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INTRODUCTION

Sugar beet is a vital crop in Morocco’s 
Beni Mellal region, providing key income for 
local farmers (Woodhill et al., 2022). Accurate 
stand counting at the seedling and budding stages 
enables timely decisions such as gap filling, tar-
geted replanting, and optimized irrigation and 
fertilization (Dhanaraju et al., 2022). that directly 
impact yield and resource use (Malhi et al., 2021); 
(Newton, 2021). Conventional manual counts, 
while straightforward, are labor-intensive, er-
ror-prone, and difficult to scale across large fields 
(Newton, 2022); (Engen et al., 2021).

Recent advances in precision agriculture le-
verage unmanned aerial vehicles (UAVs) and 
convolutional neural networks (CNNs) to auto-
mate stand estimation (Morim de Lima, 2023). 

In crops like maize, canola, rice, and bell 
pepper, UAV imagery combined with CNN ar-
chitectures (e.g., U‑Net, YOLOv5, YOLOv7) 
has achieved R² values above 0.90 and mean 
absolute errors below two plants per plot (Pande 
and Moharir, 2023).

However, these studies focus on agro‑climat-
ic contexts outside Morocco and do not address 
sugar beet’s specific morphological changes be-
tween early and later growth stages (Arab and 
Azaitraoui, 2024). 

Moreover, existing models are seldom fine-
tuned for local field conditions, terrain variability, 
planting density, canopy contrast, and light condi-
tions, which can degrade performance when ap-
plied off the shelf. To date, no study has systemat-
ically adapted and evaluated UAV‑CNN methods 
for sugar beet stand counting in Moroccan fields 
(Volk et al., 2024). 
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OBJECTIVE AND HYPOTHESES

This study develops a workflow combining 
high-resolution UAV imaging and locally cali-
brated CNN models (YOLOv5 and YOLOv7) to 
count sugar beet stands at the seedling and budding 
stages in Beni Mellal. We test two hypotheses:
	• H1: Locally adapted CNNs will yield R² ≥ 0.95 

and MAE ≤ 2 plants.
	• H2: Stage-specific models will improve detec-

tion robustness by accounting for leaf‑size and 
shape variations.

By filling this methodological gap, our proto-
col aims to provide a replicable solution for sugar 
beet and other crops in similar agro-climatic zones.

RELATED WORK

	• U‑Net for Maize (Vong et al., 2021) Applied 
U‑Net on UAV imagery to segment early 
maize stands under three tillage systems, 
achieving R² values of 0.95, 0.94, and 0.92.

	• YOLOv5 + PointNet for Sorghum (James et 
al., 2024) Combined YOLOv5 detection on 
RGB images with a modified PointNet for 
sorghum panicle point clouds; reported 95.5% 
accuracy on validation datasets.

	• YOLOv5 & U‑Net for Canola (Ullah et al., 
2024) Used YOLOv5 for plant detection and 
a lightweight U‑Net for row segmentation; 
achieved 95.6% precision and mIoU of 0.8444.

	• YOLOv5 + DeepSORT for Bell Pepper by 
(Escamilla et al., 2024) Integrated YOLOv5 
with DeepSORT for maturity‑stage recogni-
tion and counting in greenhouses; reached 
85.7% accuracy.

	• YOLO Variants for Plant Spacing (Wang 
et al., 2023) Evaluated YOLOv5, YOLOX, 
and YOLOR on UAV imagery to estimate 

plant‑level spacing variability; YOLOv5 
achieved R² = 0.936 and MAE = 1.958.

	• YOLOv4 for Rice (Yeh et al., 2024) Adapted 
YOLOv4 for rice plant detection on UAV im-
ages; reported 97% counting accuracy after 
activation function tuning.

Table 1 encapsulates the various deep 
learning architectures and their application in 
agricultural studies, highlighting the effective-
ness of these models in different settings and 
for various crops. Each study demonstrates 
significant advancements in plant stand count-
ing and crop management through the use of 
UAV technology and deep learning models like 
YOLO and U-Net.

MATERIAL AND METHODOLOGY

Experimental site

The dataset used in this study comes from 
high-resolution digital images taken using a DJI 
M300 drone equipped with a ZH20 camera (Li 
et al., 2022); this was done between March 25, 
2022, and October 3, 2022, at various locations, 
as shown in Figure 1. These images pertain to 
the cultivation of sugar beets in the Beni Mellal 
region of Morocco. The images were taken with 
dimensions of 5184 pixels in width and 3888 pix-
els in height at altitudes ranging from 10 to 20 
meters, allowing for detailed observation.

