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INTRODUCTION 

Global energy demand is rising rapidly due to 
the growing human population, urbanization, and 
technological advancement. A strong correlation 
exists between urbanization and energy consump-
tion, as modern urban lifestyles require continuous 
access to electricity and energy-intensive infra-
structure (Rathore et al., 2019). Historically, fos-
sil fuels have been the dominant source of energy, 
meeting the majority of global demand over the 
past four decades (Ghasemian et al., 2024). How-
ever, in recent years, the share of renewable ener-
gy in the global electricity mix has grown substan-
tially. Currently, approximately 34.5% of global 
electricity is generated from renewable sources. 
Projections indicate that by 2030, this figure will 
increase to 45.6%, with solar photovoltaic (PV) 
technology emerging as the leading contributor. 
Solar PV alone is expected to account for 16.1% 

of the global electricity supply, surpassing other 
forms of renewable energy (Renewables Energy 
System - IEA, n.d.). While grid-connected solar 
PV remains the dominant technology, integrating 
PV into the distribution system introduces power 
quality challenges, including voltage fluctuations, 
load harmonics, and reactive power, all of which 
require dedicated control and compensation. Off-
grid solar PV systems operate independently of 
the utility, avoiding grid-related power quality 
issues and electricity charges. Excess generation 
can be stored in batteries under intelligent energy 
management to supply demand during low-gener-
ation periods and smooth the output (Karthikey-
an et al., 2017; Obi and Bass, 2016; Shafiullah 
et al., 2022; Sharma et al., 2016). Consequently, 
the increasing global demand for sustainable and 
decentralized energy systems has accelerated the 
adoption of solar photovoltaic (PV) technologies 
in residential applications (Khan, 2020).
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In Bangladesh, the solar energy sector has 
made significant progress over the past two de-
cades, particularly in off-grid applications (Shap-
na et al., 2025). The country has implemented one 
of the largest solar home systems (SHS) programs 
globally. At its peak in 2013, the SHS program in-
stalled more than 861,000 off-grid solar PV units. 
By 2018, it had provided renewable electricity 
to approximately 20 million people, accounting 
for nearly 12.5% of the national population at 
the time (Hellqvist and Heubaum, 2023). This 
achievement has been largely driven by national 
policy support and initiatives led by institutions 
such as the Infrastructure Development Company 
Limited (IDCOL) (Nahid et al., 2024). With an 
average daily solar radiation ranging from 4.5 to 
5 kWh/m², Bangladesh possesses strong potential 
for solar energy harvesting across most regions 
(Babu and Basher, 2024).

However, most SHS deployments follow 
conventional design approaches that lack adap-
tive control and intelligent management. In terms 
of enabling productive use of energy, these sys-
tems face clear limitations. To ensure reliability, 
the systems are typically over-sized, which often 
results in substantial excess capacity. This excess 
energy is effectively wasted, reducing the overall 
efficiency of the system. Such design limitations 
often result in inefficient utilization of solar re-
sources, underperformance of storage systems, 
and reliability issues during extended periods of 
low solar generation (Chowdhury et al., 2015). 
Moreover, as household energy demands evolve 
and climate conditions become increasingly vari-
able, there is a pressing need to transition from 
static design methodologies to smart, data-driven 
solutions (Ahangar et al., 2023). Integrating fore-
casting techniques and optimization algorithms 
into solar PV systems can significantly enhance 
their autonomy, efficiency, and resilience in prac-
tical conditions (Shafiei et al., 2025). 

In previous studies, the study in (Patel and 
Swathika, 2024) aims to predict solar energy out-
put using four machine learning methods: Support 
Vector Machines, Ensemble of Trees, Gaussian 
Process Regression, and Neural Networks. The 
study aligns with the United Nations’ Sustainable 
Development Goals and uses meteorological pa-
rameters and hourly global solar radiation to pre-
dict electricity output from photovoltaic panels. 
Bayesian Optimization is used to optimize the 
models. The study shows Ensemble of Trees per-
forms best across all datasets and requires shorter 

