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INTRODUCTION 

Worldwide, the agroforestry systems are fac-
ing an increase in degradation, threatening the 
survival of species vital for food supply. Vegeta-
tion is a crucial component and an integral part of 
the soil-vegetation-atmosphere nexus, However, 

the climate change global impact has caused shifts 
in land ecosystems (Luo et al., 2020). These dy-
namics are driven by both natural processes and 
human activities. In agroecosystems, crop yield 
productivity is controlled by human-environment 
interactions. This parameter is essential for the 
maintenance of contemporary human societies 
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ABSTRACT 
Land use and land cover (LULC) change is an important factor when solving environmental issues, such as water 
resources, agricultural productivity, and soil preservation. This study looked at the spatial and temporal trends 
of LULC over a 33-year period, in an area of the Sebou basin in Morocco, while forecasting future patterns, and 
investigating predictive performance from several machine learning classification models. A supervised classi-
fication was applied using satellite imagery from 1993, 2003, 2013, and 2023. The three different classification 
methods used the gradient boosting machine (GBM), support vector machine (SVM), and random forest (RF) to 
classify the land use and land cover into four major LULC categories: vegetation/forest, built area, bare land, and 
water. In predicting the land use and land cover class for 2033, a Cellular Automata – Artificial Neural Network 
(CA-ANN) was applied in QGIS using the MOLUSCE plugin. The GBM model was more accurate than the others 
with Kappa coefficients of 95.9 in 1993, 93.3 in 2003, 94.4 in 2013, and 99.8 in 2023. The overall Kappa index for 
the validation of the 2023 classification was 77%. Results indicate that bare land and built-up areas are on the rise 
as a consequence of anthropogenic activities, at the expense of vegetation and forest cover. Such changes present a 
source of concern for long-term sustainability, and resource availability. The study accuracy depends on the quality 
and resolution of the satellite data used, while assumptions in the simulation models can also introduce uncertainty 
in future projection. The findings of this analysis provide critical information that will support and help imple-
ment and informed policy and planning in the area of sustainable land management and protection. The research 
incorporated various methodological approaches in one study, thus combining LULC analyses into one study, and 
performing comparative analyses utilizing machine learning methods, as well as predictive modeling studies in an 
applied context to carry out monitoring and forecasting land use dynamics in susceptible areas.
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(Martin et al., 2019). Furthermore, mitigation and 
adaptation when implemented together, and com-
bined with broader sustainable development ob-
jectives, would yield multiple benefits for human 
well-being as well as ecosystem and planetary 
health (IPCC (2013)., n.d.).

Land degradation stands out as a crucial 
and important challenge in contemporary times 
(Elaloui et al., 2022; Labbaci and Bouchaou, 
2022). The effect of climate change and popu-
lation growth, along with factors such as de-
forestation, floods, Health of vegetation, and 
droughts, are among the key contributors to land 
degradation (Ouassanouan et al., 2022; Sad-
dik et al., 2024). One of the most critical prob-
lems in agroforestry is LULC change. However, 
monitoring and mitigating the effects of LULC 
changes is crucial for various purposes that im-
pact human welfare, particularly in the context of 
rapid, uncontrolled population growth, ongoing 
economic and industrial development (Talukdar 
et al., 2020). Therefore, it is an essential input 
for a variety of scientific studies, such as urban 
and regional planning (Idoumskine et al., 2024), 
environmental vulnerability and impact assess-
ment (Fei et al., 2018), natural disasters and haz-
ard monitoring (Hadri et al., 2021), groundwater 
management (Ait Brahim et al., 2017) as well as 
estimation of soil erosion and salinity (Borrelli 
et al., 2020). This need is especially pressing in 
developing countries, where intensified LULC 
changes are more prevalent. These changes 
exert a range of effects on human society and 
agroforestry, including heightened vulnerability 
to drought, environmental degradation, deple-
tion of groundwater resources, increased risk of 
landslides, and soil erosion (Agidew and Singh, 
2017; Akinyemi, 2021; Loukika et al., 2021).

