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INTRODUCTION

Air pollution is a major challenge to environ-
mental health. It contributes to climate change and 
causes serious public health problems, increasing 
illness and possibly death rates (Halaktionov et 
al., 2025; Manisalidis et al., 2020). According to 
the World Health Organization (WHO), the pres-
ence of gaseous pollutants, including particulate 
matter (PM2.5, PM10), CO, NO₂, SO₂, and O₃, 
among other toxic gases, raises serious toxico-
logical concerns (Ghorani-Azam et al., 2016). 
Harmful effects include severe respiratory and 

cardiovascular diseases in humans, resulting from 
both long-term and short-term exposure. There 
is a need to understand the role of climate and 
meteorological factors, including temperature, 
atmospheric pressure, wind speed, and humid-
ity in the dispersal of pollutants (Nakyai et al., 
2025). Consequently, environmental stakeholders 
propose a multidisciplinary approach to provide 
sustainable solutions to the menace of air pollu-
tion (Manisalidis et al., 2020). Additionally, air 
pollution is linked to respiratory and cardiovas-
cular diseases, and predictive models can miti-
gate exposure risks, improving public health and 
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lowering healthcare costs (Chen et al., 2024). 
Although several conventional approaches have 
been applied to air-pollution control and manage-
ment, the integration of artificial intelligence and 
machine-learning models represents a significant 
technological advancement for safeguarding en-
vironmental health (Huang et al., 2025; Olawade 
et al., 2024). Machine-learning models, espe-
cially those for pollution detection, enhance envi-
ronmental protection and foster sustainable urban 
development (Olawade et al., 2024). Further-
more, real-time monitoring through these models 
enables timely interventions to prevent pollution, 
effectively balancing air-quality monitoring with 
data privacy (Quang et al., 2025).

According to the literature, XGBoost has ef-
fectively optimized Beijing pollution data (Li 
et al., 2022). The study’s scope was limited to 
PM2.5 and O₃ modeling using XGBoost and 
WRF-Chem. XGBoost was also implemented in 
(Pan, 2018). That study, though limited to histori-
cal PM2.5 data, also reported meteorological im-
pacts. The literature shows that XGBoost simu-
lates pollutant concentrations better by capturing 
spatial, temporal, and non-linear patterns (Li et 
al., 2022; Pan, 2018). Air-quality prediction has 
also been performed with neuro-fuzzy methods 
(Anu Priya and Khanaa, 2023) and other machine-
learning models, including LightGBM, XGBoost, 
and Random Forest, using historical data (Ravin-
diran et al., 2023). These outcomes suggest that 
machine learning shows promise in improving 
air-quality prediction. However, the current study 
concentrates on ML models with interpretability 
rather than “black-box” models such as artificial 
neural networks, which extract features automati-
cally and lack transparency. Prishtina presents a 
particular scenario from previously studied urban 
environments, due to its pronounced winter tem-
perature inversions, limited industrial regulation, 
and rapid urbanization without corresponding in-
frastructure developments. These local specifics 
yield unique PM2.5 dynamics characterized by 
seasonal variability and frequent pollution peaks, 
differentiating it markedly from other urban set-
tings studied extensively in prior literature. These 
recurring pollution episodes, if unaddressed, pose 
long-term health risks and environmental degra-
dation. Governments and regulatory bodies have 
historically used empirical data and expert anal-
yses to implement environmental policies. How-
ever, regulatory challenges often stem from en-
forcement issues, political interests, and limited 

funding, indicating that regulatory limitations 
are not solely due to the absence of modeling 
data. Machine learning and real-time pollution 
data modelling can significantly enhance deci-
sion-making by providing predictive insights, 
improving forecasts, identifying pollution trends, 
and optimizing interventions for environmental 
quality control. 

To effectively address these unique air pol-
lution dynamics, this study rigorously evaluates 
several interpretable machine learning (ML) 
models widely recognized in literature but rare-
ly compared systematically across multiple fore-
casting horizons with detailed interpretability 
analysis. Specifically, we comprehensively ex-
amine the predictive performance of XGBoost, 
LightGBM, Random Forest, support vector ma-
chine (SVM), and Linear Regression, all exten-
sively applied individually in prior research but 
rarely contrasted under unified multi-horizon sce-
narios and explicit SHAP-based interpretability 
frameworks. This comparative approach provides 
novel insights into model suitability and robust-
ness, explicitly quantifying predictive skill and 
interpretability trade-offs across both short-term 
(1–3 hours) and long-term (up to 24 hours) fore-
casting windows, thereby significantly advancing 
the methodological rigor in air quality predictive 
modelling literature.

Scientifically, this research aims to establish 
a novel predictive framework explicitly address-
ing three significant gaps in current air pollution 
modelling literature:
1) the absence of a systematic, integrative tem-

poral feature-engineering approach tailored 
specifically for multi-horizon forecasting 
scenarios,

2) the lack of comprehensive comparative evalua-
tions of robust and interpretable machine learn-
ing models in the context of multi-horizon air 
quality prediction, and

3) insufficient rigorous exploration of how feature 
importance dynamically shifts across multiple 
forecasting horizons, explicitly quantified us-
ing SHAP-based interpretability methods.

Our primary hypothesis is that integrating 
detailed temporal and meteorological feature en-
gineering with multi-horizon interpretability via 
SHAP will significantly outperform conventional 
methods, thus scientifically advancing both pre-
dictive accuracy and understanding of temporal 
pollution dynamics.
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According to the existing literature, limited 
research has reported the integration of feature 
engineering, including explainable AI (XAI) 
techniques, such as SHAP, which were employed 
in real-time air pollution analysis. Integrating ma-
chine-learning techniques offers insights for in-
formed decision-making based on pollution data 
(Shetty et al., 2024). Exploring AI-driven inter-
ventions to reduce air pollution can guide sustain-
able urban development and minimize environ-
mental impact (Rahaman et al., 2025). Addition-
ally, accessible forecasts empower residents to 
take precautions, such as avoiding outdoor activi-
ties during peak pollution hours (Ramírez et al., 
2019). This present study evaluates multiple ML 
models to provide accurate multi-horizon fore-
casts for PM2.5 concentrations. By integrating a 
sensitivity analysis with XAI techniques, it offers 
real-time insights for policymakers to guide strat-
egies like real-time alerts, targeted emission re-
ductions, and policy planning on key air pollution 
drivers in Prishtina, Kosovo. The specific contri-
butions of this study are summarized as follows:
 • a comprehensive comparison of interpretable 

machine-learning models for multi-horizon 
PM2.5 forecasting across five lead times.

 • the design of an extensive feature-engineering 
pipeline using XAI techniques that significant-
ly improves prediction accuracy and analyzes 
feature importance for model transparency.

 • a sensitivity analysis to identify pollution 
trends and adapt to urban environments, en-
abling proactive environmental planning with 
real-time pollution alerts.

The scalable pollution modeling approach 
is adaptable to various urban settings, enabling 
proactive environmental planning with real-time 
pollution alerts for communities and regulators. 
The study’s findings will enhance understanding 
of air quality and its prediction in the area studied, 
forming a basis for future research.

RELATED WORK

According to the existing literature, air-pol-
lution research has witnessed remarkable meth-
odological advancements, largely propelled by 
technological innovation (Chen et al., 2024). 
Among these developments is the integration of 
machine learning (ML) models into air-quality-
index control and pollution assessment, with case 

studies on explainable AI (XAI) and SHAP for 
feature-importance analysis (Kedar, 2024; Reddy 
and Kumar, 2023). Recent studies have applied 
various ML techniques to air-quality forecasting 
(Reddy and Kumar, 2023).

