165 0.00102 0.1148 -0.0141 -0.0195 -0.0196 -0.00052 -0.0172 -0.1436 0.0015 0.1712 0.9725

Sβi 0.0094 0.0107 0.0013 0.0184 0.0099 0.0106 0.0031 0.0023 0.0089 0.0028 0.0042 0.0041 0.0876

R2 σerr F ddl SCEm SCEr

0.987=98.76% 0.014 956.371 143 2.2967 0.0286

Table 6. Main results p-value, coefficients for Larson Index
Predictor Coefficient SE coef t(143) p–Value

Constant 0.445884551 0.291828252 1.52790056 0.128746

CAT -0.0350106144 0.0138356061 -2.53047204 0.012474

CATs 0.00253025383 0.0139255417 0.181698772 0.856076

TH -0.0265440491 0.00941839705 -2.81831919 0.005512

Dissolved O2 -0.0490943704 0.0296197413 -1.65748816 0.009961

Chloride 0.156780741 0.00763835536 20.5254579 0.000000

Oxidability -0.0001376880 0.0101808515 -0.01352421 0.989228

Chlorine residual -0.0031612386 0.0354971128 -0.08905622 0.929162

LSI -0.0113444477 0.0332351252 -0.34133909 0.007333

Conductivity 0.0823959764 0.0611252603 1.34798569 0.0179794

Temperature 0.00130607531 0.00440006798 0.296830711 0.767026

Turbidity -0.0185487192 0.0356884756 -0.51973974 0.604049

Sulfate 0.288941242 0.0312008763 9.26067716 0.000000
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Conversely, an increase in LSI, higher hardness 
or better oxygenation of the water seems to at-
tenuate this corrosivity.

The results of the second index in Table 7 
demonstrate a statistically significant relation-
ship between the response variable, Leroy index, 
and the specified terms. This can be observed 
by the fact that the p-value is below the thresh-
old for statistical significance (Nakamura et al., 
2023). Moreover, the Table 7 parameters exhib-
ited equivalent numerical values, including CAT, 
TH, oxidability, chlorine residual, LSI, conduc-
tivity and sulfate. As shown in Figure 3, the Leroy 

index is found to be significantly impacted by wa-
ter hardness (TH) and LSI (in a negative manner), 
followed by CAT and conductivity (in a positive 
manner). It has been demonstrated that param-
eters such as sulfates, oxidability, and residual 
chlorine have a mitigating effect on the index.

Determining model fit

In order to ascertain whether the model is 
an accurate representation of the data, it is nec-
essary to examine the fit statistics presented in 
the table 8.

Figure 2. The diagram below illustrates the factors that determine the corrosiveness of water 
according to Larson’s index

Table 7. Main results p-value, coefficients for Leroy index
Predictor Coefficient SE coef t(143) p-value

Constant 0.972546777 0.0876852552 11.0913377 0.000000

CAT 0.171184607 0.00418418941 40.9122508 0.000000

CATs 0.0015408449 0.00415716656 0.370647861 0.711448

TH -0.143673805 0.00282993351 -50.7693218 0.000000

Dissolved O2 -0.017288947 0.00889980514 -1.94262085 0.054027

Chloride -0.000521411 0.0022950867 -0.227185824 0.820604

Oxidability -0.019675879 0.00305902719 -6.43207089 0.000000

Chlorine residual -0.019524559 0.0106657713 -1.8305811 0.049245

LSI -0.014157013 0.00998611482 -1.41766981 0.015846

Conductivity 0.114889299 0.0183662275 6.25546532 0.000000

Temperature 0.0010287655 0.0013220827 0.778140053 0.437772

Turbidity -0.016566208 0.0107232698 -1.54488408 0.124584

Sulfate -0.059779201 0.0093748867 -6.37652524 0.000000
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Table 8 demonstrates that the adjusted model, 
comprising seven variables, has an explanatory 
power of 92.02% to the Larson index. This high 
degree of explanatory power is further confirmed 
by the explanatory power rate of almost 92%. 
Consequently, our model can be considered highly 
explanatory (Kwak et al., 2022). Moreover, the R-
squared value (pred) of 87.52% indicates that the 
prediction of the LARSON index by the seven vari-
ables is nearly 88%. This evidence demonstrates 
that our model is capable of making accurate pre-
dictions. Furthermore, the R2 value of 98.76%, as 
observed in Table 8, indicates that the second index 
exhibits considerable variability, with 7 variables 
retained. This rate of nearly 99% suggests that 
the model is sufficiently explanatory. Also, the R-
squared (pred) of 89.21% indicates that the Leroy 
index predicted from the seven variables is nearly 
89%. This evidence supports the assertion that the 
model in question can make accurate predictions 
(Booker, 2010). Consequently, we may conclude 
that the models provide a satisfactory fit to the data.