Various research efforts aimed to adapt and 
mitigate the impacts of climate change on agri-
cultural practices and groundwater resources in 
semi-arid countries, such as Morocco (Bouchaou 
et al., 2011; Ongoma et al., 2024; Ouazar et al., 
2017). Additionally, it can support researchers as 
they look into diverse environmental challenges 
at different scales. However, LULC maps can be 
helpful in identifying the areas influenced and af-
fecting the water resources and land, which are 
valuable for general watershed management.

Recently, satellite imagery processing such 
as Landsat and Sentinel was used as free open 
access. These images increased the use of ma-
chine learning images as classifiers for remote 

sensing. This plays an important role in produc-
ing LULC maps (El Hachimi et al., 2022; Idoum-
skine et al., 2024). In addition, it has been popu-
larly used for the monitoring of environmental 
phenomena, including ecosystem assessment 
(Tavares et al., 2019) identifying agricultural 
systems, and crop mapping (Htitiou et al., 2019), 
as well as assessing desertification, drought, and 
water erosion (Ayugi et al., 2020; Hakam et al., 
2024; Labbaci and Bouchaou, 2022). This tech-
nique can help to find a solution to address the 
ecosystem degradation effect. 

Machine learning (ML) and deep learning al-
gorithms are predominantly utilized in supervised 
classification. Various algorithms employed for 
LULC mapping include gradient boosting ma-
chines, artificial neural networks (ANN), RF, sup-
port vector machines (SVM), decision trees (DT), 
k-nearest neighbors (KNN), and maximum likeli-
hood estimation (Akinyemi, 2021; Azimi Sardari 
et al., 2019; Esmail et al., 2016; Muto et al., 2022). 

Research in Mediterranean countries, such 
as Morocco, is used for mapping the agriculture 
and forest land to monitor and assess the agri-
cultural land change (El Haj et al., 2023; Moha-
jane et al., 2018). The LULC changes driven by 
a rapidly increasing population represent a sig-
nificant challenge for developing nations, such 
as Morocco, particularly in urban regions. The 
degree, intensity, location, and type of human-
induced modifications to the natural land cover 
within a watershed determine the impact of 
LULC on that catchment. This research utilized 
Landsat satellite data as well as three machine 
learning classifiers (SVM, RF, and gradient 
boosting (GB)) to undertake a multi-temporal 
analysis of LULC dynamics over a 30 year peri-
od (1993–2023). The purpose of this study was 
to examine the efficiency of the algorithm and 
its ability to classify LULC data consistently 
and correctly over time. The MOLUSCE tool 
then takes the best model for classifying LULC 
and estimates future trajectories of LULC dy-
namics. This study provides a best practice ap-
proach and fills a substantial information void 
in the current literature by providing an exhaus-
tive comparison of ML classifiers used to moni-
tor long-term LULC in a semi-arid watershed in 
order to enhance potential predicted accuracy in 
land change modeling. This study is expected to 
identify ensemble methods such as GB and RF 
that will have better temporal stability (robust) 
and overall accuracy than SVM.
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MATERIAL AND METHODS

Study area

The Oued Ouergha watershed serves as the 
case study and is located within the Sebou Hy-
draulic Basin Agency’s (ABHS) action area. The 
Rif to the north, the Middle Atlas and Meseta to 
the south, the Fes-Taza region to the east, and the 
Atlantic Ocean to the west all converge to form 
the Sebou basin (Figure 1).

The study area takes place in the Sebou ba-
sin. It is the watershed of the Koudiat Borna Dam 
(BKB) site. The one on the Ouergha river has a 
perimeter of 167.40 km and covers an area of ap-
proximately 1021 km², which represents 1.14% 
of the Oued Sebou watershed of which it is part. 
The basin located in its downstream part on the 
north side of the basin is bounded to the west by 
the Oued Rdat basin, to the east and south by the 
Oued Sebou basin, and to the north by the Louk-
ouss basin. The dam site is located on the Oued 
Ouergha in the province of Sidi Kacem, about 30 
km north of the city of Sidi Kacem, and about 9 
km northeast of the village of Khenichet.