The authors in the paper (Raviteja and Reddy, 
2024) employed k-nearest neighbours (KNN), 
Random Forest, and other ML algorithms to anal-
yse data and forecast the air quality index (AQI), 
highlighting particularly strong performance 
from KNN and Random Forest. The authors 
noted that Python and the Scikit-Learn library 
provide convenient modules for implementing 
these models. Another research (Raviteja and 
Reddy, 2024; Chen et al., 2024; Reddy and Ku-
mar, 2023) examined support-vector regression 
(SVR), XGBoost, and artificial neural networks 
(ANNs) for forecasting air quality in Visakhapat-
nam, India, evaluating performance with metrics 
such as mean absolute error (MAE) and root-
mean-squared error (RMSE) (Chen et al., 2024). 
XGBoost exhibited the best predictive capability 
(Chen et al., 2024; Zhou et al., 2024).

Although SVR, Linear regression, XGBoost, 
and Random Forest remain conventional choic-
es for air-quality assessment (Chen et al., 2024; 
Persis and Ben Amar, 2023; Suárez Sánchez et 
al., 2011; Zhou et al., 2024), more recent work 
has adopted statistical and deep-learning meth-
ods such as ARIMA, long short-term memory 
(LSTM) networks, and convolutional neural net-
works (CNNs) for air-quality prediction (Luo 
and Gong, 2023; Tsokov et al., 2022). Multi-
step (multi-horizon) forecasting techniques are 
acknowledged in this context, though details of 
their implementation are often omitted.

Another work shown (Suárez Sánchez et al., 
2011) used experimental data on nitrogen oxides 
(NOx), carbon monoxide (CO), sulfur dioxide 
(SO₂), ozone (O₃), and particulate matter (PM₁₀) 
collected from 2006 to 2008 to develop a non-
linear air-quality model for the Avilés urban area 
(Spain) using support-vector machines. 

In contrast, the paper (Luo and Gong, 2023) 
proposed an ARIMA-WOA-LSTM model that 
combines ARIMA for linear components with 
LSTM networks for nonlinear patterns, with 
Whale Optimization Algorithm (WOA) tuning 
the LSTM hyperparameters. Their results showed 
that the hybrid model improved prediction ac-
curacy and stability. ARIMA effectively extracts 
linear patterns, while LSTM captures nonlinear 
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relationships; systematic feature selection further 
enhances model performance.

Although previous studies extensively applied 
various machine learning and interpretability tech-
niques, they haven’t really explored dynamic shifts 
in feature importance across multiple forecasting 
horizons. Moreover, existing research predomi-
nantly treats interpretability superficially or applies 
it to single-horizon models, neglecting how pollut-
ant driver importance evolves temporally. Thus, 
the current study provides a novel scientific ad-
vancement by explicitly quantifying and interpret-
ing feature dynamics across multiple horizons, an 
approach previously unaddressed and essential for 
deeper insights into urban air quality forecasting.

METHODOLOGY

This section outlines the complete methodol-
ogy used for developing a multi-horizon air pol-
lution prediction framework. 

Data collection

This study examines the urban environment of 
Prishtina, Kosovo (GPS coordinates: 42.6596 N 
and 21.1573 E) in the capital city of Kosovo. The 
geographical location of the study area is present-
ed in Figure 1. In this study, open-source datasets 
comprising hourly air pollution measurements of 
major pollutants (PM2.5, PM10, NO₂, O3, CO, 
and SO₂) were collected from government-oper-
ated monitoring stations from the webpage of the 
Hydrometeorological Institute of Kosovo. Mete-
orological data, including temperature, humidity, 
and other weather variables, were provided by the 

public API of the Meteostat tool, which adheres 
to international WMO standards. The dataset was 
recorded hourly over multiple years, from 2018 to 
2024, totaling 50,929 observations.

Procedure for machine learning

The overall workflow of this study is illustrat-
ed in Figure 2.

Data preprocessing 

The dataset was further preprocessed to han-
dle missing data using a forward-fill strategy to 
preserve the structure of the series. This assured us 
the continuity without introducing artificial vari-
ant into the pollutant or meteorological values.

Model selection and hyperparameter tuning

To comprehensively evaluate model perfor-
mance, a suite of interpretable ML models was 
chosen to balance prediction performance with 
interpretability. These models, including XG-
Boost, LightGBM, SVM, Random Forest, and 
Linear Regression, respectively, were imple-
mented on the data collected for the modelling 
and prediction of the air quality control. While 
extensive hyperparameter tuning was conduct-
ed to optimize model performance. The XG-
Boost is a powerful ensemble learning algorithm 
based on gradient boosting decision trees, which 
builds models sequentially to learn complex pat-
terns and interactions in data. It is suitable for 
structured data tasks like time-series prediction, 
where temporal and environmental variables of-
ten interact in non-linear and high-dimensional 

Figure 1. Location of the area studied
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ways. LightGBM is another gradient boosting al-
gorithm optimized for efficiency and scalability, 
for the air quality and prediction datasets, using 
a histogram-based method to bucket continuous 
features and growing trees leaf-wise. It performs 
well on large datasets with many features and fa-
vors fast inference, making it advantageous for 
real-time or near-real-time applications. Random 
Forest is a classic ensemble method based on 
aggregating multiple decision trees, promoting 
diversity and reducing variance in predictions. 
It uses majority voting for decisions (McClar-
ren, 2021).Linear Regression is a fundamental 
predictive model that assumes a linear relation-
ship between input features and target variables, 
serving as a strong baseline in many applications 
(Wilson and Lorenz, 2015; Zhou et al., 2024). 
After selecting the machine learning models, we 
proceeded with hyperparameter tuning to opti-
mize their predictive performance and ensure fair 
comparisons across configurations, parameters, 
which are shown in Table 1. For this, we run a 
Grid Search for each model.

Feature engineering

To thoroughly capture the dependencies and 
environmental complexity in air pollution dy-
namics, as well as to increase the accuracy of the 
prediction models and interpretability, we imple-
mented extensive feature engineering for the da-
taset, resulting in a considerable set of features. 
First, lag features were generated for pollutant 
concentrations (PM2.5, PM10, NO₂, CO, SO₂, 
O₃) and meteorological variables (e.g., tempera-
ture, humidity, wind speed) at multiple hourly 
offsets to capture short-term dependencies. Roll-
ing window statistics, such as mean and standard 
deviation, were computed for both pollutants and 
weather variables over 3, 6, 12, and 24-hour inter-
vals to capture local trends and volatility. Tempo-
ral markers, including hour, day, month, and year, 
were extracted and transformed into cyclical com-
ponents using sine and cosine functions to model 
seasonality and diurnal cycles. Additional derived 
features include wind vector decomposition into 
u and v components and a temperature-humidity 

Figure 2. High-level diagram of methodology
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interaction term, with its lags. The detailed fea-
tures are shown in Table 2.

Our feature engineering strategy explicitly 
differs from conventional methods through its 
structured temporal stratification. Integrating 
cyclical temporal encoding, multiple pollutant 
and meteorological lags, and rolling statistics 
explicitly provides a structured and novel ap-
proach tailored specifically to multi-horizon 
forecasting. Coupled systematically with SHAP 
interpretability, this detailed temporal feature-
engineering framework uniquely clarifies how 
predictors dynamically shift across forecasting 
horizons, enhancing both predictive accuracy 
and interpretative depth.

Prediction strategy

To evaluate the forecasting performance of 
our models across varying lead times, we adopt-
ed a multi-horizon prediction strategy targeting 

PM2.5 concentrations at future intervals. Specifi-
cally, we trained separate models for forecasting 
at T+1, T+3, T+6, T+12, and T+24 hours ahead, 
where T represents the current time step. For each 
horizon, the dataset was adjusted so that the target 
variable corresponded to the PM2.5 level at the 
respective future time point. The input features, 
consisting only of past and current observations, 
ensured a strictly causal modeling approach. This 
design enables the models to learn distinct tem-
poral patterns and dependencies relevant to each 
forecast window, supporting both short-term and 
long-term air quality predictions.

