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INTRODUCTION

The Earth’s surface is continuously chang-
ing because of both natural and human-related 
processes, in this regard land use and land cov-
er change plays a significant role (El Idrissi et 
al., 2024; Prestele et al., 2017). The resources 
of earth is becoming more scarcer due to the 
demographic, climatic and agricultural pres-
sure (Bhargava, 2019; FAO, 2022; Pimentel, 
1991; Tariq, 2024). Planning for the environ-
ment, making data-driven decisions, and man-
aging land sustainably all depend on an under-
standing of changes in land use and land cover 
(LULC) (He et al., 2019; Nunez and Alkemade, 
2021; Oliver and Morecroft, 2014).

Numerous studies have investigated land use 
and land cover (LULC) changes across various 

regions of Morocco using geographic informa-
tion systems (GIS) and remote sensing (RS) 
techniques, highlighting trends such as forest 
loss and urban expansion (Ben-Said et al., 2025). 
Ben-Said et al. 2025 provide a comprehensive 
review of the national literature and highlight 
important gaps, such as the absence of multi-
decadal studies in some areas, insufficient con-
sideration of climate change, and limited analy-
ses linking LULC changes to natural hazards.

The study area represents a complex land-
scape which is characterized by its diverse 
geologic formations, its rich biodiversity and 
its ecological and cultural importance. This 
area remains understudied in terms of LULC 
dynamics, especially over multi-decadal times-
cales. Moreover, the region has recently experi-
enced increased climatic stress, including long 
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drought periods over the last 20 years, which 
could have sped up changes in patterns of land 
cover and land use.

Additionally, the study area is highly prone 
to landslides -due to its complex geology, steep 
slopes, and intense rainfall events-, which are 
frequently made worse by changes in land use. 
Therefore, it is crucial for disaster risk reduction 
and sustainable land management in this vulner-
able area to comprehend how LULC dynamics 
influence landslide susceptibility.

The present study intends to fill in these 
knowledge gaps and deepen our understanding 
of LULC changes in the central Rif. By applying 
advanced RS and GIS techniques combined with 
statistical analyses, we seek to detect and quan-
tify LULC trends over a 25-year period, and to 
identify the primary drivers of these changes. 
Particularly, we expect that human interven-
tions and climate variability have significantly 
altered and changed land use patterns, leading to 
measurable shifts in ecosystem composition and 
land management practices.

Through this research, we aim to provide 
new scientific insights and knowledge into the 
spatial-temporal dynamics of LULC in an un-
der-investigated region of Morocco, contrib-
uting to improved land planning, disaster risk 

management, and sustainable resource policies 
tailored to the central Rif context.

METHODS AND METHODOLOGY

Study Area

This study focuses on an area situated in the 
north of Morocco, it includes the province of 
Al Hoceima and the western parts of the prov-
ince of Driouch (Figure 1). It covers an area of 
4383,914 km² (438391,4 ha) in the northern Rif. 
The study area lies between longitude 04°50’ W 
to 03°30’ W and latitude 34°40’ N to 35°20’ N, 
it is bordered on the north by the Mediterranean 
Sea, on the west by Chefchaouen province, and 
on the south by Taounate province.

The area is recognized for its Mediterra-
nean climate, which features two seasons, dry 
and humid, (Driouech et al., 2021). The aver-
age annual rainfall in the area varies between 
300 mm to over 400 mm. (Muselli et al., 2022; 
Salhi et al., 2019), the eastern parts of the re-
gion, especially the basins between Jebha and 
Al Hoceima, receives slightly more rainfall 
than the western areas. The region is charac-
terized by mountainous landforms with steep 

Figure 1. Study area map
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slopes, which leads in addition to torrential 
rain, to erosion and changes in vegetation and 
land cover (Mouddou et al., 2024).

From a geological and geomorphological per-
spective, the study area makes part of the internal 
Rif and flyshs domains (Suter, 1980; Michard et 
al., 2008). The Study area is well-known by its 
geological and natural environments. Cedar trees 
predominate in the forests and rich ecosystems 
found at high altitudes in the southwest parts 
(Abel-Schaad et al., 2018).