training time. However, the analysis is limited to 
a single geographic location, which may affect 
the generalizability of the results across different 
climatic zones. (Liu and Gou, 2025) proposes a 
hybrid framework for residential photovoltaic sys-
tems, combining physical energy flow constraints 
with XGBoost-based machine learning for robust 
forecasting. Two optimization strategies, proximal 
policy optimization (PPO) and rule-based control 
(RBC), are developed for charge-discharge sched-
uling, incorporating grid stability metrics. While 
the proposed framework significantly improves 
prediction accuracy, energy self-sufficiency rate, 
and power fluctuations. The analysis evaluates 
only two control strategies without real-world 
validation, which may limit the practical applica-
bility of the results. Khaoula et al., 2025 presents 
a hybrid deep learning model for accurate long-
term electricity demand forecasting, combining 
BiLSTM networks and Convolutional Neural 
Networks. The model, based on hourly data from 
Morocco and Spain, captures seasonal, meteoro-
logical, and socioeconomic factors influencing 
power usage. The model provides reliable 30-day 
forecasts, demonstrating its versatility and poten-
tial for utilities and regulators to address long-term 
demand uncertainties and promote renewable inte-
gration (Boumais and Messaoudi, 2025). Abdullah 
et al., 2017 uses support vector regression (SVR), 
Polynomial Regression, and Lasso for hour-ahead 
solar PV power forecasting. The SVR forecasting 
model outperforms other models in terms of ac-
curacy, based on features like weather conditions, 
power generation, and day and time information. 
However, the accuracy of SVR tends to decline 
when more features are added, including tempera-
ture, humidity, visibility, wind speed, and wind 
direction, as this introduces noise into the dataset 
and increases the risk of overfitting (Alfadda et al., 
2017). Muhammad et al., 2018 compares the accu-
racy, stability, and computational cost of random 
forest (RF) and extra trees (ET) models for pre-
dicting hourly PV generation output. All models 
have similar predictive power and are equally ap-
plicable. However, ET outperforms RF and SVR 
in terms of computational cost. The stability and 
algorithmic efficiency of ETs make them ideal for 
wider PV output forecasting deployment. A key 
limitation of the current study is that it does not 
incorporate fault detection, weather classification, 
or multi-timescale forecasting, which may limit 
its practical deployment under diverse operat-
ing conditions (Ahmad et al., 2018). To improve 
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prediction accuracy, Liu and Sun (2019) proposed 
a new model using Principal Component Analy-
sis, K-means clustering, and Random Forest algo-
rithm. The model uses filtered input data and Ran-
dom Forest parameters to avoid artificial filtering. 
Comparative experiments show the model has 
higher prediction accuracy and robustness. How-
ever, there are several limitations that should be ad-
dressed in future work. If the lead time is extended 
too far or the input variables have weak correla-
tion with the output, the algorithm’s performance 
may deteriorate. The hybrid clustering algorithm 
may also place excessive emphasis on differences 
within a single variable while overlooking subtle 
but important changes in more stable variables 
(Liu and Sun, 2019). Jesus et al., 2023 investigates 
power forecasting for building-integrated photo-
voltaic (BIPV) systems installed on vertical fa-
çades using decision tree-based machine learning 
algorithms. Utilizing the Python-based skforecast 
library, both deterministic and probabilistic fore-
casting approaches were implemented. Determin-
istic forecasts using XGBoost and Random Forest 
showed improved accuracy with the inclusion of 
exogenous variables. Probabilistic forecasting was 
conducted using XGBoost with Bootstrap. Results 
demonstrate that both models are effective for 
BIPV power prediction, achieving mean absolute 
errors of approximately 40% for the south-facing 
array and below 30% for the east-facing array. 
However, the combination of different machine 
learning algorithms and forecasting strategies, 
such as recursive multi-step forecasting, hyper-
parameter tuning, and back-testing, could lead to 
more accurate results (Polo et al., 2023).

This study introduces a novel data driven 
framework for the forecasting and optimization 
of a residential off grid solar PV and BESS us-
ing multiple ML techniques. While existing ap-
proaches often rely on either conventional sizing 
methods or single model forecasting, this work 
integrates four distinct regression models: polyno-
mial regression, support vector regression, gradi-
ent boost, and random forest to ensure robust per-
formance evaluation and optimal model selection.

The key novelty and contributions of this re-
search are summarized as follows:
	• A comparative machine learning approach is 

proposed for both solar PV generation and res-
idential electricity demand forecasting. This 
allows for a comprehensive evaluation of pre-
dictive performance using real world weather 
and consumption data.

	• The model is trained and validated using actual 
field data from a residential site in Bangladesh, 
combined with weather parameters from NASA 
and local meteorological sources. This enhanc-
es prediction accuracy and practical relevance.