Interpretability analysis

To enhance transparency and support action-
able insights, we employed SHAP (SHapley Ad-
ditive exPlanations) in this study to interpret the 
contribution of each feature across different fore-
cast horizons. SHAP values provide a consistent, 

Table 1. Hyperparameter tuning and best parameters found for each model
Model Hyperparameters tuned Number of tests run Best parameter found

XGBoost

’n_estimators’: [100, 200],
’max_depth’: [3, 5, 7],
’learning_rate’: [0.01, 0.1, 0.2],
’subsample’: [0.8, 1.0],
’colsample_bytree’: [0.8, 1.0]

216 fits
’colsample_bytree’: 1.0,
’learning_rate’:0.1, ’max_depth’: 5, 
’n_estimators’: 100, ’subsample’: 0.8

LightGBM

’n_estimators’: [100, 200],
’num_leaves’: [31, 63, 127],
’learning_rate’: [0.01, 0.1, 0.2],
’subsample’: [0.8, 1.0],
’colsample_bytree’: [0.8, 1.0],
’min_child_samples’: [5, 20, 50]

648 fits

’colsample_bytree’: 0.8,
’learning_rate’: 0.1, ’min_child_
samples’: 50,
’n_estimators’:100, ’num_leaves’:31, 
’subsample’: 0.8

Random Forest

’n_estimators’: [100, 200],
’max_depth’: [None, 10, 20],
’min_samples_split’: [2, 5, 10],
’min_samples_leaf’: [1, 2, 4],
’max_features’: [’sqrt’, ’log2’]

324 fits

max_depth’:None, ’max_
features’:’sqrt’, ’min_samples_
leaf’:2, ’min_samples_split’:10, 
’n_estimators’: 200

SVM

’model__C’: [0.1, 1, 10],
’model__epsilon’: [0.01, 0.1, 0.2],
’model__kernel’: [’rbf’, ’linear’],
’model__gamma’: [’scale’, ’auto’, 0.1, 0.01]

216 fits
’model__C’: 0.1, ’model__epsilon’: 
0.1, ’model__kernel’: ’linear’,
’model__gamma’: ’auto’

Linear regression N/A N/A N/A

Table 2. Feature engineering list
Category Description

Lag features Lagged values for PM2.5, PM10, NO₂, CO, SO₂, O₃, temp, dew point, humidity, precipitation, wind 
direction, wind speed, pressure, and temp×rhum (1, 2, 3 lags; extended to 6, 12, 24 for PM2.5).

Rolling statistics Rolling mean and standard deviation for PM2.5, temperature, and humidity over 3, 6, 12, and 24-hour 
windows.

Datetime features Hour, day of the week, day of the month, month, and year extracted from the timestamp.

Cyclical features Sine and cosine transformations of hour, day of the week, and month to capture periodic patterns.

Wind decomposition Decomposed wind speed and direction into wind_u (east-west) and wind_v (north-south) components.

Interaction terms Interaction feature combining temperature and humidity (temp × rhum), with 1, 2, and 3-hour lags.
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model-agnostic measure of feature impact by es-
timating each variable’s marginal contribution to 
a prediction. For each forecast model and hori-
zon (T+1, T+3, T+6, T+12, T+24), we computed 
SHAP values on the test set and generated summa-
ry plots to visualize feature importance rankings.

Our approach employs SHAP analysis ex-
plicitly across multiple forecasting horizons, sys-
tematically revealing how feature contributions 
dynamically evolve with increasing forecast lead 
times. This multi-horizon interpretability analy-
sis scientifically advances understanding beyond 
single-horizon interpretability, thus providing 
deeper insights into temporal dependencies and 
atmospheric-pollutant interactions.

Sensitivity analysis and optimization

In this study, sensitivity analysis involves sys-
tematically varying influential features based on 
SHAP insights, running predictive models under 
these variations (meteorological variables, pollut-
ant, and time features), and assessing the impact 
on pollution levels relative to established air pol-
lutant PM2.5 regulatory standards in Prishtina, 
Kosovo. This optimization approach will help 
identify effective and targeted pollution mitiga-
tion strategies aligned with forecast uncertainties.

Model statistics and evaluation

All experiments were conducted in a Python 
environment using well-known ML libraries such 
as Scikit-learn and SHAP. To ensure a robust 
evaluation of the prediction models, we employed 
a time-based split: the most recent 365 days were 
reserved for the test set, while the remaining data 
was used for training. This split simulates a re-
alistic forecasting scenario in which future data 
is predicted based on historical observations. We 
compared two experimental setups: one using 
only basic features, and another incorporating the 
full set of engineered features to assess the per-
formance gains from feature engineering. Model 
evaluation was based on three standard regression 
metrics, R2, RMSE, and MAE: R² (coefficient of 
determination) - Indicates how much of the varia-
tion in the dependent variable can be explained by 
the independent variables.

 𝑅𝑅2 = 1 − ∑ (𝑦𝑦𝑖𝑖−𝑦𝑦�̂�𝑖)2𝑛𝑛
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MAE (mean absolute error) - evaluates the 
mean absolute disparity between predicted and 

actual outcomes, showing lower sensitivity to 
outliers than RMSE.
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RMSE gives greater weight to larger errors by 
squaring them, making it valuable when minimiz-
ing significant prediction mistakes is important.
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 (3)

In addition to numerical results, we presented 
a series of visualizations and important charts to 
provide further insight into model behavior across 
different forecast horizons

RESULTS AND DISCUSSION

Model performance with basic features

The result in Table 3 showcases the perfor-
mance of various machine learning models in 
predicting air quality using the original dataset 
with the basic features. This feature set includes 
the pollutant concentrations, meteorological vari-
ables, and timestamp-based indicators. In this set-
up, LightGBM outperforms other models, achiev-
ing R² values ≥ 0.8, the least MAE of 4.374, and 
an RMSE of 7.687, reflecting minimal predicting 
error. This outcome shows its effectiveness in 
capturing complex patterns without feature ex-
traction as well. While RF and XGBoost perform 
well, particularly on smaller samples, they are 
inferior to LightGBM overall. Linear regression 
offers stable but lower predictive power, serving 
primarily as a baseline. SVM shows the weakest 
performance, especially as sample size increases, 
revealing difficulties with the data’s complexity. 
Additionally, the performance decline with larger 
sample sizes in some models emphasizes the need 
to validate models using diverse datasets, reflect-
ing the complexity of real-world air quality data.

Enhanced model performance with 
engineered features

Table 4 presents the ML models’ performance 
metrics, showing that engineered features sig-
nificantly improve results compared with basic 
features. For the 1-hour horizon, LightGBM and 
XGBoost exhibit similarly high performance, 
with R² values of 0.860 and 0.862, respectively, 
and correspondingly low MAE and RMSE: 3.520 
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Table 3. Results of the evaluation of performance with base features
Horizon Model R2 MAE RMSE

t + 1

LightGBM 0.807 4.374 7.687

XGBoost 0.736 5.284 9.003

RandomForest 0.795 4.611 7.94

LinearRegression 0.805 4.764 7.729

SVM 0.665 5.064 10.135

t + 3

LightGBM 0.516 7.207 12.186

XGBoost 0.364 8.507 13.97

RandomForest 0.48 7.811 12.633

LinearRegression 0.558 7.055 11.641

SVM 0.459 6.938 12.88

t + 6

LightGBM 0.305 9.128 14.603

XGBoost 0.065 11.767 18.074

RandomForest 0.185 10.415 15.814

LinearRegression 0.357 9.011 14.05

SVM 0.299 8.351 14.668

t + 12

LightGBM 0.331 9.003 14.33

XGBoost 0.165 10.31 16.007

RandomForest 0.225 10.369 15.424

LinearRegression 0.308 9.354 14.577

SVM 0.274 8.658 14.923

t + 24

LightGBM 0.351 8.758 14.117

XGBoost 0.266 9.347 15.007

RandomForest 0.319 9.268 14.456

LinearRegression 0.418 8.571 13.359

SVM 0.410 7.864 13.451

and 6.546 for LightGBM, and 3.524 and 6.513 
for XGBoost. This outcome indicates strong 
model reliability in explaining variance in the air-
pollution datasets (Chen et al., 2024) (B.Raviteja 
and Reddy, 2024) (Zhou et al., 2024) and dem-
onstrates both models’ effectiveness in making 
short-term predictions.