The watershed is subject to a semi-continen-
tal climate, characterized by a temperate and hu-
mid winter and a hot and dry summer. This situ-
ation means that the rainy year consists of two 
contrasting seasons, a wet season that extends 
from October to May, and another dry one from 
June to September.

Data 

The dataset used in this study mostly consist-
ed of field data and satellite images. Specifical-
ly, the images from the Landsat 5 Multispectral 
Scanner (MSS), Landsat 7 Enhanced Thematic 
Mapper Plus (ETM+), and Landsat 8 Operation-
al Land Imager (OLI) pertaining to the Koudiat 
Borna dam basin were sourced from https://
earthexplorer.usgs.gov/ for the years 1993, 2003, 
2013, and 2023, adhering to a maximum cloud 
cover threshold of 10%. These images were sub-
sequently uploaded and preprocessed using the 
Google Earth Engine platform (https://earthen-
gine.google.com).

Methodology

Figure 2 shows the methodology adopted in 
this study for monitoring changes in LULC. First, 
the Landsat Collection 2, Level 2 (C2 L2) imag-
ery was preprocessed in the GEE platform, where 
radiometric and atmospheric corrections were ap-
plied. Secondly, the training and testing samples 
that served as reference data were carefully de-
signed to reflect five LULC classes: Build up, 
Bare soils, Agriculture, Forest and water. Third, 
multiple classifiers were used to classify the im-
age of the research area between 1993 and 2023. 
Finally, the kappa indices (KI) and overall accu-
racy (OA) were used to assess the outcomes of 
various categorization techniques. 

Figure 1. Geographic location of study area
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In order to enhance the quality of the satellite 
images, the Landsat satellites 5, 7, and 8 undergo 
necessary preprocessing operations before deliv-
ering high-resolution (30 m) observations of the 
Earth’s surface. The median was used to aggregate 
Landsat data for the full year. Normalized differ-
ence vegetation index (NDVI), Normalized differ-
ence water index (NDWI), Bare soil index (BSI) 
and normalized difference build index (NDBI) are 
four spectral indices used for the categorization of 
LULC. They are reflective of vegetation features 
and water bodies, respectively. The land cover 
types seen in the Landsat data are categorized 
using the characteristics that were extracted. For 
classification, three machine learning algorithms 
RF, SVM and GB are used. Accurate land cover 

maps are validated and the classifier is trained us-
ing training samples as well as ground truth data. 
The accuracy of the classification is determined 
through a comparison between the classified out-
comes and real-world data or established datasets. 
Metrics like overall accuracy and kappa indices 
are computed to evaluate the performance of the 
classification algorithm. Analyzing the gener-
ated LC maps can yield important information on 
vegetation behavior, urbanization, environmental 
changes, and other relevant applications. 

Calculation of indices

The Landsat surface reflectance bands, includ-
ing Blue (B2), Green (B3), Red (B4), Red Edge 1 

Table 1. Formulas of the used vegetation indices
Acronym Designation Equation References 

NDWI Normalized difference water index 
𝐺𝐺 − 𝑁𝑁𝑁𝑁𝑁𝑁
𝐺𝐺 + 𝑁𝑁𝑁𝑁𝑁𝑁 (McFeeters, 1996) 

NDBI Normalized difference built up index 
𝑆𝑆𝑆𝑆𝑁𝑁𝑁𝑁1 − 𝑁𝑁𝑁𝑁𝑁𝑁
𝑆𝑆𝑆𝑆𝑁𝑁𝑁𝑁1 + 𝑁𝑁𝑁𝑁𝑁𝑁  (Zha et al., 2003) 

NDVI Normalized difference vegetation index 
𝑁𝑁𝑁𝑁𝑁𝑁 − 𝑁𝑁𝑅𝑅𝑅𝑅
𝑁𝑁𝑁𝑁𝑁𝑁 + 𝑁𝑁𝑅𝑅𝑅𝑅 (Rouse et al., 1974) 