	• The Random Forest model is identified as the 
most accurate predictor based on R², MAE, 
and RMSE values, achieving R² scores of 0.92 
and 0.90 for generation and demand forecast-
ing, respectively.

	• The optimized forecasts are applied to design 
and size an off grid solar PV BESS system, 
scaling the PV capacity from 11 kW to 30 kW 
and integrating a 120 kWh BESS to achieve 
full grid independence.

	• The proposed framework serves as a founda-
tion for autonomous residential energy sys-
tems, enabling smart control, better resource 
utilization, and reduced energy wastage in off 
grid applications. 

By addressing both forecasting accuracy and 
system optimization in a unified framework, this 
study contributes an intelligent methodology for 
enhancing the resilience and autonomy of resi-
dential solar energy systems in data constrained 
environments like Bangladesh.

This study addresses the lack of integrated 
machine learning forecasting and optimization 
frameworks for off-grid PV–BESS systems in 
Bangladesh, where prior works often rely on sin-
gle predictive models or simulated datasets. It is 
based on the premise that evaluating and compar-
ing multiple machine learning regression mod-
els using real residential load and weather data 
will produce forecasts with higher accuracy than 
single-model approaches, thereby enabling more 
precise PV–BESS sizing and enhancing system 
autonomy. The novelty lies in combining predic-
tive modeling with technical optimization to de-
sign a fully grid-independent system. The study 
aims to demonstrate that enhanced forecasting 
accuracy directly results in more reliable and ef-
ficient PV–BESS configurations for residential 
applications in resource-constrained regions.

METHODOLOGY

This section presents a comprehensive method 
of forecasting generated power from the solar PV 
plant and energy demand for the residential house. 
After collecting the required data, four machine 
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learning algorithms developed in Python are used 
to accomplish the forecasting on the Google Co-
lab platform. After predicting data using distinct 
machine learning algorithms such as Polynomial 
Regression (PR), Support Vector Regression 
(SVR), Gradient Boost (GB) and Random Forest 
(RF), the performance is evaluated by R2 score, 
mean absolute error and root mean square error 
values. The algorithm delivers the best prediction 
among others, is selected as a model to optimize 
the solar plant and develop the BESS system. Fig-
ure 1 illustrates the overall methodology used in 
this study, starting from data collection and pre-
processing, followed by the implementation of 
four different machine learning regression mod-
els, model evaluation using statistical metrics, and 
final system optimization for PV–BESS sizing. 

Data collection

To forecast power generation and demand us-
ing machine learning models, a complete data-
set is essential for training and testing. For solar 
PV generation forecasting, weather parameters 
including direct horizontal irradiance (DHI), di-
rect normal irradiance (DNI), global horizontal 
irradiance (GHI), and temperature were used 
as independent features. For electricity demand 
forecasting, additional inputs included relative 
humidity, time-periodical data such as season, 
and day of the week.

Hourly weather data for the study site (coor-
dinates: 23.8103° N, 90.4125° E) covering the 
period 1 January 2023 to 31 December 2023 were 
obtained from the NASA Prediction of World-
wide Energy Resources (POWER) database and 
cross-verified with the Bangladesh Meteorologi-
cal Department (BMD) records. The dataset con-
tained 8.760 hourly records for each variable. The 
dependent features, like electricity consumption 
and solar power generation, are collected from 
the real field. 

The dataset can be explored via the NASA 
POWER Data Access Viewer. This API call au-
tomatically returns the 2023 hourly data for the 
specified coordinates and variables, ensuring full 
reproducibility for other researchers.

Data availability – the dataset used in this 
study is publicly available through the direct API 
link provided above. The processed PV genera-
tion and load demand datasets from the study site 
will be made available in an open-access reposi-
tory (e.g., Zenodo) upon acceptance of the manu-
script, with a DOI provided in the final version. 

Polynomial regression 

A simple and fundamental regression model 
is used to predict continuous data when a non-
linear relation exists between the target variable 
and independent features. It is a modified version 
of the linear regression model, which provides 

Figure 1. Methodology of machine learning modelling for the proposed system
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better results than linear regression in case of a 
nonlinear pattern of data. To estimate the predict-
ed value, the regression model calculates several 
parameters in a specific process. The process ini-
tiates with a number of random coefficients and 
then calculates the prediction errors resulting 
from applying those coefficients. Subsequently, 
the algorithm updates the coefficients till it en-
sures the minimum error in each point. After this 
process, the algorithm develops a best-fit curve 
on which the predicted points are located and 
closely match the real data. The mathematical 
equation of a polynomial regression curve is ex-
pressed as equation 1. 