For the 3-hour horizon, performance drops 
for all models, suggesting greater complexity in 
capturing air-quality dynamics over longer peri-
ods. Nevertheless, LightGBM remains the lead-
ing model, with an R² of 0.733, while the per-
formance of XGBoost and Linear Regression 
declines notably.

At the medium horizon (6 hours ahead), 
performance declines further across all models. 
LightGBM still leads, but its R² falls to 0.668; 
the other models trail, with RF dropping to 0.602. 
Longer horizons of 8, 12, and 24 hours show 
substantial decreases in predictive accuracy, 
with LightGBM falling below 0.500 in R² at 24 
hours, underscoring the challenge of maintaining 

reliability over extended forecasts. Linear Re-
gression records the lowest performance across 
these horizons, with R² values of 0.432 and 0.499 
at 24 hours. Comparatively, LightGBM remains 
the most reliable model across all horizons.

In Figure 3 we show the comparison of the 
hourly XGBoost predictions with the actual PM 
2.5 concentrations for all of 2024 testing set. For 
most of the year, the two curves sit almost on 
top of each other, showing that the model cap-
tures both quick day-to-day changes and slower 
seasonal shifts. The dashed lines plot the 24-hour 
rolling averages, which also match closely. This 
means the model reproduces longer-term pat-
terns, such as the winter smog in January and the 
late-autumn pollution build-up with almost no de-
lay. The algorithm slightly underestimates a few 
extreme peaks above 250 µg m⁻³ during the cold-
est weeks, but it still detects when these spikes 
begin and end. Most of the remaining errors come 
from the height of these peaks, not their timing. 
Overall, the plot supports the low error values 
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 Table 4. Results of the evaluation of performance with engineered features
Horizon Model R2 MAE RMSE

t + 1

LightGBM 0.860 3.520 6.546

XGBoost 0.862 3.524 6.513

RandomForest 0.833 3.890 7.160

LinearRegression 0.846 4.108 6.871

SVM 0.839 3.693 7.022

t + 3

LightGBM 0.733 5.169 9.060

XGBoost 0.729 5.229 9.114

RandomForest 0.706 5.526 9.499

LinearRegression 0.642 6.766 10.482

SVM 0.629 5.847 10.666

t + 6

LightGBM 0.668 6.080 10.093

XGBoost 0.647 6.300 10.414

RandomForest 0.602 6.739 11.049

LinearRegression 0.540 7.963 11.884

SVM 0.533 6.829 11.975

t + 12

LightGBM 0.623 6.651 10.761

XGBoost 0.601 6.753 11.069

RandomForest 0.578 7.139 11.374

LinearRegression 0.500 7.977 12.391

SVM 0.493 7.134 12.477

t + 24

LightGBM 0.499 7.683 12.406

XGBoost 0.503 7.673 12.353

RandomForest 0.498 7.738 12.407

LinearRegression 0.432 8.581 13.205

SVM 0.451 7.612 12.980

Figure 3. Actual versus predicted PM 2.5 24-hour ahead for the whole testing year 2024

in Table 3 and highlights XGBoost’s ability to 
perform reliably across an entire year without 
noticeable drift or bias. The close alignment be-
tween actual and predicted values at the 24-hour 
horizon highlights the model’s ability to deliver 
timely and accurate forecasts crucial for health 

advisories and pollution mitigation. Its effective-
ness in capturing short-term variability makes it 
a valuable tool for real-time air quality monitor-
ing, enabling swift responses to pollution spikes. 
Additionally, the smoothing effect of 24-hour av-
erages emphasizes the need to consider various 
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temporal scales for thorough air quality assess-
ments. Figure 4 presents a detailed weekly com-
parison plot comparing predictions made 1, 3, 6, 
12, and 24 hours ahead. With only a 1-hour lead, 
the prediction line almost perfectly overlaps the 
real readings, while there is virtually no time shift 
or difference in height. At 3- and 6-hour leads, the 
peaks are only slightly lower (about 10–15%), 
and the timing shifts by at most one data point, so 
the main ups and downs still match. 

The 12 and 24 hours predictions ahead smooth 
out the sharp swings and push the highest peaks 
about 3–4 hours later, yet they still capture the 
overall daily pattern: cleaner air in the early morn-
ing and worse air in the late afternoon. This steady 
loss of detail matches the gradual rise in RMSE 
listed in Table 3. Most of the added error comes 
from smaller peak heights and minor time shifts, 
not from a constant bias. In practice, this is helpful 
because the model can still warn the city of upcom-
ing pollution several hours in advance, giving the 
environmental stakeholders time to respond.

Overall, the model’s strong alignment of pre-
dicted and actual PM2.5 levels across different 
lead times shows its effectiveness in forecasting 
pollution trends. This reliability is essential for is-
suing health advisories and guiding mitigation ef-
forts. Short-term predictions (1–3 hours) aid im-
mediate health alerts, while longer-term forecasts 
(24–72 hours) assist in policy planning and re-
source allocation. The findings reflect the select-
ed model’s ability to replicate PM2.5 fluctuations, 
indicating it successfully captures key pollution 
drivers, meteorological conditions, emission pat-
terns, and potentially episodic events. This under-
standing can guide targeted interventions (Luo 
and Gong, 2023); (Sanchez and Zhoual, 2024). 

Feature importance and analysis

Figure 5 shows feature evolution, measured 
by mean absolute SHAP value changes across 
forecast horizons from 1 hour to 24 hours. At the 
shortest horizon (t+1h), the model’s predictions 

Figure 4. Actual versus predicted PM2.5 zoomed for a random 7 days in the testing set 
across different horizons setup
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Figure 5. SHAP Feature importance for each horizon

are dominated by pollutant persistence. Specifi-
cally, the current value of PM10 and the one-hour 
lag of PM2.5 together explain more than half of 
the model’s output variance. Temperature and 
PM10_lag_1 also contribute, but to a lesser ex-
tent, while other meteorological and cyclical fea-
tures have minimal influence. This is expected, 

as fine particulate matter (PM2.5) levels tend to 
be highly autocorrelated over short periods, and 
PM10 often varies in parallel due to shared sourc-
es like traffic and heating.

As the forecast window increases to t+3h and 
t+6h, the influence of these short-term lags begins 
to decline. Instead, the 24-hour rolling mean of 
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PM2.5 becomes more important, and the hour-
of-day (captured by its sinusoidal encoding) rises 
significantly in influence. Wind-related features, 
such as wind_gust and wind_speed, also gain rel-
evance at this stage. By t+6h, the 24-hour PM2.5 
rolling mean becomes the most influential feature 
overall. This outcome indicates that recent pollut-
ant concentrations and immediate environmental 
conditions strongly influence near-future pol-
lution levels (Cardito et al., 2023). At the same 
time, the 12-hour rolling mean of temperature 
overtakes the current temperature, and month_cos 
(a seasonal feature) begins to show impact. For 
longer forecasts such as t+12h, rolling statistics 
and cyclic patterns become even more prominent. 
The 12-hour rolling means of both temperature 
and PM2.5 top the list, followed by cyclic fea-
tures and an interaction term between tempera-
ture and humidity (temp × rhum). The trend con-
firmed that metrological factors contribute more 
to longer-term variability in air pollution indices 
(Rahman and Meng, 2024; Wu et al., 2025), em-
phasizing the continued importance of recent pol-
lutant levels and time-of-day effects.

PM10’s importance drops to mid-range, indi-
cating that it is less useful when the model can no 
longer rely on short-term persistence. At the 24-
hour horizon, PM2.5_lag_1 once again becomes 
the top feature, likely due to its role in capturing 
broader temporal trends. It is followed by hour, 
pressure, and temperature, all of which are key 
variables for understanding daily air-quality cy-
cles, including nighttime pollutant buildup and 
morning dispersion. Wind-related features be-
come much less important at this horizon, as wind 
patterns are harder to predict a full day.

