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INTRODUCTION

Land cover change is one of the main factors 
influencing erosion rates and watershed degrada-
tion, especially in upstream areas. The conversion 
of forests and natural vegetation into agricultural 
land or settlements increases surface runoff and 
sediment production.

In the Saddang watershed – particularly in 
the Toraja Utara regency – these changes have 
become increasingly evident. Data from Global 
Forest Watch show a significant decline in forest 
area between 2011 and 2020, accompanied by an 
expansion of agricultural and settlement areas.

Various studies in Indonesia have demon-
strated the impact of land use change on erosion, 
which can be modeled using SWAT. For example, 

Hidayat and Sulistyo (2019) showed that forest-
to-bare land conversion in the upstream area of 
the Mrica reservoir could increase erosion by up 
to 82%, although it can be mitigated through land 
conservation. Nandini et al. (2019), in the Babak 
watershed (Lombok), also recorded that land use 
changes affect runoff and sedimentation, modeled 
using SWAT with adequate statistical validation.

Closer to Sulawesi, Asrianto et al. (2023) ex-
amined land cover transformation in the Mamasa 
Watershed (a sub-watershed of Saddang), finding 
that secondary forest changes from 2011 to 2020 
reflected land cover trends in Toraja Utara and 
significantly influenced river discharge through 
SWAT simulations.

In addition, Purwitaningsih et al. (2020) stud-
ied land use scenarios in the Kedurus watershed 
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and found that conservation scenarios could re-
duce runoff by up to 65% while also lowering 
flood potential.While these findings illustrate the 
vast potential of SWAT-based land change mod-
eling, most studies remain retrospective and lack 
comprehensive integration of future spatial pro-
jections in scenario-based erosion simulations.

Geospatial models such as MOLUSCE (mod-
ules for land use change evaluation) and SWAT 
(soil and water assessment tool) offer solutions to 
bridge this gap. Abbaspour, Vaghefi and Srinivasan 
(2018) emphasized the importance of spatial cali-
bration and high-quality data in SWAT implemen-
tation. This study aims to develop a spatial predic-
tive approach by integrating satellite image-based 
land cover projections using MOLUSCE and ero-
sion simulations using SWAT in the Matting catch-
ment area. By combining historical analysis with 
future simulations up to 2030, this research seeks 
to provide land management recommendations 
that are adaptive to environmental dynamics.

This study is based on the hypothesis that 
uncontrolled expansion of agricultural and set-
tlement areas will significantly increase erosion 
risk by 2030, unless accompanied by spatially 
and quantitatively appropriate land management 
strategies. Its primary scientific contribution lies 
in the development of an integrated modeling 

framework that produces future erosion risk maps 
based on scenarios, offering a novel approach to 
soil conservation and sustainable land use plan-
ning in tropical regions with data limitations. 

MATERIALS AND METHODS

Study area

The research was conducted in the Matting 
catchment area, part of the Saddang watershed, 
located in north Toraja regency, south Sulawesi 
province. The area is characterized by hilly to-
pography, varied land use, and high rainfall inten-
sity, making it susceptible to erosion (Figure 1).

Land cover analysis

Land cover classification was conducted us-
ing Landsat 7 ETM+ and Landsat 8 OLI/TIRS 
satellite imagery, downloaded from the United 
States Geological Survey (USGS), covering the 
study area for the years 2011 and 2020. The im-
agery had a spatial resolution of 30 meters and 
was provided in GeoTIFF format. Pre-processing 
steps included area clipping based on the study 
boundary, band composition (e.g., RGB and 

Figure 1. Administrative area of the research site
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infrared combinations), and mosaicking to merge 
multiple scenes where necessary.

The classification was carried out using super-
vised classification methods via the MOLUSCE 
plugin in QGIS. This process involved preparing 
training samples based on visual interpretation 
and reference land cover maps, selecting clas-
sification algorithms such as Random Forest or 
Neural Network, and producing classified land 
cover maps according to the Indonesian National 
Standard (SNI 7645:2010). Land cover change 
analysis was performed by inputting the two clas-
sified maps from 2011 and 2020 into MOLUSCE. 
In addition, driving factor layers were gener-
ated, including slope (derived from 30 m SRTM 
DEM), distance to roads (based on national road 
network data), and population density (from BPS 
– Indonesian Statistics Agency). MOLUSCE was 
then used to simulate land cover change predic-
tions using algorithms such as artificial neural 
networks (ANN) and logistic regression.