BSI Bare soil index 
(𝑆𝑆𝑆𝑆𝑁𝑁𝑁𝑁1 + 𝑁𝑁𝑅𝑅𝑅𝑅) − (𝑁𝑁𝑁𝑁𝑁𝑁 + 𝐵𝐵𝐵𝐵𝑅𝑅𝐵𝐵)
(𝑆𝑆𝑆𝑆𝑁𝑁𝑁𝑁1 + 𝑁𝑁𝑅𝑅𝑅𝑅) + (𝑁𝑁𝑁𝑁𝑁𝑁 + 𝐵𝐵𝐵𝐵𝑅𝑅𝐵𝐵) (Rikimaru et al., 2002) 

 

Figure 2. Methodology for classifying actual and future forecast LULC maps on GEE
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(B5), Red Edge 2 (B6), Red Edge 3 (B7), Near In-
frared (NIR, B8), Shortwave Infrared 1 (SWIR 1, 
B11), were utilized to establish the initial feature 
set for land cover classification. Additionally, four 
indices were integrated into the training dataset 
to ensure precise classification (Table 1). Remote 
sensing provides a plethora of indices suitable 
for LULC classification tasks, among which the 
NDVI is a commonly used indicator. 

Classification algorithms

 • Support vector machine 

SVMs are a set of algorithms that specialize 
in resolving regression and mathematical dis-
crimination issues through the use of supervised 
learning. They were created by Vladimir Vapnik 
in 1998 (Vapnik 1998). SVM has the ability to 
address two distinct scenarios: in the cases where 
classes can be separated by a straight line, the 
algorithm aims to find a linear decision bound-
ary known as a hyperplane. This hyperplane is 
designed to minimize generalization error while 
maximizing the margin between the two classes 
(Pal and Mather 2005).

 • Random forest 

Random forest (RF) is an ensemble-based 
supervised classification strategy that combines 
bagging and the random subspace method (Brei-
man 2001). The method creates many decision 
trees to generate class output. There is no need 
to make assumptions about the input or output 
variables. The key advantage of this method is its 
ability to handle diverse data sets, including satel-
lite data (Breiman, 2001). The efficacy of the RF 
algorithm is assessed by employing non-training 
samples, ensuring a fair validation process sepa-
rate from the training data. This validation ap-
proach guarantees a robust evaluation at each 
node, facilitating the creation of a valid separa-
tion between classes (Zhao et al. 2024).

Gradient boosting

Similar to RFs, gradient boosting decision 
trees (GBDT), as introduced by Friedman in 2001, 
indicate an ensemble model based on decision 
trees. Two important differences exist between 
GBDT and RF, though. While RFs use a bagging 
technique to build individual trees individually in 
order to improve accuracy through variance re-
duction, GBDTs first construct an ensemble in a 

sequential manner with the aim of increasing ac-
curacy through bias reduction.

Extreme gradient boosting (Xgboost) is cur-
rently a highly preferred GBM approach, espe-
cially in the remote sensing industry (Jun 2021). 
The distinctive advantage of Xgboost over other 
algorithms lies in its approach to constructing 
an objective function. This function not only 
encompasses the loss function, which measures 
prediction accuracy, but also integrates a regu-
larization component. This regularization term 
is crucial for managing the model’s complex-
ity, helping to prevent overfitting by penalizing 
more complex models.

Accuracy assessment

Accuracy evaluation in categorization is 
crucial for determining the best sustainable land 
management approach (Deng et al., 2008). The 
training input were separated into training and 
validation sets. LULC mapping frequently em-
ploys accuracy evaluation metrics such as over-
all accuracy (Equation 1) and kappa coefficient 
(Equation 2) on complete training datasets (El 
Hafyani et al., 2021). Each class’s accuracy was 
determined using the LULC classes’ tabulated 
square confusion matrix. 

  𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂 𝑂𝑂𝑎𝑎𝑎𝑎𝑎𝑎𝑂𝑂𝑂𝑂𝑎𝑎𝑎𝑎 𝑂𝑂𝑂𝑂 = 100 ∑ 𝑃𝑃𝑃𝑃𝑃𝑃𝑚𝑚
𝑖𝑖=1

𝑛𝑛  (1) 
𝑇𝑇ℎ𝑂𝑂 𝑘𝑘𝑂𝑂𝑘𝑘𝑘𝑘𝑂𝑂 𝑎𝑎𝑐𝑐𝑂𝑂𝑐𝑐𝑐𝑐𝑐𝑐𝑎𝑎𝑐𝑐𝑂𝑂𝑐𝑐𝑐𝑐 𝐾𝐾 =  

∑ 𝑃𝑃𝑃𝑃𝑃𝑃𝑚𝑚
𝑖𝑖=1 − ∑ 𝑃𝑃𝑃𝑃+𝑃𝑃+𝑃𝑃𝑐𝑐

𝑖𝑖=1
𝑛𝑛2−∑ 𝑃𝑃𝑃𝑃+𝑃𝑃+𝑃𝑃𝑚𝑚

𝑖𝑖=1
               (2) 

 

 (1)

 
𝑇𝑇ℎ𝑒𝑒 𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘 𝑐𝑐𝑐𝑐𝑒𝑒𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑒𝑒𝑐𝑐𝑐𝑐 𝐾𝐾 = 

=  
∑ 𝑃𝑃𝑐𝑐𝑐𝑐𝑚𝑚

𝑖𝑖=1 −  ∑ 𝑃𝑃𝑐𝑐 + 𝑃𝑃 + 𝑐𝑐𝑐𝑐
𝑖𝑖=1

𝑐𝑐2 − ∑ 𝑃𝑃𝑐𝑐 + 𝑃𝑃 + 𝑐𝑐𝑚𝑚
𝑖𝑖=1

 
 (2)

Prediction of LULC 

Future LULC modifications were analyzed 
and modeled using QGIS’s MOLUSCE Plugin 
4.0.0. This tool helps assess the overall change 
in land cover, simulate dynamic changes, and 
validate the model’s results (Muhammad et al., 
2022). The analysis covered the LULC transitions 
from 2003 to 2013, generating a transition matrix 
and change probability matrix. Variables such as 
DEM data, distance to villages, slope, precipita-
tion, and proximity to roads were considered, as 
these factors influence LULC variation.

For the 2023 forecast, the CA-ANN algo-
rithm within MOLUSCE was applied to model 
transformation potential and create a simulated 
LULC map based on the changes observed be-
tween 2003 and 2013. The simulated 2023 map 
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was then compared with the actual 2023 LULC 
map to assess accuracy, using the Kappa coeffi-
cient for validation (Phuong et al., 2023).

Next, the simulation of LULC changes for 
2033 was performed using the data from the 2013–
2023 period. This helped in predicting how land 
cover might evolve over the following decade.

Lastly, the rate of change for each LULC type 
was calculated using formula (3):

 Δ (%) = (𝐹𝑦 − 𝐼𝑦) / 𝑆 × 100 (3)

where: Δ represents the rate of area change, Fy 
and Iy are the land cover areas at the be-
ginning and end of the period, and S is the 
total area of the study.

RESULTS

LULC classification 

This study assessed the performance of three 
machine learning approaches, GB, SVM, and 
RF, for LULC categorization of study areas. The 
LULC maps produced are shown in Figure 3. The 
classification results reveal five distinct classes: 
bare land, forest, buildup, agriculture, and wa-
ter. Across all three algorithms employed, the 
surface area of bare land and buildup has shown 
an increase over the years, while agriculture and 
forest cover have demonstrated a decrease from 
1993 to 2023 (Figure 4). 