Overall, the model’s decision-making shifts 
from relying heavily on immediate pollutant lev-
els (68% of SHAP value weight at t+1h) to em-
phasizing rolling averages and cyclic descriptors. 
Meanwhile, the contribution of meteorological 
variables gradually increases to about 25%. This 
transition reflects established atmospheric dy-
namics and highlights two key operational take-
aways: (i) near-term alerts require high-frequency 
PM data, and (ii) accurate weather forecasts and 
well-curated historical data are critical for effec-
tive day-ahead planning.

Moreover, the shown feature-importance 
evolution across different horizons in Figure 6 
reveals how the model progressively re-weights 
its evidence as the forecast window expands. 
Rapid-decay variables as PM10 and, to a lesser 
extent, PM2.5_lag_1, start as the most influential 
signals but lose most of their explanatory weight 
within the first 6 h, reflecting the quick erosion 
of short-term persistence. Bridge variables such 
as PM2.5_roll_mean_24 and temp_roll_mean_12 
follow an inverted-U pattern, whereas their rele-
vance is modest at 1 h, peaks around the 6- to 12-h 
window when multi-hour memory is most valu-
able, and then tapers off as the horizon lengthens. 
Finally, slow-cycle descriptors as the clock index 
hour and its seasonal counterpart month_cos ex-
hibit monotonic growth, moving from peripheral 
roles at 1 h to primary drivers in the 24-h forecast, 
where diurnal stability and seasonal background 
dominate pollutant behavior. These gradual shifts 
between the horizons mirror how air pollution un-
folds over longer periods.

Our novel findings from the systematic SHAP 
multi-horizon analysis demonstrates progressive 

Figure 6. SHAP Feature importance evolution across different horizons
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temporal shifts in feature importance, from imme-
diate pollutant persistence (short-term horizons), 
toward rolling averages and cyclical meteorologi-
cal conditions (mid- and long-term horizons). Ex-
plicitly characterizing this temporal evolution of 
features significantly advances scientific under-
standing of air pollution dynamics and provides 
insights broadly transferable to other urban en-
vironments experiencing similar meteorological 
and pollution dynamics.

Sensitivity analysis on metrological variables 
on PM2.5 pollution 

In this study, a sensitivity analysis was imple-
mented based on the outputs from the selected 
XGBoost and feature engineering (SHAP) anal-
ysis to assess how metrological factors affect 
variation in concentrations of PM2.5 changes 
from January to December in 2024. For the case 
study in Prishtina, the analysis of prediction re-
sults from the XGBoost and SHAP analysis re-
veals that PM2.5 was the most influential air 
pollutant in this case study compared to CO, 
SO2, NO2, and PM10. Additionally, the findings 
from SHAP analysis suggest that the dynamics 
of metrological variables, including wind speed, 
temperature, wind direction, and time variations, 
are key drivers of PM2.5 concentration (Rahman 
& Meng, 2024; Wu et al., 2025),accounting for 
possible air pollution in this case study. The me-
teorological variables temperature, wind speed, 
wind direction, and time were varied to 2 levels 
representing maximum and minimum extremes 
of temperature, wind speed, wind direction, and 
time. The targeted output is the corresponding 
concentration values for PM2.5 were recorded at 
these points extremes were recorded. 

4FI model statistics

To investigate the sensitivity analysis on me-
trological variables on PM2.5 pollution levels, 
the 4FI factorial model was selected. The 4LI was 
adopted to predict possible combined effects or 
antagonistic and synergetic interaction of the four 
meteorological variables that can account for the 
PM2.5 concentration at a 98% power level, with 
a model lack-of-fit (LoF = 3), pure error output of 
7, and degree of freedom (d.f = 4). A minimal Lof 
≥ 3 relative to pure error of 7 confirmed that the 
selected 4FI model is valid with minimal signal-
to-noise ratio. 

The Pareto charts in Figures 7(a-f) analyze the 
ranking effect of meteorological variables tem-
perature (a), wind speed (b), time (c), and wind 
direction (D) on the concentration of PM2.5 emit-
ted during quarterly short-term January, April, 
August, December, and long term prediction for 
the year 2024. Understanding these interactions 
helps forecast pollution episodes and design ef-
fective air quality management plans during high 
pollution peaks.

In Figure 7a, temperature exhibits the highest 
t-value (9.65), far exceeding the Bonferroni and 
t-value cutoff lines, while a lower t-value (2.4), 
just above the t-value limit (2.13) but below the 
Bonferroni threshold (3.48). The statistical analy-
sis reveals a moderately significant negative ef-
fect of wind speed and wind direction on PM2.5 
levels. This finding confirms that variations in 
time during January are statistically associated 
with changes in PM2.5 levels. Time also shows a 
strong positive effect on PM2.5 levels during Jan-
uary, indicating that pollution tends to rise as the 
month progresses. The model analysis suggests 
that wind direction is less influential (Liu et al., 
2020); thus, PM2.5 pollution levels tend to rise as 
the month advances, possibly due to weather pat-
terns, reduced wind, and temperature inversions 
leading to the accumulation of pollutants over the 
month 30 (Ilenič et al., 2024). 

 A similar outcome was recorded in April, 
as confirmed in the Pareto chart recorded in the 
month April. Figure 7(b) shows that tempera-
ture (A) has the highest, statistically significant 
t-value (10), exceeding the Bonferroni threshold 
and the t-test limit. The outcome suggests a high-
ly significant effect. This strongly indicates that 
temperature significantly impacts PM2.5 levels 
in Prishtina; higher temperatures correlate with 
increased PM2.5, while wind disperses pollut-
ants. Time and wind direction have statistically 
insignificant or minimal effects on April’s PM2.5 
levels (Rahman and Meng, 2024). This outcome 
is confirmed by the probability output of wind 
speed, time, and wind direction cluster near zero 
scale, indicating smaller deviations and thus less-
er significance. 

In Figure 7(c), temperature stands out sig-
nificantly with a t-value of 4.14, surpassing both 
the Bonferroni limit (3.4102) and the t-value 
threshold (2.10982). This outcome suggests that 
temperature has a statistically significant and 
dominant effect on PM2.5 levels, likely due to 
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its influence on atmospheric stability and pollut-
ant dispersion.

Time shows a moderate impact with a t-
value just above 1.04, suggesting a potential 
secondary role related to diurnal changes affect-
ing emissions. Wind speed and wind direction 
have t-values near zero, indicating negligible 
effects on PM2.5, likely due to consistently low 
wind speeds and minimal directional variation in 

August. Thus, temperature is the primary driver 
of PM2.5 variability in Prishtina, and the other 
meteorological variables, including wind speed 
and direction, have minimal effects in August. 

The Pareto chart in Figure 7(d) confirmed 
that temperature has the strongest influence on 
PM2.5 changes, showing a negative effect with a 
t-value near 9.00, well above the Bonferroni limit 
(3.48). This suggests that higher temperatures 

Figure 7. Pareto chart distribution of the ranking of metrological variables on PM2.5
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Table 5. Prediction analysis output for PM2.5

Response Predicted 
Mean Std Dev SE Mean 95% CI low 

for Mean
95% CI high 

for Mean
95% TI low 

for 99% Pop
95% TI high 
for 99% Pop

Jan-PM2.5* 26 0.1 20.39 25.7594 25.7594 25.7594 25.7594

Apr-PM2.5* 14 1.0 103.58 13.7964 13.7964 13.7964 13.7964

Aug-PM2.5* 11.4528 2.4 18.20 11.4528 11.4528 11.4528 11.4528

Dec-PM2.5* 24.2984 0.05 181.97 24.2984 24.2984 24.2984 24.2984

Yr-2024-PM2.5* 18.8268 1 88.46 18.8268 18.8268 18.8268 18.8268

may reduce PM2.5 due to improved particulate 
mixing in the atmosphere. Time also has a sig-
nificant positive effect and a t-value close to 6.00, 
indicating peak traffic hours, and daily industrial 
activity influencing PM2.5 concentrations may 
impact PM2.5 levels. However, wind speed has 
a moderate positive effect (t = 3.50), suggesting 
that higher wind speeds may promote the mix-
ing of particulates during this extensive period, 
contributing to PM2.5 levels. The Pareto ranking 
indicated likely synergetic effects of the meteo-
rological variables temperature-time (A*B) and 
wind speed-time (B*C), both showing negative 
impacts, with t-values of 3.00 and 2.00. This 
suggests that temperature fluctuations at certain 
times may reduce PM2.5 pollution in Prishtina 
during December. We reasoned that policymak-
ers and environmental agencies should consider 
implementing air quality mitigation strategies in 
early December and late January to reduce health 
risks from high PM2.5 levels, focusing on hot pe-
riods and pollution peaks. 