	 2 3
0 1 2 3

n
ny b b x b x b x b x= + + + + + 	 (1) 

where:	 y is the point of the fitted curve, x is the 
independent variable, b0, b1, b2 …bn are 
the coefficients of the regression model 
and n represents the degree of the polyno-
mial curve. A lower degree reduces accu-
racy by an underfitted curve and a higher 
degree also fails to predict precisely due 
to overfitting of the curve. Since a non-
linear relationship exists between the in-
dependent data and the target variables of 
the proposed system, the PR algorithm is 
used in forecasting. 

Support Vector Regression

Instead of reducing error between a predicted 
line and actual data as like conventional regres-
sion models, SVR reduces error between a tube or 
margin area and the actual data. The tube or mar-
gin area is specified around the best-fit curve of 
the SVR model. In this case, the error is ignored 
when the point of actual data exists in the area of 
the margin of tolerance. Although this algorithm 
spends more time on training data, it makes the 
model robust against minor noise. The tube that 
allocates the margin of tolerance is called the 
epsilon tube. The data points lying outside the 
tube are used to build a model. The width of the 
epsilon tube depends on a parameter ε where a 
smaller value of ε tends to overfit the curve. On 
the other hand, a larger value of ε tends to underfit 
the curve. To develop the curve, various kernel 
functions are used in different cases. In the pro-
posed system, the Gaussian kernel, also known 
as the radial basis function (RBF), is generally 
used for capturing complex nonlinear patterns in 

high-dimensional space data. The equation of the 
Gaussian kernel is given below. 

	 2( ' )( ') x xK x x e γ− −− = 	 (2)

where:	x and x’ are two vectors of data and  
is called the tunable parameter. The equa-
tion calculates the similarity score of the 
input vectors. The tunable parameter is 
adjusted before training, which can be 
chosen by cross-validation. 

Random Forest

An ensemble learning algorithm is applicable 
in both classification and regression. Ensemble 
learning is a hybrid model that combines multiple 
weak learning models to enhance the predictive 
result. Among the three types of ensemble mod-
els, known as Bootstrap Aggregating, Stacking 
and Boosting, a Bootstrap Aggregating algorithm 
RF is selected for the system. The algorithm 
trains multiple decision tree models simultane-
ously, then provides a combined result as the av-
erage of all decision tree models. Consequently, 
the RF is a forest of decision trees that aggregates 
the results of all trees. However, the fundamental 
block of the RF decision tree acts like a flowchart. 
The flow begins with selecting the best feature 
based on the splitting criterion. For the regression 
model, the mean square error (MSE) is applied 
as a splitting criterion. After selecting the best 
feature, the dataset is split into multiple groups. 
The splitting process continues repeatedly creat-
ing multiple nodes (subgroups) from each group 
until each node contains the minimum number of 
sample data of the same class. To calculate MSE, 
the model begins with mean of the data, then cal-
culates MSE using the following equation. 

	 2

1

1 ( )
n

i
i

MSE y y
n =

= −∑ 	 (3)

where:	n indicates the number of data points in 
node, yi and 2

1

1 ( )
n

i
i

MSE y y
n =

= −∑  presents the actual value of 
the nth sample and the mean of all target 
values in the node.

The node of the lowest MSE is selected as the 
best feature. During the splitting process, every 
node contains the mean value of that node and 
MSE calculation process is kept continuous. Fig-
ure 2 illustrates the architecture of the Random 
Forest regression model used in this study. It 
shows how multiple decision trees are trained on 



114

Ecological Engineering & Environmental Technology 2025, 26(9), 109–120

bootstrapped subsets of the dataset, with predic-
tions aggregated to produce a final output. This 
ensemble approach reduces overfitting, improves 
prediction accuracy, and was found to be the most 
effective among the models tested in this work. 

Gradient Boost

The GB machine learning algorithm is an-
other ensemble boosting-type learning model that 
trains data using several decision tree models. 
The main distinction between RF and GB is that 
RF trains multiple decision tree models simulta-
neously, while GB trains them sequentially. The 
working principle of the decision tree model has 
been briefed in the RF section; therefore, adding 
those decision tree (DT) models is the remaining 
portion of the GB process, which minimizes the 
function loss and increases the accuracy of the re-
sult. The addition of weak model outputs is made 
by following equation. 