Model validation was conducted using a confu-
sion matrix and the Kappa coefficient, with Kappa 
values above 0.6 indicating acceptable predictive 
reliability. The validated results were utilized to 

analyze spatial and temporal patterns of land cover 
transition and to project future land use dynamics. 
Classification and prediction accuracy were evalu-
ated by comparing results to actual conditions us-
ing confusion matrix outputs (see Tables 1 and 2). 
Kappa value equation (Vieira, 2006):

	 𝐾𝐾 = 𝑃𝑃0−𝑃𝑃𝐸𝐸
1−𝑃𝑃𝐸𝐸

 (1) 
 
𝑄𝑄𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 =

(𝑅𝑅−0.2𝑆𝑆)2
(𝑅𝑅+0.8𝑆𝑆)  (2) 

 
Sed = 11.8 × (Qsurf × q peak × HRU area) 0.56 × 

× K × C × P × LS 
 

(3) 
 

	 (1)

​where:	P0 – Number of correct classifications di-
vided by the total of all data, PE – Sum 
of the results times the number of predic-
tions and references per class.

Erosion rate analysis

Geographic information system (GIS) inte-
grated with the SWAT was used to simulate hy-
drological processes and erosion rates. According 
to Abbaspour, Vaghefi, and Srinivasan (2018), 
SWAT is a physically based, process-driven simu-
lation model widely used to predict the impacts of 
land use and climate variability on the hydrologi-
cal cycle and sediment transport at the watershed 
scale. Siregar, Ritung, and Subagyo (2015) also 
noted that SWAT has been extensively applied 

Table 1. Indonesia’s national standard land cover classification

No. Citra class name
(classification results)

Cover classes
SNI land

Code
SNI Information

1 Dryland forests secondary Secondary forests 1 Forest cover with disorders human

2 Wetland forests Swamp forest/primary forest 1 Forest with soil water saturated

3 Shrub Bush/bushes 2 Secondary vegetation, not tightly closed

4 Open land Open land 7 Vacant land, former mines, no productive

5 Paddy Paddy 4 Irrigated rice land or rain catchment

6 Plantation Plantation 5 Annual commodities: palm oil, rubber,coffee, etc.

7 Settlements Settlements 8 Developed areas, villages, cities

8 Water Water Body 9 Rivers, lakes, reservoirs

9 Savannah/Grass Meadow/Savanna 6 Natural grass, savannah

10 FarmingMix Agriculture 3 Plant mix food, horticulture, etc.

11 Clouds/Cloud Shadows Clouds/shadows
cloud 10 Cloud-covered areas, cannot classified

Note: Indonesian National Standard, 2010.

Table 2. Confusion matrix (Congalton and Green, 2019)
References/predictions Land cover A Land cover B Land cover C Total references

Land cover A

Land cover B

Land cover C

Total predictions
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across various landscapes in Indonesia to assess 
erosion risks and hydrological dynamics.

The application of SWAT begins with water-
shed delineation, where watershed boundaries 
and river networks are derived from a digital el-
evation model (DEM) with a spatial resolution of 
30 meters, obtained from the united states geolog-
ical survey (USGS) or the shuttle radar topogra-
phy mission (SRTM) via the EarthExplorer plat-
form. Subsequently, hydrologic response units 
(HRUs) are defined through the overlay of land 
use, soil type, and slope data, enabling spatially 
distributed hydrological simulations.

The model requires several key input da-
tasets. Topographic characteristics are derived 
from the DEM; soil texture and erodibility data 
are sourced from global soil maps provided by 
the food and agriculture organization (FAO) and 
supplemented with national data from the Indo-
nesian Ministry of Agriculture. Daily climate 
data—including precipitation, temperature, solar 
radiation, wind speed, and relative humidity—are 
obtained from the Meteorology, Climatology, and 
Geophysics Agency (BMKG).

Land cover information is generated from 
Landsat 7 imagery for 2011 and Landsat 8 im-
agery for 2020, classified using supervised clas-
sification techniques in QGIS software with the 
assistance of the MOLUSCE plugin. The selec-
tion of these two years was based on the avail-
ability of consistently cloud-free imagery and the 
representativeness of the time interval for captur-
ing significant land use change dynamics over the 
past decade.