The mathematical model

The linear mathematical models thus identi-
fied are represented by the following equations: 

Equation 10 and Equation 11. The first mathemat-
ical model for MLR:

	Y(ILARSON) = 0.4458 – 0.0350CAT – 0.0265TH – 	
	 – 0.0491Dissolved O2 + 0.1567Chloride –	  
	 – 0.0113LSI + 0.0823Conductivity +	  
	 + 0.2889Sulfate	 (10)

The second mathematical model for MLR:

	 Y (ILEROY) = 0.9725 + 0.1711 CAT –	
	 – 0.1436 TH – 0.0196 oxidability – 	
	 – 0.0195 Cl2 residual – 0.0141 LSI + 	
	 + 0.1148 conductivity – 0.0597 sulfate	 (11)

The initial model indicates a negative correla-
tion between the Langelier saturation and Larson 
index. In particular, as the value of the Langelier 
saturation index declines, the value of the Larson 
index rises. This phenomenon increases the prob-
ability of pipe degradation and compromise the 
quality of water. It can be reasonably concluded 
that the CAT has a negative effect on the Larson 
index. This is evident, as the higher the concen-
tration of bicarbonates in the water, the less cor-
rosive it is, and the higher the concentration of 
chloride and sulfate ions, the more accelerated 
the corrosive process (Song et al., 2019). For the 
second model, it can be demonstrated that the Le-
roy index is inversely proportional to the LSI, a 

Figure 3. The diagram below illustrates the factors that determine the corrosiveness of water according to 
Leroy’s index

Table 8. Larson and Leroy index model fit
Index Standard error Press Square R2 Adjusted R2 Predicted R2

Larson index 0.0470819 0.000610 92.02% 91.35% 87.52%

Leroy index 0.0141466 0.000120 98.76% 98.66% 89.21%
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relationship that is also observed for the first in-
dex. The model indicates that the ratio between 
CAT and TH exerts a negative influence on the 
Leroy index, whereas conductivity exerts a posi-
tive influence on this index. When the water is 
mineralized, with an increased calcium and mag-
nesium ion content, corrosion is not pronounced. 
This is due to the acceleration of the scaling pro-
cess (Sunardi et al., 2020). Conversely, when the 
solution contains high concentrations of chloride 
and sulfate ions, the corrosive process is acceler-
ated (Nakamura et al., 2023).

Graphical analysis of results

Henry’s law of residual values

The normality test developed by Statistica 12 
gives the following results. Figure 4a represents 
the normality test for the Larson index. It depicts 
a normal probability plot of the residuals. The 
residuals are plotted against the expected normal 
values, and a straight line indicates the expected 
normal distribution (Machkor and Messaoudi, 
2015). The residuals are distributed around this 

line, allowing the deviation from normality to be 
visualized. The majority of residuals lie close to 
the line, indicating relative normality, although a 
few extreme residuals show a slight disturbance.

The probability plot (Figure 4b) for the Leroy 
index also indicates that the majority of residuals 
are situated close to the straight line, suggesting 
a normal distribution of residuals (Fellak, 2020). 
As with the Larson index, a few extreme residu-
als deviate from the line, indicating anomalies or 
variations not captured by the model. Overall, the 
results are satisfactory, but attention should be 
paid to the deviations at the extremes to improve 
model accuracy.

Histogram of residual values.

The distribution of the residues is plotted in 
Figures 5a and 5b in order to ascertain whether 
their distribution is Gaussian. The histogram of 
residual values for the Larson index (Figure 5a) 
demonstrates a high concentration of residuals 
around zero, while the raw residuals are distribut-
ed over a range from -0.20 to 0.14, which is char-
acteristic of a normal distribution. This indicates 

Figure 4. Result of the normality test for (a) the Larson index (b) Leroy index

Figure 5. Result of the histogram of residual values for (a) Larson index and (b) Leroy index
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that the majority of model predictions are close to 
observed values, suggesting that the model per-
forms well. However, the presence of residuals 
at negative and positive extremes indicates the 
potential for significant outliers or prediction er-
rors in some observations. These extreme values 
should be investigated to ascertain the underlying 
causes and, if necessary, adjust the model to ad-
dress them.

The Figure 5b depicts a histogram of resid-
ual values for the Leroy index. The raw residu-
als are distributed on a scale from -0.03 to 0.08. 
The histogram illustrates the frequency of residu-
als in different value ranges. The concentration 
of residuals is close to zero, indicating a normal 
distribution of residuals (Tranmer et al., 2020). 
However, the presence of a few residuals at the 
extremes indicates the potential for deviations 
from normality.

Analysis of the relationship between residues and 
predicted values

Figures 6a and 6b illustrate the distribution of 
residuals as a function of the values predicted by 
the multiple linear regression model. The predict-
ed values for the Larson index (Figure 6a) range 
from -0.1 to 0.6, covering a broad spectrum. Re-
siduals are close to zero with a standard deviation 
of -0.19 to 0.14, indicating minimal prediction 
errors and no systematic bias (Chesneau, 2017). 
Most residuals fall within the 95% confidence 
intervals, confirming model reliability (Cordero-
Ahiman et al., 2021). No heteroscedasticity is 
observed, as residuals show a constant variance 
across predicted values (Delacroix et al., 2021).