Classification performances

The evaluation of accuracy was carried out 
to assess the effectiveness of various algorithms. 
The metrics most frequently employed for this 
evaluation are OA and KC, which indicate the 
percentage of correctly classified test data and the 
level of agreement between predicted and actual 
classifications beyond mere chance, respectively.

Training and validation were performed 
utilizing the GB classifier for the years 1993, 
2003, 2013, and 2023. The findings indicated 
that the GB classifier consistently achieved high 
performance in terms of overall accuracy (OA) 
and Kappa coefficient (KC) across these years. 
Notably, in 2023, the GB classifier reached an 
OA of 0.99 and a KC of 0.99. In 2013, it re-
corded an OA of 0.94 and a KC of 0.94, while 

Figure 3. LULC maps of Landsat images using SVM, 
RF, and GB classifiers for the years 1993, 2003, 

2013, and 2023
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in 1993, it documented an OA of 0.91 and a KC 
of 0.91 (Table 2).

These findings underscore the superior per-
formance of the GB classifier relative to SVM 
and RF regarding both accuracy and reliability 
across varying time periods.

LULC prediction

The analysis integrated the historical chang-
es in LULC with spatial variables, specifically 

digital elevation model (DEM) data and proxim-
ity to roads (Figure 5). The cellular automata-
artificial neural network (CA-ANN) algorithm, 
implemented within the MOLUSCE plugin, was 
employed to conduct simulations of LULC for 
the year 2033. Initially, the data on LULC chang-
es from the period 2003 to 2013 served as a foun-
dation for constructing a simulated LULC map 
for 2023 (simulated 2023). This simulated map 
was subsequently compared to the actual LULC 
map for 2023 and validated with an overall Kappa 

Figure 4. LULC change for RF, SVM, and GB models

Table 2. Kappa coefficient and overall accuracy for different machine learning classifiers

Year Classifiers
Landsat images

Overall accuracy (%) Kappa coefficient

1993

SVM 0.802 0.692

RF 0.936 0.907

GB 0.959 0.941

2003

SVM 0.758 0.627

RF 0.922 0.880

GB 0.933 0.898

2013

SVM 0.908 0.861

RF 0.938 0.908

GB 0.944 0.916

2023

SVM 0.929 0.988

RF 0.956 0.978

GB 0.998 0.998
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index of 77%. This step helps to ascertain the ac-
curacy of the projected LULC map for 2033 (pre-
dicted 2033) (Figure 6).

LULC transition analysis

During the decade spanning from 2003 to 
2013, 12% of the agricultural area remained un-
changed. Additionally, there was a reduction in 
this area by 15%. This decline can be attributed 
to conversions to bare soil (80%), forest (7%), 
built-up areas, and water bodies (0.5%). Specifi-
cally, the forested area experienced a decrease of 
0.12%, primarily due to a reduction in density 
over the ten-year period. Conversely, the buildup 
area exhibited significant variation, increasing 
from 0.34% to 0.85%. Furthermore, the amount 
of bare soil increased from 2003 to 2013, while 
water area in streams remained stable throughout 
this timeframe (Figure 7).

Table 3 reveals major shifts in land usage 
across the three periods (2003–2013, 2013–2023, 
2023–2033). From 2003 to 2013, agricultural 
land shrank by 14,819 ha (-14.65%), while bare 
ground grew by 14,339 ha (+14.18%) hinting at 
farmers leaving their fields or changing land use. 
Forests saw a small drop (-159 ha, -0.16%), as cit-
ies expanded a bit (+507 ha, +0.5%). Water class 
has slightly increased by 133 ha (+0.13%).

In 2013-2023, this pattern kept up with farm-
land losing more ground (-9,966 ha, -9.85%) 
and bare soil gaining even more (+11,152 ha, 
+11.02%). Forests keep shrinking (-1,052 ha, 

-1.04%), while cities grow a tiny bit (+62 ha 
+0.06%). Unlike before, water areas shrunk by 
196 ha (-0.19%).