Once all input data are processed and pre-
pared, the model is configured through the SWAT 
interface, and simulations are run to estimate key 
hydrological components such as surface runoff, 
soil erosion (sediment yield), evapotranspira-
tion, and water balance over the specified time 
period. Where available, observational data are 
used to calibrate and validate the model with the 
help of the SWAT-CUP tool, thereby improving 
the reliability of the simulation results. Ulti-
mately, the calibrated SWAT model is employed 
to analyze various land cover change scenarios 
and to evaluate their impact on hydrological pro-
cesses and erosion risks at the watershed scale 
with the development of equation models.

Equation of surface flow value (Soulis, 2021):

	

𝐾𝐾 = 𝑃𝑃0−𝑃𝑃𝐸𝐸
1−𝑃𝑃𝐸𝐸

 (1) 
 
𝑄𝑄𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 =

(𝑅𝑅−0.2𝑆𝑆)2
(𝑅𝑅+0.8𝑆𝑆)  (2) 

 
Sed = 11.8 × (Qsurf × q peak × HRU area) 0.56 × 

× K × C × P × LS 
 

(3) 
 

	 (2)

where:	Qsurf – surface flow (mm), R – daily rain-
fall (mm), CN – curve number – depend-
ing on the type of soil and land cover, S 
– maximum groundwater retention poten-
tial (mm).

Equation of erosion rate value (Neitsch et al., 2011):

	Sed = 11.8 × (Qsurf × q peak × HRU area) 0.56 ×	

	 × K × C × P × LS	 (3)

where:	Sed – sediment load (tons), Qsurf – sur-
face flow (mm), Qpeak – peak flow dis-
charge (m³/s), area, HRU – HRU area 
(ha), K – soil erodibility factor, LS – 
length and slope factor, C – land cover 
factor, P – conservation factor.

Displaying erosion rate values along with 
the classification of erosion hazard classes in a 
watershed spatial analysis has an essential pur-
pose, especially in the context of planning and 
managing land and water resources (Ministry of 
Environment and Forestry, 2019). The erosion 
rate values obtained from models such as SWAT 
provide quantitative information on the amount 
of soil loss (in tons/ha/year) due to erosion pro-
cesses in a specific area (Cheng, 2017). However, 
these figures are not informative enough if they 
are not further interpreted in the form of hazard 
categories or classes. Therefore, classifying ero-
sion rates into erosion hazard classes is crucial, 
as it enables stakeholders to understand, commu-
nicate, and utilize the analysis more easily as a 
basis for informed decision-making (Utomo and 
Arsyad, 2020). The classification of erosion haz-
ard classes generally follows a standard based on 
annual erosion rate values, which are divided into 
five main classes (Dharmawan, 2023):
	• Class I (very light): < 15 tons/ha/year,
	• Class II (Light): 15–60 tons/ha/year,
	• Class III (Medium): 60–180 tons/ha/year,
	• Class IV (weight): 180–480 tons/ha/year,
	• Class V (very heavy): > 480 tons/ha/year.

RESULTS AND DISCUSSION

Land cover analysis

The analysis of land cover change was car-
ried out via the MOLUSCE plugin in the QGIS 
software, which uses baseline data from 2011 and 
2020. For 2030, it involves projecting future land 
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cover change patterns on the basis of historical 
trends in land cover change. On the basis of the 
results of the land cover analysis, several data 
points related to land cover changes were ob-
tained, as shown in Table 3.

The change in land cover in the table above 
shows significant changes in the time span of 2011, 
2020, and 2031, such as land cover in the form of 
forests, which in 2011 had an area of 53 Ha; how-
ever, in 2020, it increased to 54 Ha, such that in the 
pattern of land cover changes that occurred, it can 
be projected that land cover changes from 2031--
62 Ha, whereas for agricultural land cover in 2011, 
it has a relatively low area value of 399 Ha. How-
ever, in 2020, it increased to 442 Ha. However, in 
the projected land cover for 2031, it increased to 
519 Ha, and in 2020, it increased to 416 Ha. Spe-
cifically, in 2011, it had an area of 366 Ha, whereas 
in 2021, it became 327 Ha. In 2011, it had a pro-
jected land cover in 2031, it decreased to 281 Ha. 
This also happened to land cover in the form of 
grassland. In 2011, it had an area of 416 Ha, and in 

2021, it also occurred in the form of grasslands. In 
2011, it had an area of 416 Ha. In 2011, it had an 
area of 416 Ha, and in 2011, it had an area of 416 
Ha, and, The results of the land cover analysis that 
were carried out through molluskes have an over-
all kappa validation value of 0.66, with a match 
percentage of 75.27% with the transition matrix as 
follows (Figure 2 and Table 4).