For the Leroy index (Figure 6b), predict-
ed values range from 0.6 to 1.1. Residuals are 
slightly more dispersed (-0.03 to 0.08), indicating 
slightly lower accuracy than for the Larson index. 

However, most residuals remain within the 95% 
confidence intervals, ensuring prediction reliabil-
ity (Chesneau, 2017). No heteroscedasticity is 
detected, confirming consistent prediction errors 
(Tranmer et al., 2020).

DISCUSSION 

The findings of this study provide a compre-
hensive understanding of the relationship between 
water corrosivity and calco-carbonic balance in 
Fez, Morocco. The findings indicated an inverse 
proportional relationship between corrosivity 
and calcocarbonic balance. The development of 
multiple linear regression (MLR) models to pre-
dict the Larson and Leroy indices has yielded 
significant results, with R² values of 92.02% and 
98.76%, respectively. This high level of accuracy 
serves to substantiate the reliability of the MLR 
approach in explaining and predicting water qual-
ity parameters. Furthermore, the results presented 
in Figure 2 suggest that seven factors are associ-
ated with the Larson index. The parameters that 
influenced the corrosivity of water included CAT, 
TH, DO, chloride, LSI, conductivity, and sulfate. 
As illustrated in Figure 3, seven factors have been 
identified as influential elements in the corrosion 
of water: CAT, TH, oxidability, chlorine residual, 
LSI, conductivity, and sulfate. Collectively, these 
nine parameters contribute to the overall corro-
sivity of the drinking water.

The study’s findings are consistent with those 
of prior research conducted in analogous con-
texts, wherein physicochemical parameters such 
as CAT, chloride, sulfate, and LSI have been 
demonstrated to exert a substantial influence on 
water corrosivity. For example, studies conducted 
in Iran (Sadat-Noori et al., 2013), India (Kumar et 

Figure 6. Analysis of predicted scores versus residuals for the Larson (a) and Leroy (b) indexes variables
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al., 2023) (Alam and Kumar, 2023) and Algeria 
(Bensoltane et al., 2018) also indicated that scal-
ing and corrosion tendencies are closely related to 
these parameters, confirmed the results findings 
in Fez. Furthermore, the use of the Langelier and 
Larson indices as indicators of water corrosivity 
has been validated by other studies (Yousefi et al., 
2017) (Yousefi et al., 2016), emphasizing their 
effectiveness in predicting water behavior within 
distribution networks.

The report offers vital information for Fez’s 
water management. To protect the integrity of the 
water distribution system and lower the possibil-
ity of metal leaking into drinking water, an ideal 
balance between corrosivity and scaling must be 
maintained. This is especially crucial for Fez, 
where the distribution infrastructure is mostly 
made up of corrosion-prone galvanized steel and 
ductile iron pipes. Operational teams can benefit 
greatly from the predictive models created in this 
work, which allow for proactive risk monitoring 
and intervention by identifying the factors respon-
sible in the corrosivity and scaling of water. The 
findings of this study contribute to the enhance-
ment of water quality monitoring throughout 
the water distribution system in Morocco. This 
enhanced monitoring facilitates the maintenance 
of water quality and stability, leading to a reduc-
tion in corrosion and scaling. Consequently, this 
guarantees the distribution of potable water to the 
population, thereby reducing the occurrence of 
health risks related to heavy metal release. Fur-
thermore, it reduces economic losses incurred 
due to the impact of water corrosion and scaling 
on drinking water distribution systems and house-
hold appliances.

CONCLUSIONS

This study successfully demonstrates how 
mathematical modelling, specifically multiple lin-
ear regression, can be used to analyze and forecast 
the carbonate-carbonic balance and water corro-
sivity in the drinking water distribution network 
in Fez, Morocco. Examining key physicochemi-
cal parameters such as LSI, conductivity, chlo-
ride, sulfate, total hardness, CAT, dissolved oxy-
gen, oxidability and residual chlorine enabled the 
models to achieve high predictive accuracy, with 
R² values of 92.02% and 98.76%, and small stan-
dard errors of 0.04 and 0.01 for the Larson and 
Leroy indices, respectively. The findings show 

that safeguarding water distribution infrastructure 
requires striking a compromise between corrosiv-
ity and scaling, especially in networks made up 
of corrosion-prone galvanized steel or ductile iron 
pipes. To ensure the longevity of water supply 
systems and provide safe drinking water, avoid-
ing potential health risks, this study emphasizes 
the importance of ongoing water quality monitor-
ing and applying predictive techniques to fore-
see problems such as corrosion and scaling. Dis-
tributed water in the Fez region conforms to the 
Moroccan government’s standards, namely NM 
03.7.001 (NM 03.7.001, 2006) and NM 03.7.002 
(NM 03.7.002, 2011). Moreover, the water is not 
corrosive, as it is not aggressive. In other words, it 
is well-balanced in terms of corrosivity and calco-
carbonic balance, indicating that the water quality 
is maintained within acceptable standards. While 
the models demonstrate significant explanatory 
power in the Fez region, their applicability in re-
gions with comparable environmental conditions 
could be explored. This study helps us to manage 
the distribution of drinking water and minimize 
health risks to the population of Fez.
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