The Pareto chart (Figure 7e) for long-term 
model prediction shows that temperature has the 
highest t-value of 8.41 and a strong negative ef-
fect, confirming that higher temperatures signifi-
cantly reduce PM2.5 levels due to enhanced at-
mospheric mixing. Time follows with a t-value of 
around 3.5 and a positive effect, suggesting that 
daily or seasonal changes increase PM2.5 levels. 
The outcome possibly reflects human activities, 
including commuting, heating, or industrial out-
put. Findings confirmed wind speed has a bor-
derline significant t-value of approximately 2.1 
and also has a positive effect, possibly related to 
particulate resuspension, and a possible built en-
vironment contributing to leading to pockets of 
stagnation where PM2.5 pollutants accumulate, 
regardless of general wind speed (Ilenič et al., 
2024; Wu et al., 2025). Wind direction did not sig-
nificantly impact PM2.5 levels in Prishtina.  The 
combined effects of wind speed-time (B*C) and 
temperature-wind speed (A*B) are minimal, with 

t-values below significance thresholds, indicat-
ing that variables rarely operate in isolation. The 
three-way interaction of temperature-wind speed-
time (A*B*C) has a negligible impact, suggest-
ing that the combination of all four variables is 
merely an alias and does not create a meaningful 
influence on PM2.5 concentration beyond their 
individual or two-way effects. This indicates a 
lack of a compound meteorological scenario.

The final prediction of the air quality follow-
ing the ML, SHAP, and sensitivity analysis is pre-
sented in Table 5. These outputs were recorded 
following model equations 4–8.

 

𝐽𝐽𝐽𝐽𝐽𝐽 − 𝑃𝑃𝑃𝑃2.5 = 26.8 − 2.1𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 − 0.6𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 −
     − 0.6𝑆𝑆𝑇𝑇𝑇𝑇𝑇𝑇𝑆𝑆 − 0.12𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 · 𝑆𝑆𝑇𝑇𝑇𝑇𝑇𝑇𝑆𝑆 − 0.6 −
    − 0.59𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 · 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 − 0.35𝑆𝑆𝑇𝑇𝑇𝑇𝑇𝑇𝑆𝑆 · 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 +
                 + 0.04𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 · 𝑆𝑆𝑇𝑇𝑇𝑇𝑇𝑇𝑆𝑆 · 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇  
 
 
(1)  
 
 

𝐴𝐴𝑇𝑇𝐴𝐴 − 𝑃𝑃𝑃𝑃2.5 = 15 − 2.1𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 − 
− 0.13𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 − 0.02𝑆𝑆𝑇𝑇𝑇𝑇𝑇𝑇𝑆𝑆 − 0.18𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 · 
· 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 − 0.08𝑆𝑆𝑇𝑇𝑇𝑇𝑇𝑇𝑆𝑆 · 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 − 1.2𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 · 

· 𝑆𝑆𝑇𝑇𝑇𝑇𝑇𝑇𝑆𝑆 · 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 
 
(2) 
 

𝐴𝐴𝐴𝐴𝐴𝐴 − 𝑃𝑃𝑃𝑃2.5 = 12 + 0.87𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 + 
+ 0.1𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 + 1.6𝑆𝑆𝑇𝑇𝑇𝑇𝑇𝑇𝑆𝑆 − 0.16𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 · 

·  𝑆𝑆𝑇𝑇𝑇𝑇𝑇𝑇𝑆𝑆 − 0.1𝑆𝑆𝑇𝑇𝑇𝑇𝑇𝑇𝑆𝑆 · 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 − 
− 0.08𝑆𝑆𝑇𝑇𝑇𝑇𝑇𝑇𝑆𝑆 · 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 

 
(3)  
 
 

𝐷𝐷𝑇𝑇𝐷𝐷 − 𝑃𝑃𝑃𝑃2.5 = 26.8 − 2.1𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 − 
− 0.6𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 − 0.6𝑆𝑆𝑇𝑇𝑇𝑇𝑇𝑇𝑆𝑆 − 0.12𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 · 
 · 𝑆𝑆𝑇𝑇𝑇𝑇𝑇𝑇𝑆𝑆 − 0.6 − 0.59𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 · 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 − 
− 0.35𝑆𝑆𝑇𝑇𝑇𝑇𝑇𝑇𝑆𝑆 · 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 + 0.04𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 · 

· 𝑆𝑆𝑇𝑇𝑇𝑇𝑇𝑇𝑆𝑆 · 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇  
 

(4) 
 
 

𝑌𝑌𝐴𝐴𝑃𝑃𝑃𝑃2.5 = 19.8 − 1.8𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 + 0.39𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 − 
−0.63𝑆𝑆𝑇𝑇𝑇𝑇𝑇𝑇𝑆𝑆 − 0.063𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 · 𝑆𝑆𝑇𝑇𝑇𝑇𝑇𝑇𝑆𝑆 − 

−0.23𝑆𝑆𝑇𝑇𝑇𝑇𝑇𝑇𝑆𝑆 · 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 + 0.02𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 · 
· 𝑆𝑆𝑇𝑇𝑇𝑇𝑇𝑇𝑆𝑆 · 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 

 
(5) 

 (4)

 

𝐽𝐽𝐽𝐽𝐽𝐽 − 𝑃𝑃𝑃𝑃2.5 = 26.8 − 2.1𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 − 0.6𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 −
     − 0.6𝑆𝑆𝑇𝑇𝑇𝑇𝑇𝑇𝑆𝑆 − 0.12𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 · 𝑆𝑆𝑇𝑇𝑇𝑇𝑇𝑇𝑆𝑆 − 0.6 −
    − 0.59𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 · 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 − 0.35𝑆𝑆𝑇𝑇𝑇𝑇𝑇𝑇𝑆𝑆 · 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 +
                 + 0.04𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 · 𝑆𝑆𝑇𝑇𝑇𝑇𝑇𝑇𝑆𝑆 · 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇  
 
 
(1)  
 
 

𝐴𝐴𝑇𝑇𝐴𝐴 − 𝑃𝑃𝑃𝑃2.5 = 15 − 2.1𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 − 
− 0.13𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 − 0.02𝑆𝑆𝑇𝑇𝑇𝑇𝑇𝑇𝑆𝑆 − 0.18𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 · 
· 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 − 0.08𝑆𝑆𝑇𝑇𝑇𝑇𝑇𝑇𝑆𝑆 · 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 − 1.2𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 · 

· 𝑆𝑆𝑇𝑇𝑇𝑇𝑇𝑇𝑆𝑆 · 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 
 
(2) 
 

𝐴𝐴𝐴𝐴𝐴𝐴 − 𝑃𝑃𝑃𝑃2.5 = 12 + 0.87𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 + 
+ 0.1𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 + 1.6𝑆𝑆𝑇𝑇𝑇𝑇𝑇𝑇𝑆𝑆 − 0.16𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 · 

·  𝑆𝑆𝑇𝑇𝑇𝑇𝑇𝑇𝑆𝑆 − 0.1𝑆𝑆𝑇𝑇𝑇𝑇𝑇𝑇𝑆𝑆 · 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 − 
− 0.08𝑆𝑆𝑇𝑇𝑇𝑇𝑇𝑇𝑆𝑆 · 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 

 
(3)  
 
 