An overall accuracy value of 74% shows that 
this model has 74% accuracy in predicting land 
cover changes on the basis of existing data. This 
means that 74% of the land cover changes that oc-
cur correspond to the expected outcome (Figure 3).

Erosion rate

The results of the simulation using the SWAT 
model for the catchment area of the Matting Das 
Saddang area revealed that in the 2011 simula-
tion, the precipitation value was 1.388 mm, with 
a potential evapotranspiration (PET) of 1,491.2 
mm, whereas the actual evapotranspiration (ET) 

Table 3. Changes in land cover

Yes Land cover

Land cover area

2011 Land 
cover (ha)

Percentage 
of land cover 

2011 (%)

Land cover 
2020 (Ha)

Land cover 
percentage 
2020 (%)

Land cover 
2030 (ha)

Percentage 
of land cover 

2030 (%)
1 Forest 95 5 96 5 104 6

2 Shrub 505 28 521 29 488 27

3 Agriculture 399 22 442 25 519 29

4 Paddy 366 21 327 18 281 16

5 Savannah/grassland 416 24 319 19 313 18

6 Settlement - 76 4 76 4

Total 1781 100 1781 100 1781 100

Figure 2. Land cover change validation results
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reached only 580.8 mm or approximately 42% of 
the annual rainfall. The surface runoff was record-
ed at 105.89 mm, whereas the lateral flow reached 
755.92 mm, and the return flow was 14.61 mm. 
Percolation to shallow aquifers reaches 41.34 
mm, with recharge to deep aquifers of only 2.07 
mm (Figure 4).

The following simulation for 2020 revealed 
an increase in rainfall to 1.419 mm, whereas the 
PET value decreased slightly to 1,489.6 mm. The 
actual evapotranspiration increased to 710.4 mm 

or approximately 50% of the rainfall. The surface 
runoff value decreased drastically to 44.31 mm, 
indicating that a smaller amount of surface runoff 
occurred. The lateral flow remained high at 759.25 
mm, and the return flow was recorded at 6.94 mm. 
Percollation decreased to 30.6 mm, and recharge to 
the deep aquifer was recorded at 1.53 mm. The val-
ue of the curve number decreased to 48.12, indicat-
ing an increase in the ability of the soil to infiltrate. 
The simulations for the 2030 projections show a 
similar pattern, with a rainfall of 1.436 mm and a 

Table 4. Transition matrix

Land cover Forest Shrub Agriculture Paddy Savannah/
grassland Settlement Sum

Forest 17 5 3 25

Shrub 2 19 2 2 25

Agriculture 5 15 5 25

Paddy 3 19 3 25

Savannah/grassland 2 2 1 20 25

Settlement 10 10

Sum 22 21 33 22 27 10 135

Overall accuracy 74%

Figure 3. Land cover change
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PET of 1,401.4 mm. The actual evapotranspiration 
increased to 722.2 mm, which indicates that high 
vegetation activity absorbs and evaporates water. 
The surface runoff was recorded at 41.28 mm, the 
lateral flow was 758.3 mm, and the return flow was 
19.67 mm. Percolation increased to 42.91 mm, and 
recharge to the aquifer was slightly greater than 
that in the previous year, at 2.15 mm. The curve 
number value of 47.83 strengthens the indication 
that the land conditions in that year strongly sup-
port water infiltration into the soil. After the hy-
drological simulation is generated, we can also see 
that the surface run simulation

For each simulation year, on the basis of the 
simulation results shown in Figure 5, the surface 
runoff value reached 105.89 mm/year in 2011, 
indicating a high surface runoff intensity in the 
Matting watershed. The average upland sediment 
yield was 20.89 Mg/ha, with a maximum value of 
47.45 Mg/ha. In the second simulation for 2020, 
the surface runoff value decreased drastically to 