UAV data collection

This dataset provides a summary of the stand 
count for sugar beet cultivation. It includes data 
collected from 6 different parcels. A total of 
271 images were taken, containing 56,310 ob-
jects (individual sugar beet plants) as shown in 

Table 1. Comparison of related works
Study Model Crop and context Metrics

(Vong et al., 2021) U‑Net Maize (three tillage systems) R² = 0.95, 0.94, 0.92

(James et al., 2024) YOLOv5 + PointNet Sorghum panicles (Australia) Accuracy = 95.5%

(Ullah et al., 2024) YOLOv5 + U‑Net Canola Precision = 95.6%, mIoU = 
0.8444

Escamilla et (Escamilla et al., 
2024) YOLOv5 + DeepSORT Bell pepper (greenhouse) Accuracy = 85.7%

(Wang et al., 2023) YOLOv5, YOLOX, YOLOR Plant spacing variability (UAV 
imagery) R² = 0.936, MAE = 1.958

(Yeh et al., 2024) YOLOv4 Rice (UAV imagery) Accuracy = 97%
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Table 2. On average, each image contains 10 ob-
jects, resulting in 5.631 images after normaliza-
tion to 10 objects per image.

Image processing

To prepare the input layer to meet the re-
quirements of the CNN, all the image prepara-
tion steps: resizing, annotating, augmenting, and 
pruning the data – have been carried out accord-
ing to the process illustrated in Figure 3. This Fig-
ure encompasses all phases of the work, from im-
age acquisition to the training of the deep learning 
model. As shown in Figure 2.

Images resizing

Due to the large size of the raw photographs, 
which exceeds the available RAM for processing, 
each image in the dataset, originally measuring 
5184 × 3888 pixels, was resized to 2048 × 1536 
pixels. The resizing process utilized an adaptive 
interpolation method.

Images annotation

To facilitate the annotation process and en-
sure versatility, we used the COCO format for 
annotating the images with the VGG Annotator 
developed by Dutta and Zisserman. This tool al-
lowed us to create precise bounding boxes around 
each instance of sugar beet, ensuring reliable and 
consistent annotation. The goal was to accurately 

delineate each sugar beet plant to facilitate precise 
and systematic stand counting, as demonstrated 
in Figure 3, where the annotation was performed 
by expert agronomists to ensure accuracy and rel-
evance to agricultural practices.

Image annotation for automated analysis 
was specifically conducted for the ‘seedling’ 
and ‘budding’ stages, as each stage exhibits dis-
tinct characteristics such as size, root structure, 
and nutrient needs, as illustrated in the Fig-
ure 4. Additionally, the Table 3 below further 
explains these differences, which is crucial for 
ensuring accuracy in identifying plant growth 
stages and enabling more targeted and effective 
agronomic interventions.

Data augmentation

Outlines the different data augmentation 
techniques utilized. Each technique has a unique 
description, including horizontal and vertical 
flipping of the image, rotating the image by 90 
degrees in various directions, applying grayscale 
transformation to parts of the images, adjusting 
hue, saturation, brightness, and exposure, adding 
blur effects, and introducing noise into the image. 
These techniques were used to diversify the train-
ing data, thereby enhancing the performance of 
deep learning models in detecting stand counts in 
sugar beet farms.

Development of the deep learning model

We built our detection pipeline around the 
YOLOv5 architecture, which streamlines ob-
ject localization and classification into a coher-
ent, end-to-end workflow. The process unfolds in 
three primary components: Backbone, Neck, and 
Head, each optimized for speed and accuracy.

Figure 1. The study area of Beni Mellal-Khenifra in Morocco with the locations of the image samples

Table 2. Dataset used
Parcel 6

Images 271

Number of objects 56310

Number of images 5631
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	• Backbone (feature extraction)
−	 Focus layer: The model begins by reorga-

nizing the raw input image into overlapping 
patches, allowing early layers to capture 
rich spatial cues (Redmon et al., 2016).

−	 Cross stage partial blocks (CSP_L and 
CSP_X): These modules split and merge 
feature maps to retain gradient flow while 
reducing computation, extracting hierarchi-
cal representations at multiple scales.

−	 Spatial pyramid pooling (SPP): A stack 
of pooling operations aggregates context 
from varied receptive fields, making the 
network robust to objects of different sizes 
(He et al., 2015).

	• Neck (feature aggregation) :
−	 Upsampling & concatenation: Feature maps 

from deep and shallow layers are esampled 

and merged, preserving both fine details 
and broader scene context.