Data collection and pre-processing

Three Landsat images at a resolution of 30m, 
including one enhanced thematic mapper plus 
(ETM+) image from 25 April 2000, one Landsat 
8 operational land imager (OLI) image from 27 
June 2014, and one Landsat 9 OLI image from 
16 May 2025 (Table 1), were obtained from the 
United States Geological Survey (USGS) website 
(http://earthexplorer. usgs.gov/). All the three im-
ages have 0% cloud coverage, we chose to ac-
quire the images from April to June due to the 
reduced cloud cover and the availability of fresh 
green vegetation, which makes it easier to dis-
tinguish different land cover types and analyze 
changes in vegetation. 

The datasets were acquired as TIF files with 
separated bands, to start working on the images 
a layer stack tool is used to combine the bands 
altogether; (bands 1, 2, 3, 4, 5, 7 for Landsat 7 
image and Bands 2, 3, 4, 5, 6, 7 for Landsat 8 and 
9 images). and create one stacked image (Bruce 
and Hilbert, 2004), the Figure 2 shows the three 
satellite images subsided into study area in differ-
ent band combinations.

Preprocessing is necessary for satellite image 
analysis, it serves to improve spectral separability 
and facilitate visual interpretation of Earth’s sur-
face features and to enhance the quality of inputs 
used in automated image processing (Pacheco et 
al., 2023; Rasmussen, 1993).

The preprocessing tasks were conducted 
using the open source quantum GIS (QGIS) 

software (Version 3.24) (QGIS Development 
Team, 2024) and ArcMap software (Version 
10.8.2) (Esri, 2020).

Geometric correction and radiometric correc-
tion are the two forms of correction required for 
appropriate satellite image analysis (Rasmussen, 
1993), and because all the satellite images used 
in this study are at Level 1, which means that the 
information had already been orthorectified (Roy 
et al., 2014) there will be no need for geometric 
correction (Storey et al., 2014).

To enhance visibility and analysis, radiomet-
ric correction was applied to boost satellite im-
age’s brightness and magnitude, (through the plu-
gin “Radiometric calibration”) (Chavez Jr, 1989; 
Teillet et al., 1982).

Radiometric calibration is used to trans-
late digital numbers (DNs) into top atmosphere 
(TOA) radiance values (Chavez Jr, 1989; Roy et 
al., 2014; Teillet et al., 1982). And then the atmo-
spheric correction was done with the help of the 
Semi-Automatic Classification Plugin (Congedo, 
2016), based on the dark object subtraction (DOS) 
approach (Chavez, 1988) in order to obtain TOA 
reflectance, using the equation (Chavez, 1996):

	 𝐿𝐿p,𝜆𝜆 = 𝐿𝐿𝑠𝑠,𝜆𝜆 − 𝐿𝐿min 

 

𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃′𝑠𝑠 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 = 

=  𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 𝑜𝑜𝑜𝑜 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃
𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 𝑜𝑜𝑜𝑜 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 𝑓𝑓𝑓𝑓𝑓𝑓 𝑎𝑎 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶  × 100 (%) 

 

𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈′𝑠𝑠 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 = 

=  𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 𝑜𝑜𝑜𝑜 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃
𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 𝑜𝑜𝑜𝑜 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 𝑓𝑓𝑓𝑓𝑓𝑓 𝑎𝑎 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶  × 100 (%) 

 

𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 = 

=  𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 𝑜𝑜𝑜𝑜 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃
𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 𝑜𝑜𝑜𝑜 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃  × 100 (%) 

 

𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 = 𝑃𝑃𝑜𝑜 − 𝑃𝑃𝑒𝑒
1 − 𝑃𝑃𝑒𝑒

 

	 (1)

where:	Lpλ – corrected radiance at wavelength λ 
after removing atmospheric effects,

	 Lsλ – sensor-received radiance at wave-
length λ, Lmin – minimum (or dark object) 
radiance.

Once the TOA reflectance values have been 
calculated, we performed Pansharpening using 
NNDiffuse method (QGIS verify) that involves 
combining high-resolution panchromatic imagery 
(band 8, 15 m) with multispectral imagery (30 m) 
to create a single higher-resolution, and visually 
appealing composite image.