For 2023–2033, farmland bounced back a 
little (+944 ha +0.92%), but forests lost ground 
faster (-2,229 ha, -2.18%). Bare soil kept grow-
ing (+1,381 ha, +1.35%), and water areas stayed 
about the same (-2 ha, -0.002%). Cities shrunk 
by 95 ha (-0.09%), which might mean city 
growth is slowing down.

These results indicate continued pressure on 
agricultural and forest land in favor of bare soil 
and built-up areas, with potential impacts on bio-
diversity and water resources.

Figure 5. LULC maps generated and simulated

Figure 6. LULC Map predicted
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DISCUSSION

Comparison of accuracy of three algorithms

Previous research has shown that the distri-
bution of LULC classes exhibits considerable 
variation depending on the classification methods 
employed, whether they be machine-learning al-
gorithms or traditional techniques. In this study, 
the authors aimed to identify the dynamics of 
LULC over the 33 years and predict the changes 
by 2033 in KB basin dam. However, the com-
parative study of the machine learning algorithms 
(GB, RF, and SVM) was aimed at determining the 
most accurate and most reliable algorithm to clas-
sify LULC changes over time and gain a better 
understanding of land transformation processes. 
The aim of forecasting future LULC using the 

CA-ANN model was to simulate land use sce-
narios and gauge forthcoming environmental and 
planning issues. In this analysis, satellite imagery, 
ground truth data, and index data with three ma-
chine learning algorithms were used. The model 
that demonstrated superior performance, as deter-
mined by accuracy and kappa coefficient metrics, 
was subsequently utilized for predictive model-
ing. In addition to improving the knowledge of 
land cover dynamics, this method makes it easier 
to predict future changes in land cover.

Figure 3 shows clear land cover changes from 
1993 to 2023 using SVM, RF, and GB models. 
There is a steady decrease in forest cover and an 
increase in farmland and bare soil, particularly 
in the watershed’s center and southern regions. 
Zones of notable land alteration and environmen-
tal stress are revealed by these patterns. For the 

Figure 7. LULC transition matrix for periods 2003–2013 and 2013–2023
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first time, this study pinpoints specific areas of 
land degradation and forest loss, providing im-
portant information for planning resilience and 
future land management. As illustrated in Figure 
4, the GB model plays a significant role in evalu-
ating the accuracy of classification outcomes. In 
similar contexts, prior research has employed re-
mote sensing classification methodologies (Zhao 
et al. 2024). The comprehensive results of the 
present study underscore the superior efficacy of 
the Random Forest (RF) technique when com-
pared to SVM (McCarty, Kim, and Lee 2020). 
With respect to overall accuracy, the classification 
findings reveal that LightGBM attained the high-
est OA of 0.653, closely followed by SVM with 
an OA of 0.642, and subsequently RF with an 
OA of 0.594. (Ouzemou et al., 2018) conducted 
a study in the Tadla plain aimed at mapping crop 
types through remote sensing techniques while 
evaluating various machine learning methods. 
The assessment of classifications yielded over-
all accuracies of 89.26%, 85.27%, and 57.17%, 
along with kappa indices of 0.85, 0.80, and 0.40 
for Random Forest, Support Vector Machine, and 
Spectral Angle Mapper, respectively.

LULC change and prediction

LULC changes are fundamentally intercon-
nected with geographical factors and devel-
opment policies. An analysis of the transition 

occurring from 1993 to 2023 was conducted, 
utilizing spatiotemporal LULC data alongside 
physical and socioeconomic driving forces. This 
analysis facilitated the development of a transi-
tion probability matrix for each interval by utiliz-
ing the MOLUSCE plugin within QGIS software. 
Furthermore, Using the CA-ANN multilayer per-
ceptron approach built into the MOLUSCE plu-
gin, the LULC for 2033 was forecasted.