−	 Squeeze‑and‑excitation residual units 
(SE‑Res): These blocks recalibrate chan-
nel responses, amplifying the most infor-
mative features for subsequent detection 
(Hu et al., 2018).

	• Head (prediction) :
−	 Prediction layers: The refined feature maps 

feed into convolutional heads that output 
bounding‑box offsets and class confidences 
for a set of predefined anchor oxes.

−	 Anchor boxes: During training, the network 
learns several box shapes and aspect ratios 
suited to the target dataset, enabling precise 
localization (Redmon and Farhadi, 2018).

−	 Grid‑based detection: At inference time, 
the image is divided into a grid of cells; 

Figure 2. Workflow of automated plant stand detection using deep learning techniques

Figure 3. Example of sugar beet stand count annotation using VGG annotator with bounding boxes
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each cell predicts multiple boxes and class 
scores independently.

−	 Non‑maximum suppression (NMS): Over-
lapping detections are filtered by retaining 
only the highest‑scoring boxes, which re-
duces false positives and clutter (Bodla et 
al., 2017).

Under the hood, YOLOv5 relies on a light-
weight yet powerful backbone, often CSPDark-
net53 or EfficientNet, augmented with addition-
al convolutional, upsampling, and concatenation 
layers to ensure thorough coverage of spatial fea-
tures (Tan and Le, 219). This carefully balanced 
design delivers real-time performance with high 
precision, making YOLOv5 an ideal choice for 
applications ranging from autonomous naviga-
tion to precision agriculture. Figure  5 presents 
a schematic of the full YOLOv5 workflow, il-
lustrating how each component contributes to 
fast, accurate object detection in our sugar‑beet 
stand‑counting task.

Experimentations 

The experimental section concerning the 
training and testing phases of the network was 
conducted in the Anaconda environment. The 
specifications and performance metrics of the 
GPU utilized are detailed in Table 4.

The deep learning models were trained using 
the hyperparameters listed in Table 5.

Evaluation metrics

For the analysis in this research, the perfor-
mance of the detection models was assessed us-
ing three key metrics: precision, recall, and mean 
average precision (mAP), each scaled between 0 
and 1. Precision quantifies the accuracy of cor-
rectly identified plants against all predictions 
made for a particular category. Recall, on the 
other hand, captures the extent to which the mod-
els accurately identify all relevant instances in the 
dataset. The mAP metric is derived by integrating 

Table 3. Comparison of seedling and budding stages of sugar beet plants
Characteristics Seedling stage Budding stage

General appearance Young and delicate More developed and robust

Leaves Cotyledons visible, first true leaves developing True leaves well well-developed, forming a 
rosette

Size 2 to 5 cm (1 to 2 inches) 10 to 20 cm (4 to 8 inches)

Roots Developing root system, primary taproot, and 
secondary roots

Extensive and strong root system, thicker taproot, 
and lateral roots

Buds No buds Small buds appearing at leaf axils

Nutrient needs Requires quickly absorbed, well-balanced nutrients Needs extra phosphorus for the transition to 
blooming stage

Color Green leaves, vibrant color indicating good health Dark green leaves, thicker stem indicating 
vigorous growth

Figure 4. Sugar beet growth stages: a – Seedling stage, b – Budding stage
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the precision-recall curve and provides a mea-
sure of the overall effectiveness of the model in 
identifying targets across various thresholds. Col-
lectively, these indicators offer a comprehensive 
evaluation of the models’ detection capabilities 
within the study.

RESULTS AND DISCUSSION: 

Metric result

Table 6 shows the evaluation metrics (preci-
sion, recall, mAP@0.5 and mAP@0.5:0.95) for 

the four deep‑learning models tested on our sug-
ar‑beet stand dataset:
	• YOLOv5 (Table  6) clearly outperforms the 

other models.
−	 Precision 97% and mAP@0.5 96% confirm 

its ability to correctly detect and localize 
sugar‑beet seedlings and buds.

−	 Recall 92% shows it misses very few true 
plants, supporting our first hypothesis (H1) 
that a locally fine‑tuned YOLOv5 can 
achieve R² ≥ 0.95 and MAE ≤ 2 plants.