Pansharpening techniques combine the high-
resolution spatial details from the panchromatic 
band with the rich color information from the 
multispectral bands to enhance the spatial reso-
lution of the resulting composite image. This 

Table 1. Satellite images used in the study
Image type Date Spatial resolution Cloud cover

ETM+ 2000/04/25 30 m 0%

OLI 2014/06/27 30 m 0%

OLI 2025/05/16 30 m 0%
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high-resolution composite image of 15 m is then 
subset into the study area using “extract by mask 
tool” in ArcMap in order to enhance the speed of 
the image processing and analysis.

For this study, we performed radiometric 
calibration by converting DN to TOA reflectance, 
then we applied DOS reflectance to obtain sur-
face reflectance from top atmosphere reflectance 
(TOA) in addition of contrast enhancement, we 
increased the resolution of the three satellite im-
ages from 30 m to 15 m using the panchromatic 
band which comes with a resolution of 15 m. To 
do this we applied pansharpening method using 
NNDiffuse method. Google Earth images, along 
with field data, were used to validate the pro-
posed methodology. Fieldwork involved using 
GPS-based ground control points and previous 
knowledge to conduct ground truth surveys. The 
methodology followed in this study is illustrated 
in the flowchart presented in Figure 3.

Methodology

The principal aim of this study is to generate 
land use and land cover maps of the years 2000, 
2014 and 2025 over a period of 25 years using 
satellite images, and to examine the identifica-
tion of changes in the LULC. For precise map-
ping of LULC changes, the study uses the maxi-
mum likelihood (ML) algorithm, a technique 

that is commonly used in supervised classifica-
tion (Abbas TAATI, 2015; Erbek et al., 2004; 
Jensen, 2016).

In land use land cover analysis, supervised 
classification requires labeled training samples to 
build a model for the purpose of classifying re-
mote sensing data into predetermined land cover 
classes. (Talukdar et al., 2020; Vali et al., 2020). 
Using the spectrum properties of the training 
samples as a basis, the maximum likelihood algo-
rithm quantifies the likelihood of each pixel being 
associated with a particular class, allocating the 
pixel to the class with the highest likelihood (Xie 
and Huang, 2022).

We adopted a five-class scheme to characterize 
physical land surface properties, including vegeta-
tion, built up areas, bare land, in order to assess 
and identify changes in land use and land cover 
(LULC) that have occurred during the last quarter 
decade (Table 2). This study’s approach includes 
a number of crucial steps: (1) data pre-processing, 
(2) classification, (3) accuracy assessment, and (4) 
change detection, with several sub-steps.

Satellite images were processed, catego-
rized, and analyzed using a variety of GIS and 
RS software applications, such as QGIS and Ar-
cMap. ArcMap (version 10.8) was used to create 
thematic maps and perform extra area computa-
tions. Microsoft Excel was used to create tables, 

Figure 2. The three satellite images subsided into study area in different band combinations. 2000: Natural color, 
2014: False color, 2025: Color infrared

Table 2. Classes of land use land cover adopted in the study
LULC categories Description

Water Water bodies, dams

Forest & dense vegetation Dense forest including natural forests and planted trees

Shrubland & sparse vegetation Low percentage of vegetation

Bare land Open land, bare soil, bare rock areas

Urban & built-up area Settlements, residential and urban areas
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Figure 3. Flowchart – LULC mapping and change analysis process

calculate, and create graphs. The flow diagram for 
this study shows the processes (Figure 3).

Utilizing QGIS software version 3.24, pre-
processing was done on the data for layer stacking, 
radiometric and atmospheric corrections. To im-
prove the images quality, enhancement techniques 
are typically utilized. The subsetting process was 
performed using the “extract by mask” tool in 

ArcGIS 10.8 software. Then Landsat images of the 
years 2000, 2014 and 2025 were classified using 
a supervised classification approach based on the 
maximum likelihood algorithm. The LULC maps 
that were generated underwent statistical analy-
sis using ArcGIS 10.8 software to determine and 
quantify changes in land use and land cover.
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Image classification

In land use and land cover study, supervised 
classification is a commonly used technique, and 
the maximum likelihood algorithm is the most 
used in LULC classification and change analysis 
(Norovsuren et al., 2019). With this technique, 
the user defines the land cover classes and pre-
classified sample data are used to train a classifi-
cation algorithm. Based on the spectral properties 
extracted from the training data, the maximum 
likelihood method determines the statistical prob-
ability that each pixel belongs to a specific land 
cover class. The algorithm finds the most likely 
class for every pixel in the whole image by maxi-
mizing the chance that a pixel will be assigned to 
a particular class (Jensen, 2016).