𝐷𝐷𝑇𝑇𝐷𝐷 − 𝑃𝑃𝑃𝑃2.5 = 26.8 − 2.1𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 − 
− 0.6𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 − 0.6𝑆𝑆𝑇𝑇𝑇𝑇𝑇𝑇𝑆𝑆 − 0.12𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 · 
 · 𝑆𝑆𝑇𝑇𝑇𝑇𝑇𝑇𝑆𝑆 − 0.6 − 0.59𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 · 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 − 
− 0.35𝑆𝑆𝑇𝑇𝑇𝑇𝑇𝑇𝑆𝑆 · 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 + 0.04𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 · 

· 𝑆𝑆𝑇𝑇𝑇𝑇𝑇𝑇𝑆𝑆 · 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇  
 

(4) 
 
 

𝑌𝑌𝐴𝐴𝑃𝑃𝑃𝑃2.5 = 19.8 − 1.8𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 + 0.39𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 − 
−0.63𝑆𝑆𝑇𝑇𝑇𝑇𝑇𝑇𝑆𝑆 − 0.063𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 · 𝑆𝑆𝑇𝑇𝑇𝑇𝑇𝑇𝑆𝑆 − 

−0.23𝑆𝑆𝑇𝑇𝑇𝑇𝑇𝑇𝑆𝑆 · 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 + 0.02𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 · 
· 𝑆𝑆𝑇𝑇𝑇𝑇𝑇𝑇𝑆𝑆 · 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 

 
(5) 

 (5)

 

𝐽𝐽𝐽𝐽𝐽𝐽 − 𝑃𝑃𝑃𝑃2.5 = 26.8 − 2.1𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 − 0.6𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 −
     − 0.6𝑆𝑆𝑇𝑇𝑇𝑇𝑇𝑇𝑆𝑆 − 0.12𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 · 𝑆𝑆𝑇𝑇𝑇𝑇𝑇𝑇𝑆𝑆 − 0.6 −
    − 0.59𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 · 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 − 0.35𝑆𝑆𝑇𝑇𝑇𝑇𝑇𝑇𝑆𝑆 · 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 +
                 + 0.04𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 · 𝑆𝑆𝑇𝑇𝑇𝑇𝑇𝑇𝑆𝑆 · 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇  
 
 
(1)  
 
 

𝐴𝐴𝑇𝑇𝐴𝐴 − 𝑃𝑃𝑃𝑃2.5 = 15 − 2.1𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 − 
− 0.13𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 − 0.02𝑆𝑆𝑇𝑇𝑇𝑇𝑇𝑇𝑆𝑆 − 0.18𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 · 
· 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 − 0.08𝑆𝑆𝑇𝑇𝑇𝑇𝑇𝑇𝑆𝑆 · 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 − 1.2𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 · 

· 𝑆𝑆𝑇𝑇𝑇𝑇𝑇𝑇𝑆𝑆 · 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 
 
(2) 
 

𝐴𝐴𝐴𝐴𝐴𝐴 − 𝑃𝑃𝑃𝑃2.5 = 12 + 0.87𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 + 
+ 0.1𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 + 1.6𝑆𝑆𝑇𝑇𝑇𝑇𝑇𝑇𝑆𝑆 − 0.16𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 · 

·  𝑆𝑆𝑇𝑇𝑇𝑇𝑇𝑇𝑆𝑆 − 0.1𝑆𝑆𝑇𝑇𝑇𝑇𝑇𝑇𝑆𝑆 · 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 − 
− 0.08𝑆𝑆𝑇𝑇𝑇𝑇𝑇𝑇𝑆𝑆 · 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 

 
(3)  
 
 

𝐷𝐷𝑇𝑇𝐷𝐷 − 𝑃𝑃𝑃𝑃2.5 = 26.8 − 2.1𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 − 
− 0.6𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 − 0.6𝑆𝑆𝑇𝑇𝑇𝑇𝑇𝑇𝑆𝑆 − 0.12𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 · 
 · 𝑆𝑆𝑇𝑇𝑇𝑇𝑇𝑇𝑆𝑆 − 0.6 − 0.59𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 · 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 − 
− 0.35𝑆𝑆𝑇𝑇𝑇𝑇𝑇𝑇𝑆𝑆 · 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 + 0.04𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 · 

· 𝑆𝑆𝑇𝑇𝑇𝑇𝑇𝑇𝑆𝑆 · 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇  
 

(4) 
 
 

𝑌𝑌𝐴𝐴𝑃𝑃𝑃𝑃2.5 = 19.8 − 1.8𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 + 0.39𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 − 
−0.63𝑆𝑆𝑇𝑇𝑇𝑇𝑇𝑇𝑆𝑆 − 0.063𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 · 𝑆𝑆𝑇𝑇𝑇𝑇𝑇𝑇𝑆𝑆 − 

−0.23𝑆𝑆𝑇𝑇𝑇𝑇𝑇𝑇𝑆𝑆 · 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 + 0.02𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 · 
· 𝑆𝑆𝑇𝑇𝑇𝑇𝑇𝑇𝑆𝑆 · 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 

 
(5) 

 (6) 

 

𝐽𝐽𝐽𝐽𝐽𝐽 − 𝑃𝑃𝑃𝑃2.5 = 26.8 − 2.1𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 − 0.6𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 −
     − 0.6𝑆𝑆𝑇𝑇𝑇𝑇𝑇𝑇𝑆𝑆 − 0.12𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 · 𝑆𝑆𝑇𝑇𝑇𝑇𝑇𝑇𝑆𝑆 − 0.6 −
    − 0.59𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 · 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 − 0.35𝑆𝑆𝑇𝑇𝑇𝑇𝑇𝑇𝑆𝑆 · 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 +
                 + 0.04𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 · 𝑆𝑆𝑇𝑇𝑇𝑇𝑇𝑇𝑆𝑆 · 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇  
 
 
(1)  
 
 

𝐴𝐴𝑇𝑇𝐴𝐴 − 𝑃𝑃𝑃𝑃2.5 = 15 − 2.1𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 − 
− 0.13𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 − 0.02𝑆𝑆𝑇𝑇𝑇𝑇𝑇𝑇𝑆𝑆 − 0.18𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 · 
· 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 − 0.08𝑆𝑆𝑇𝑇𝑇𝑇𝑇𝑇𝑆𝑆 · 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 − 1.2𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 · 

· 𝑆𝑆𝑇𝑇𝑇𝑇𝑇𝑇𝑆𝑆 · 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 
 
(2) 
 

𝐴𝐴𝐴𝐴𝐴𝐴 − 𝑃𝑃𝑃𝑃2.5 = 12 + 0.87𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 + 
+ 0.1𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 + 1.6𝑆𝑆𝑇𝑇𝑇𝑇𝑇𝑇𝑆𝑆 − 0.16𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 · 

·  𝑆𝑆𝑇𝑇𝑇𝑇𝑇𝑇𝑆𝑆 − 0.1𝑆𝑆𝑇𝑇𝑇𝑇𝑇𝑇𝑆𝑆 · 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 − 
− 0.08𝑆𝑆𝑇𝑇𝑇𝑇𝑇𝑇𝑆𝑆 · 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 

 
(3)  
 
 

𝐷𝐷𝑇𝑇𝐷𝐷 − 𝑃𝑃𝑃𝑃2.5 = 26.8 − 2.1𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 − 
− 0.6𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 − 0.6𝑆𝑆𝑇𝑇𝑇𝑇𝑇𝑇𝑆𝑆 − 0.12𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 · 
 · 𝑆𝑆𝑇𝑇𝑇𝑇𝑇𝑇𝑆𝑆 − 0.6 − 0.59𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 · 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 − 
− 0.35𝑆𝑆𝑇𝑇𝑇𝑇𝑇𝑇𝑆𝑆 · 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 + 0.04𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 · 

· 𝑆𝑆𝑇𝑇𝑇𝑇𝑇𝑇𝑆𝑆 · 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇  
 

(4) 
 
 

𝑌𝑌𝐴𝐴𝑃𝑃𝑃𝑃2.5 = 19.8 − 1.8𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 + 0.39𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 − 
−0.63𝑆𝑆𝑇𝑇𝑇𝑇𝑇𝑇𝑆𝑆 − 0.063𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 · 𝑆𝑆𝑇𝑇𝑇𝑇𝑇𝑇𝑆𝑆 − 