The obtained findings reveal a considerable 
transformation since 1993, characterized by a 
pronounced reduction in agricultural and forested 
areas. This decline is intricately associated with 
diminished precipitation (Kessabi et al., 2022), 
Agricultural practices in the region are significant-
ly dependent on winter rainfall for irrigation pur-
poses; thus, any reduction in precipitation, along 
with the rising frequency and severity of drought 
conditions (Hakam et al., 2023), directly impacts 
agricultural productivity. This decline not only 
disturbs crop yields but also amplifies wider en-
vironmental and socio-economic issues within the 
basin, heightening resource scarcity and increas-
ing vulnerability of livelihoods. Furthermore, 
(El Hafyani et al., 2020) identified a comparable 
trend, marked by the growth of urban and agri-
cultural areas at the expense of diminishing forest 
cover. (Salhi et al., 2024) reported an increase in 
dense forests alongside a reduction in agricultural 
lands within the N’fis Basin in recent decades.

Table 3. Multi-temporal LULC transition area
Parameter 2003 2013 Δ (ha) 2003% 2013% Δ %

Agriculture 28310.31 1349.91 -14819.40 27.992 13.339 -14.65

Forest 8807.40 8648.37 -159.03 8.708 8.551 -0.157

Baresoil 62999.46 77338.80 14339.34 62.29 76.47 14.178

Water 671.94 804.51 132.57 0.664 0.795 0.131

Build up 345.24 851.76 506.52 0.341 0.842 0.5008

2013(Ha) 2023(ha) Δ (ha) 2013% 2023% Δ %

Agriculture 13504.14 3538.26 -9965.88 13.34 3.495 -9.846

Forest 8662.23 7609.86 -1052.37 8.558 7.518 -1.039

Baresoil 77387.58 88539.48 11151.90 76.46 87.48 11.018

Water 805.05 609.39 -195.66 0.795 0.6020 -0.193

Build up 852.21 914.22 62.01 0.8420 0.9023 0.06

2023 2033 Δ (ha) 2023% 2033% Δ %

Agriculture 3544.02 4488.26 944.26 3.4720 4.39 0.92

Forest 7631.08 5402.50 -2228.58 7.4760 5.29 -2.18

Baresoil 89367.16 90748.44 1381.27 87.552 88.90 1.353

Water 608.97 606.63 -2.34 0.5966 0.594 -0.002

Build up 921.87 827.25 -94.62 0.90 0.810 -0.092
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These LULC transformations are influenced 
by climate change as well as human activities, 
which affect natural resources and the environ-
ment. The study emphasized the importance of a 
comprehensive management approach that har-
monizes environmental preservation with socio-
economic development in order to foster sustain-
ability and resilience.

CONCLUSIONS

The study achieved its purpose by assess-
ing that GB can demonstrate significant ac-
curacy and reliability that greater than RF and 
SVM in classifying LULC. GB demonstrated 
greatest accuracy and Kappa (0.99) in the 2023 
classifications and was the only method discern-
ing temporal change in LULC classification. 
Furthermore, CA-ANN LULC prediction for 
2033 was verified with Kappa index (77%) and 
demonstrates that this model can predict future 
changes with a degree of reliability.

A key scientific advancement from this re-
search the introduction of spatial drivers (el-
evation and distance from roads) into predicted 
LULC, allowing for more nuanced understand-
ing about how the terrain and access modify 
land transformation. This study indicates a trend 
of declines in agriculture and forest land along 
the emergence of bare soil and urban areas with 
consequences of the growing impacts of humans 
and potentially land abandonment, suggesting 
mounting pressure on ecosystems, biodiversity 
and food security.

This study contributes methodologically to 
the existing literature by providing a system-
atic comparison of different machine learning 
algorithms to monitor LULC in the long-term 
perspective, and by using simulation tools for 
elucidating land changes as related to observed 
trends. It also provides a reproducible method 
for other region in similar states of socio-envi-
ronmental change. 

It is exciting to think about some future 
work directions stemming from this research 
that include LULC modeling and climate and 
hydrological data in order to better evaluate the 
environmental implications of land change. In-
terdisciplinary approaches will be important in 
the future of land management for improving re-
silience in vulnerable landscapes and in sustain-
able development.
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