	 1
1

( ) ( ) ( )
M

m m m
m

F x F x h xη−
=

= + ∑ 	 (4)

where:	Fm(x) and hm(x) are the outputs of the GB 
model and the DT model, m is the number 
of DT blocks and η is the learning rate.

Figure 3 shows the architecture of the Gradi-
ent Boost regression model applied in this study. 
In this sequential ensemble approach, each deci-
sion tree is trained to correct the residual errors of 
the previous tree, with outputs combined through 
a learning rate to minimize overall prediction loss. 
This method enables the model to capture com-
plex non-linear relationships in the data, making it 
suitable for solar generation and load forecasting.

Evaluation

Since four algorithms are used to forecast the 
generation and energy demand of the system, the 

Figure 2. Architecture of random forest regression model

Figure 3. Architecture of gradient boost regression model
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best model has to be selected through an evalua-
tion process for system optimization. The evalu-
ation is based on measuring three parameters 
called R2 scores, MAE and root mean square er-
ror (RMSE), where the R2 score measures the ac-
curacy of capturing the pattern of target values by 
the regression model. To make better prediction, 
R2 score must be close to 1. The formula is used 
to calculate the score is expressed in Equation 5. 

	
2

2
2

ˆ( )
1

( )
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y y
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y y
−

= −
−

∑
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where:	yi, 
2

2
2

ˆ( )
1

( )
i i

i

y y
R

y y
−
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 and  are the actual values, pre-
dicted values and mean of actual values. 

The average of the absolute difference be-
tween predicted and actual values is known as 
MAE. To make a perfect prediction, the value of 
MAE should be close to zero. To calculate the 
MAE value, the following formula is used, where 
n is the number of samples. 

	
1 ˆi iMAE y y
n

= −∑ 	 (6)

A slightly different from RAE, the RMSE is de-
fined as the square root of mean of squared error be-
tween the predicted and actual values. The formula 
is used to calculate this parameter is given below. 

	 21 ˆ( )i iRMSE y y
n

= −∑ 	 (7)

RESULTS AND DISCUSSION

In this section, the performance of models, the 
relation between the target and the features vari-
able as well as the solar plant and the battery size 
estimation according to the predicted load profile 
are presented with a comprehensive analysis. 

Data visualization

Before testing and training, the dataset should 
be analyzed to identify the patterns and relation-
ships within the data. It is useful to select the ma-
chine learning model and extract the independent 
features used in prediction. Figure 4 presents the 
scatter plots of all weather parameters used in mod-
el training, excluding the target variables. These vi-
sualizations highlight the seasonal and daily varia-
tions in irradiance, wind speed, temperature, and 
humidity, which are critical for identifying patterns 

relevant to forecasting accuracy. The figure shows 
time vs DNI, DHI, GHI, wind speed, temperature 
and humidity. From observing the plots, DNI var-
ies highly with a dense vertical band, indicating 
spikes in irradiance during sunny days. GHI dem-
onstrates seasonal waves throughout the year and a 
seasonal and daily pattern is found in the DHI plot. 
Wind speed varies highly with numerous spikes. 
Temperature shows an annual sinusoidal variation, 
indicating warmer days in the middle and cooler 
days at the beginning and end of the year. Finally 
plot of humidity expresses almost an inverse rela-
tion with the temperature data. 

To measure the variation between two vari-
ables, covariance is applied to them. In the case of 
multiple variables, a covariance matrix is suitable 
for measuring their variation together. As shown 
in Figure 5, the covariance matrix quantifies the 
relationships between all variables in the dataset. 
Strong positive correlations are observed between 
DNI and PV production, and between GHI and PV 
production, confirming their importance as key pre-
dictive features. Each cell of the matrix expresses 
the covariance of a pair of variables, which means 
how they vary together in off-diagonal cells. The 
diagonal cells show the variance of each variable. 
The positive and negative values of covariance in-
dicate proportionality and inverse proportionality 
of two variables. According to the matrix, it can 
be summarized that a strong positive relation ex-
ists between the DNI and PV production pair, with 
a covariance value of 1329566. The same relation 
can be explained within GHI by the 1186927 cova-
riance value. 21040 is the covariance value of the 
temperature and PV production pair. A relation is 
observed between electric demand and season as 
well as week, besides the weather data.