−0.23𝑆𝑆𝑇𝑇𝑇𝑇𝑇𝑇𝑆𝑆 · 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 + 0.02𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 · 
· 𝑆𝑆𝑇𝑇𝑇𝑇𝑇𝑇𝑆𝑆 · 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 

 
(5) 

 (7) 

 

𝐽𝐽𝐽𝐽𝐽𝐽 − 𝑃𝑃𝑃𝑃2.5 = 26.8 − 2.1𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 − 0.6𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 −
     − 0.6𝑆𝑆𝑇𝑇𝑇𝑇𝑇𝑇𝑆𝑆 − 0.12𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 · 𝑆𝑆𝑇𝑇𝑇𝑇𝑇𝑇𝑆𝑆 − 0.6 −
    − 0.59𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 · 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 − 0.35𝑆𝑆𝑇𝑇𝑇𝑇𝑇𝑇𝑆𝑆 · 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 +
                 + 0.04𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 · 𝑆𝑆𝑇𝑇𝑇𝑇𝑇𝑇𝑆𝑆 · 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇  
 
 
(1)  
 
 

𝐴𝐴𝑇𝑇𝐴𝐴 − 𝑃𝑃𝑃𝑃2.5 = 15 − 2.1𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 − 
− 0.13𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 − 0.02𝑆𝑆𝑇𝑇𝑇𝑇𝑇𝑇𝑆𝑆 − 0.18𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 · 
· 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 − 0.08𝑆𝑆𝑇𝑇𝑇𝑇𝑇𝑇𝑆𝑆 · 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 − 1.2𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 · 

· 𝑆𝑆𝑇𝑇𝑇𝑇𝑇𝑇𝑆𝑆 · 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 
 
(2) 
 

𝐴𝐴𝐴𝐴𝐴𝐴 − 𝑃𝑃𝑃𝑃2.5 = 12 + 0.87𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 + 
+ 0.1𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 + 1.6𝑆𝑆𝑇𝑇𝑇𝑇𝑇𝑇𝑆𝑆 − 0.16𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 · 

·  𝑆𝑆𝑇𝑇𝑇𝑇𝑇𝑇𝑆𝑆 − 0.1𝑆𝑆𝑇𝑇𝑇𝑇𝑇𝑇𝑆𝑆 · 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 − 
− 0.08𝑆𝑆𝑇𝑇𝑇𝑇𝑇𝑇𝑆𝑆 · 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 

 
(3)  
 
 

𝐷𝐷𝑇𝑇𝐷𝐷 − 𝑃𝑃𝑃𝑃2.5 = 26.8 − 2.1𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 − 
− 0.6𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 − 0.6𝑆𝑆𝑇𝑇𝑇𝑇𝑇𝑇𝑆𝑆 − 0.12𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 · 
 · 𝑆𝑆𝑇𝑇𝑇𝑇𝑇𝑇𝑆𝑆 − 0.6 − 0.59𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 · 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 − 
− 0.35𝑆𝑆𝑇𝑇𝑇𝑇𝑇𝑇𝑆𝑆 · 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 + 0.04𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 · 

· 𝑆𝑆𝑇𝑇𝑇𝑇𝑇𝑇𝑆𝑆 · 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇  
 

(4) 
 
 

𝑌𝑌𝐴𝐴𝑃𝑃𝑃𝑃2.5 = 19.8 − 1.8𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 + 0.39𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 − 
−0.63𝑆𝑆𝑇𝑇𝑇𝑇𝑇𝑇𝑆𝑆 − 0.063𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 · 𝑆𝑆𝑇𝑇𝑇𝑇𝑇𝑇𝑆𝑆 − 

−0.23𝑆𝑆𝑇𝑇𝑇𝑇𝑇𝑇𝑆𝑆 · 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 + 0.02𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 · 
· 𝑆𝑆𝑇𝑇𝑇𝑇𝑇𝑇𝑆𝑆 · 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 

 
(5) 

 (8)

From Table 5, the short-term predicted PM2.5 
outputs for January, April, August, and Decem-
ber correspond to 26, 14, 12, and 24, respective-
ly. However, the long-term prediction for the 
year 2024 translates to a PM2.5 concentration of 
19. These predicted outcomes, when compared 
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with the Environmental regulatory standard, es-
tablished that the predicted PM2.5 outcomes for 
January (26 µg/m³) fall within the range of 25–50 
µg/m³ of the Environmental Monitoring Stand-
ards, suggesting poor air quality at the beginning 
of the year. The PM2.5 output for Apr (14 µg/
m³) falls within the range of 10–20 µg/m³ cat-
egorized as fair air quality. A similar outcome 
can be observed for the predicted output PM2.5 
output for August (11.45 µg/m) also falls within 
the range of 10–20 µg/m³ categorized as a fair 
standard for air quality. 

The prediction output for December con-
firmed PM2.5 value of 24 µg/m³. This value lies 
within the range of 20–25 µg/m³, rated as moder-
ate air quality with regards to PM2.5. Overall, the 
long-term output for the year 2024 corresponds 
to 19 µg/m³ which lies within tolerable range of 
20–25 µg/m³.

Implications for air quality policy

The multi-horizon modeling framework 
presented here gives Prishtina a ready-to-use 
ML pipeline that fits directly into its air-quality 
management system. Predictions one hour ahead 
achieve a mean absolute error below 4 µgm⁻³ and 
an R² of about 0.86, and they still keep reasonable 
skill (R² = 0.50) a full day ahead. 

This accuracy at different lead times lets the 
city target its actions. Near-real-time alerts can 
trigger quick steps such as retiming traffic lights, 
banning heavy vehicles temporarily, or send-
ing SMS warnings to high-risk residents. Six- to 
twelve-hour forecasts give utilities time to fine-
tune district-heating output and public transport 
schedules. Forecasts 24 hours ahead support 
planned initiatives like “low-emission Sundays” 
or shifting outdoor school activities.

Each forecast comes with clear SHAP expla-
nations. This helps policymakers explain their 
choices to the public and later check whether 
those actions reduce forecast errors. The year-
long back-test on 2024 data shows stable perfor-
mance with little drift and good seasonal capture, 
so the system can serve as an ongoing decision-
support tool rather than a one-off study.

Beyond practical decision-making relevance, 
this study’s novelty specifically lies in explicitly 
quantifying and interpreting the temporal evolu-
tion of feature importance across different predic-
tion horizons using a variety of tuned ML models. 
This explicitly demonstrates how real-time data 

interpretability can clarify previously unknown 
temporal dependencies among meteorological 
and pollutant variables, significantly enhancing 
the understanding of air pollution dynamics in 
urban areas.

Overall, these strengths move the city from 
reactive, threshold-based warnings to a proactive, 
evidence-driven approach where both daily op-
erations and long-term planning rely on the same 
interpretable ML pipeline.

CONCLUSIONS

This study presents a novel, interpretable multi-
horizon forecasting framework that integrates ad-
vanced machine learning, systematic temporal fea-
ture engineering, and SHAP-based interpretability. 
A key contribution is the explicit quantification of 
dynamic feature shifts across forecast horizons, 
an area previously underexplored. This enables a 
deeper understanding of air pollution dynamics 
and feature interactions over time.

Validated through comprehensive experiments, 
the framework proves both effective and scalable. 
LightGBM and XGBoost consistently deliver 
strong performance across all horizons, handling 
high-dimensional, noisy input data with minimal 
feature engineering. Enhancements using simple 
lags and rolling means further improve accuracy. 
The models’ ability to capture non-linear patterns 
surpasses linear and kernel-based baselines.

SHAP explanations provide transparent, ac-
tionable insights, supporting early-warning sys-
tems and informed policy-making. Overall, the 
developed interpretable multi-horizon forecast-
ing framework explicitly balances predictive ac-
curacy with interpretability, offering scientifically 
novel insights into temporal pollutant dynamics, 
and presenting broad applicability for urban air 
quality forecasting worldwide.
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