44.31 mm/year, which was accompanied by a de-
crease in the average sediment load of upstream 
land to 6.21 Mg/ha, and the maximum sediment 
load decreased to 25.91 Mg/ha. Nevertheless, in 
the third simulation for the 2030 projection, the 
average sediment value increased to 7.75 Mg/ha, 
and the maximum sediment value reached 27.29 
Mg/ha. The surface runoff value is also relatively 
small, at 41.28 mm/year. Overall, the three simu-
lations conducted demonstrated the dynamics of 
sediment values, which were significantly influ-
enced by the amount of surface runoff and land 
use in the Matting watershed catchment area of 
Saddang. The erosion hazard class map for 2011 
shows that the distribution of soil erosion levels 
in the North Toraja Regency area is in the medi-
um category (60--180 tons/ha/year), with yellow 
predominant, and there is also a dark green color 
that characterizes a higher erosion potential that 
falls into the heavy category (180--480 tons/ha/
year) (Figure 6).

Figure 4. Hydrological simulation soil water assessment tools
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In 2011, soil erosion occurred. This shows 
that in 2011, the soil erosion that occurred was 
quite significant but did not reach a burden-
some level and could not directly threaten the 
sustainability of the ecosystem. In contrast, the 
erosion hazard class in 2020 exhibited a signifi-
cant change compared with that in 2011. Areas 
that were previously classified as heavy in 2011 
are now mostly experiencing a reduction in ero-
sion hazard, categorized as moderate. The 2030 
projection map shows a more optimistic picture, 
where most areas in Tana Toraja Regency have 
succeeded in reducing the level of erosion hazard 
and switching to the light category (< 15 tons/
ha/year). A comparison of the 2011, 2020, and 
2030 projections reveals that there is a signifi-
cant downward trend in the erosion hazard class, 
especially in areas that were previously classi-
fied into heavy and medium categories (Table 5). 
Class I (very light) has an erosion rate of less than 

15 tons/ha/year, with a total erosion rate of 3.182 
tons/ha/year. This class shows relatively stable 
and controlled land use conditions. These areas 
generally have good cover vegetation or are flat 
areas with a low risk of erosion. Class III (me-
dium) has an erosion rate between 60 and 180 
tons/ha/year, with a total erosion contribution 
of 1,656,355 tons/ha/year. This value indicates 
a considerable amount of pressure on the land, 
which is most likely due to agricultural practices 
on sloping land, nonpermanent land cover, and 
a lack of soil conservation measures. Class IV 
(heavy), with an erosion rate between 180 and 
480 tons/ha/year. The contribution is quite sig-
nificant, with a total erosion rate of 190.04 tons/
ha/year. This reflects the condition of the land, 
which is very prone to erosion because of its high 
slopes and lack of vegetation cover (Table 6).

Class I (very light) covers most areas with 
less than 15 tons/ha/year. The total erosion rate 

Figure 5. Surface runoff simulation
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Figure 6. Erosion hazard class map

Table 5. Table of erosion rates in 2011

Erosion classes Erosion rate range
(tons/ha/year) Description of erosion classes Total erosion rate

(tons/ha/year)
Class I < 15 Very light 3.182

Class III 60–180 Keep 1,656.355

Class IV 180–480 Heavy 190.04

Table 6. Table of erosion rates in 2020

Erosion classes Erosion rate range
(tons/ha/year) Description of erosion classes Total erosion rate

(tons/ha/year)
Class I < 15 Very light 2.638

Class II 15–60 Light 52.744

Class III 60–180 Keep 454.682

for this class is 2,638 tons/ha/year, indicating that 
this area is in stable condition, characterized by 
good land cover, such as forests or natural vegeta-
tion, and is located on a low slope. Class II (light-
weight) only covers an erosion rate of 52,744 

tons/ha/year. Although still in the light category, 
this area warrants concern for preventing future 
erosion increases, especially in the event of land 
cover changes or intensification of land use. Class 
III (medium) encompasses erosion rates ranging 
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from 60 to 180 tons/ha/year. The total erosion rate 
in this class reached 454,682 tons/ha/year, or ap-
proximately 89% of the total erosion. This sug-
gests that most of the erosion burden originates 
from areas with moderate erosion levels, likely 
due to a combination of factors, including steep 
slopes, open land, and a lack of conservation 
measures (Table 7).