Performance assessment 

Among the four models of machine learning 
algorithms, the optimal model is selected based 
on three evaluation parameters, such as the R2 
score, MAE and RMSE value. Table 1 compares 
the performance of all four regression models for 
PV generation and electricity demand forecasting, 
using R², MAE, and RMSE as evaluation metrics. 
The Random Forest model achieves the highest 
R² and lowest error values for both generation and 
demand prediction, indicating its superiority for 
this application. Figure 6 shows scatter regression 
plots comparing predicted and actual values for all 
four models. The random forest model has points 
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Figure 4. Scatter plot of all weather data used in the training and testing process

Figure 5. Covariance matrix of the whole dataset used to train and test models
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closest to the diagonal, indicating the highest ac-
curacy, while Polynomial Regression shows clear 
underfitting. From observing the scatter regres-
sion plots, it is clear that the RF model fits better 
than others, points closely follow the diagonal line 
with reliable prediction and low error. On the oth-
er side, the PR model shows the most underfitted 
curve and fails to tune nonlinear data.  The data 
in the table also clearly reveals that the RF model 
performs best among them, with the highest value 
of R2 score and the lower value of error. 

Forecast with optimal model

As the RF model is selected as the best 
performer among the considered models, this 

subsection presents the forecasting of the selected 
model, as the forecasting data can be used for 
subsequent operation of the plant optimization. 
Figure 7 compares the Random Forest model’s 
predictions with the actual measured PV genera-
tion and load demand. The close alignment be-
tween the two curves demonstrates the model’s 
ability to accurately capture variations over time.

After forecasting the electric production and 
consumption almost perfectly, a load profile is 
required in the optimization process of the solar 
plant. Figure 8 depicts the 24-hour load profile 
of the PV system as forecasted by the Random 
Forest model, showing peak generation during 
midday and peak demand in the evening, which 
informs the PV–BESS sizing strategy. The figure 

Figure 6. The scatter regression plots of all models for electricity generation and prediction

Table 1. R2 score, MAE and RMSE value of all regression models for energy production and consumption

Model
PV production Electric demand

R2 Score MAE RMSE R2 Score MAE RMSE

Polynomial Regression 0.89 793.23 1383.47 0.774 368.5 463.95

Random Forest 0.92 644.8 1262.14 0.90 175.1 306.96

Gradient Boost 0.90 764.65 1357.2 0.76 378.12 471.68

Support Vector Regression 0.899 200.94 309.15 0.796 329.13 437.18
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Figure 7. Real tested vs predicted data of the random forest algorithm

shows time (in seconds) vs power graph over a 
24-hour day. Here, the maximum mean energy 
consumption and the solar production can be re-
corded from the figure as about 6 kW and 10 kW. 

Plant and BESS sizing

From the load profile, the maximum supply 
(from PV) and demand are recorded as 10 kW and 
6 kW. Therefore, to remove the grid dependency 
of the system, the verification of the PV plant 

capacity and the suggested storage capacity is ac-
complished in this subsection. According to the 
achieved data, the total average consumption of 
electric energy is about 6 kW × 24 h = 144 kWh, 
and the production from the solar PV plant of 11 
kW capacity is about 10 kW × 5 h = 50 kWh (con-
sidering the sunny hour is 5 h). Therefore, to over-
come the grid dependency, new capacity of the 
solar plant will be Pnew = 2.8 × 11 = 30 kW almost. 

Here, 2.8 is the scaling factor k =
144 2.8
50

=

Figure 8. The load profile of the solar PV plant estimated through machine learning model
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When the power production of the new PV 
plant is Epv = 30 kW × 5 h = 150 kWh and the total 
load during the charging period is EL = 6 kW × 5h 
= 30 kWh. Then, to store all PV-generated power, 
the energy storage capacity should be EE = 150 
kWh – 30 kWh = 120 kWh (approximate). 

CONCLUSION 

The research achieved its objective by dem-
onstrating that a Random Forest based forecast-
ing approach yields superior prediction accuracy 
(R² = 0.92 for PV generation, R² = 0.90 for de-
mand) compared to Polynomial Regression, Gra-
dient Boost, and Support Vector Regression. This 
improved forecasting accuracy directly informed 
an optimized PV–BESS design, resizing the PV 
array from 11 kW to 30 kW and specifying a 120 
kWh storage capacity for complete grid indepen-
dence. The study fills a critical gap by providing a 
replicable framework that integrates multi-model 
forecasting with technical optimization using 
real-world data from Bangladesh. This approach 
offers significant potential for autonomous resi-
dential energy systems in resource-constrained 
regions and can be extended to hybrid renewable 
configurations with real-time IoT-based control. 
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