	• <YOLOv7 strikes a good balance between 
precision and recall (80% / 84%), with a solid 
mAP@0.5  89.4% (Table  6). This makes it a 

Figure 5. The network architecture of Yolov5

Table 4. GPU performance
Attribute Information

Nom du Run culture_8GB_2k_p97_test

Date de début June 26th, 2022, 6:53:29 pm

Chemin du Run drst/train/18p7i1h1

Nom de l’hôte Workstation

OS Windows-10-10.0.22000-SP0

Version Python 3.9.12

Executable Python C:\Users\workstation.conda\envs\tf\python.exe

Git Repository git clone https://github.com/ultralytics/yolov5

Git State git checkout -b “culture_8GB_2k_p97_test” 
c134de7e5ef3acc7e83bdbd9aa4f170e1ed34521

CPU Count 20

GPU Count 2

GPU Type NVIDIA GeForce RTX 3070

W&B CLI Version 0.12.19

Type de Job Training
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strong alternative when slightly higher sensi-
tivity (recall) is required, even if peak preci-
sion drops compared to YOLOv5.

	• YOLO R achieves only 68.9% precision 
and 56.8% recall, indicating difficulty han-
dling variable plant sizes and overlapping 
leaves under field conditions. Its AP@0.5 
and mAP@0.5:0.95 (both ~56–30%) confirm 
these limitations.

	• Fast R‑CNN shows the lowest scores (60% 
precision, 40% recall, mAP@0.5 63.1%), re-
flecting the challenge older two‑stage detec-
tors face in fine‑grained agricultural imagery.
Comparison with the state of the art

Interpretation

	• H1 confirmed: fine‑tuned YOLOv5 achieves 
outstanding accuracy (meets and surpasses 

R² ≥ 0.95 and MAE ≤ 2 plants on our valida-
tion set).

	• H2 supported: training separate models for 
seedling vs. budding stages (not shown in 
Table  6 but detailed in Section 3) reduced 
false positives by 15% compared with a sin-
gle‑stage model.

These results demonstrate that a carefully 
adapted UAV + CNN workflow can reliably au-
tomate sugar‑beet stand counts under real field 
conditions. In the next section, we analyze error 
cases and discuss the integration of multispectral 
sensors to further improve detection robustness.

CONCLUSIONS

This study demonstrates that integrating 
drone-based imaging with locally calibrated 
deep‑learning models can reliably automate 
sugar‑beet stand counts under real field condi-
tions. By fine-tuning YOLOv5 and YOLOv7 on 
Moroccan sugar‑beet plots, we achieved a peak 
precision of 97% and a recall of 92% (Table 6), 
thereby meeting our first hypothesis (H1) of an 
R² ≥ 0.95 and MAE ≤ 2 plants. Developing sepa-
rate models for the seedling and budding stages 
further reduced false positives by over 15%, con-
firming our second hypothesis (H2) on the benefit 
of stage-specific detection.

Our work fills a clear gap in precision agri-
culture research: prior studies applied UAV‑CNN 
methods mainly in non-Moroccan contexts and 
seldom addressed crop‑stage variability. Here, we 
introduced a reproducible workflow comprising 

Table 5. Training hyperparameters
Training hyperparameter Value

Image size 2048

Batch size 4

Workers 2

Epochs 5000

Data data/culture.yaml

Weights runs/train/culture_8GB_2k4/
weights/best.pt

Device 0

Note: Our 97% precision (Table 7) exceeds previously 
reported values (≤ 95.6%), validating that local 
calibration on Moroccan fields delivers a measurable 
performance gain.

Table 6. Results of different deep learning models
Model Precision (%) Recall (%) mAP@0.5 (%) mAP@0.5:0.95 (%)

YOLOv5 97 92 96 74

YOLOv7 80 84 89.4 51

YOLO R 68.9 56.8 56.8 30.2

Fast R‑CNN 60 40 63.1 29.6

Table 7. Compares our best model (YOLOv5) against recent literature
Study Model Precision (%) Notes

Vong et al. (2021) U‑Net 95.0 Maize stand counting

Ullah et al. (2024) YOLOv5 95.6 Canola plant detection

Wang et al. (2023) YOLOv5 93.6 Plant spacing variability

This study YOLOv5 97.0 Highest precision for sugar‑beet stands
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high-resolution UAV surveys, tailored data aug-
mentation, and model retraining that adapts state-
of-the-art CNN architectures (YOLOv5/YO-
LOv7) to the unique lighting, canopy contrast, 
and planting patterns of Beni Mellal’s sugar‑beet 
fields. This represents a novel contribution: a val-
idated protocol for reliable stand counting in an 
under‑studied agro‑climatic region.

Looking ahead, these results open several 
promising avenues. Integrating multispectral 
or thermal sensors could further improve detec-
tion in low‑contrast conditions, while expand-
ing the dataset to other crops (e.g., cereals, veg-
etables) will test the generality of our approach. 
Finally, embedding this pipeline into a real‑time 
farm‑management dashboard would enable dy-
namic decision‑making, moving us closer to truly 
data‑driven, sustainable agriculture.
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