Class I (very light) has an erosion rate of < 15 
tons/ha/year. The total erosion rate in this class 
is 2.983 tons/ha/year. This category indicates that 

the land conditions are relatively stable, with ad-
equate cover vegetation and topographic condi-
tions that are not too steep. In Class II (light), with 
an erosion value of 52,744 tons/ha/year, although 
still in the light category, this area warrants at-
tention because land use change or unsustainable 
management can lead to increased erosion. Class 
III (medium), with erosion rates between 60 and 
180 tons/ha/year. The total erosion rate in this 
class reaches 454,682 tons/ha/year, or approxi-
mately 89% of the total erosion.

Table 7. Rate of erosion in 2030

Erosion classes Erosion rate range
(tons/ha/year) Description of erosion classes Total erosion rate

(tons/ha/year)
Class I < 15 Very light 2.983

Class II 15–60 Light 52.744

Class III 60–180 Keep 454.682

Figure 7. Land cultivation instruction map
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Land cultivation instructions

The roadmaps for the 2011, 2020, and 2030 
projections provide an overview of the type and 
intensity of recommended conservation actions 
on the basis of erosion conditions and land change 
in the region (Figure 7).

This directive aims to reduce soil erosion, im-
prove soil quality, and maintain the sustainability 
of natural resources. According to the 2011 map, 
the wider area requires integrated mechanical 
and vegetation conservation, particularly in areas 
with steep slopes and high erosion. This reflects 
the need for immediate action in the regions that 
have suffered severe soil damage due to erosion.

On the 2020 map, most areas have improved, 
as indicated by the transition to natural vegetation 
protection and the prevention of land conversion. 
This finding shows that previously implemented 
conservation measures are starting to yield posi-
tive results in maintaining soil stability, as well as 
more passive conservation success, where natural 
vegetation is allowed to grow, thereby maintain-
ing the ecosystem.

On the 2030 projection map, more areas are 
classified for agroforestry and terraces, which in-
dicates that soil conservation is becoming more 
sustainable and progressive. This more intensive 
approach is aimed at maintaining soil quality in 
the long term, as well as preventing further dam-
age to areas that are still vulnerable to erosion 
(PUPR, 2015).

CONCLUSIONS

Analysis of land cover changes in the Sad-
dang watershed revealed significant changes be-
tween 2011 and 2020 and the 2030 projection. In 
2011, bushes and savannas/grasslands dominated, 
whereas agriculture and rice paddies began to 
develop. Forests are still present in small propor-
tions. The most significant change occurred in ag-
riculture, which increased from 399 ha in 2011 to 
442 ha in 2020 and is projected to be 519 ha by 
2030. In contrast, rice fields have decreased, from 
366 ha in 2011 to 327 ha in 2020, and are expect-
ed to decline further to 281 ha by 2030. Forests 
slightly increased from 95 ha in 2011 to 104 ha in 
2030, reflecting the impact of conservation efforts.

The results of simulations via the SWAT mod-
el indicate a decrease in the erosion rate between 
2011 and 2030. In 2011, most areas fell into the 

very light (Class I) category, with some subbasins 
experiencing moderate erosion (Class III) and 
one subbasin classified as Class IV (severe). In 
2020, most areas previously classified in Class III 
switched to Class I, showing significant improve-
ments in land management and conservation. 
Projections for 2030 indicate that most subbasins 
have reduced erosion to Class I, although some 
areas with steep slopes and high rainfall continue 
to experience moderate erosion (Class III). This 
reflects the success of conservation strategies, al-
though more intensive action is still needed in the 
most vulnerable areas.

The land management roadmaps for 2011, 
2020, and 2030 outline recommended conser-
vation measures on the basis of erosion condi-
tions and land changes. In 2011, areas with steep 
slopes and high erosion required integrated me-
chanical and vegetation conservation measures, 
such as terracing and planting ground cover veg-
etation, to reduce erosion. In 2020, most regions 
shifted their focus to preserving natural vegeta-
tion and preventing land conversion. Projections 
for 2030 indicate an increase in the use of agro-
forestry and terraces, which will ensure more 
sustainable soil conservation.
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