To perform LULC Classification we adopted 
a five class scheme for the study area (Table 2), 
water bodies, forest and dense vegetation, shru-
bland and sparse vegetation, bare land and urban 
areas. The three Landsat images from 2000, 2014 
and 2025 were classified using a supervised ap-
proach based on the maximum likelihood algo-
rithm in order to perform a LULC classification. 
The classifying process is composed of three ba-
sic steps: 1. Training samples selection, 2. Clas-
sification, 3. Accuracy Assessment.

Representative samples of identified cover 
types are used to create a numerical signature, 
about 300 training samples were created for each 
map, the number of samples differs from a class 
to another depending on the geographical area 
occupied by each class, and then we applied the 
maximum likelihood technique using ML algo-
rithm. The resulting LULC maps were analyzed 
using ArcMap software to determine the LULC 
changes in the study area. 

Accuracy assessment

After image classification, accuracy evalua-
tion is essential since it assesses the quality and 
confidence of the classification outcomes (Con-
galton, 1991; Maxwell et al., 2021; Anderson et 
al., 1976). Achieving a high degree of precision 
gives us the confidence to interpret land cover 
data, use the information for mapping hazards, 
urban planning, and natural resource manage-
ment (Venter and Sydenham, 2021).

120 assessment points were randomly gener-
ated to calculate the accuracy for each map. to 
ensure the representation of all classes, a stratified 
random sampling was used to denote different 

LULC classes (Figure 4), then the appropriate 
class from ground truth is designated to each 
point using high-resolution Google Earth images 
and field data (Dong et al., 2020).

Confusion matrix for the classified images 
was obtained for the three satellite images (2000, 
2014 and 2025); the confusion matrix evaluates 
the classification accuracy (Congalton and Green, 
2008). This matrix gives a clear idea of a clas-
sification performance across several classes; it is 
a valuable tool for evaluating a model’s efficacy.

When evaluating the effectiveness of classi-
fication models, a number of critical metrics are 
essential, such as overall accuracy, producer’s 
accuracy, user’s accuracy, and Kappa coefficient 
(Congalton and Green, 2008).

Producer’s accuracy (PA), sometimes referred 
to as omission error, quantifies the likelihood that 
a ground pixel belonging to a specific land cover 
class is accurately categorized as such class on the 
map. It is calculated using the formula:

	

𝐿𝐿p,𝜆𝜆 = 𝐿𝐿𝑠𝑠,𝜆𝜆 − 𝐿𝐿min 

 

𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃′𝑠𝑠 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 = 

=  𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 𝑜𝑜𝑜𝑜 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃
𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 𝑜𝑜𝑜𝑜 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 𝑓𝑓𝑓𝑓𝑓𝑓 𝑎𝑎 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶  × 100 (%) 

 

𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈′𝑠𝑠 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 = 

=  𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 𝑜𝑜𝑜𝑜 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃
𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 𝑜𝑜𝑜𝑜 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 𝑓𝑓𝑓𝑓𝑓𝑓 𝑎𝑎 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶  × 100 (%) 

 

𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 = 

=  𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 𝑜𝑜𝑜𝑜 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃
𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 𝑜𝑜𝑜𝑜 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃  × 100 (%) 

 

𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 = 𝑃𝑃𝑜𝑜 − 𝑃𝑃𝑒𝑒
1 − 𝑃𝑃𝑒𝑒

 

	(2)

User’s accuracy (UA), also referred to as com-
mission error, assesses the probability that a pixel 
on the map assigned to a particular land cover 
class actually belongs to that class on the ground, 
the formula for User’s Accuracy is:

	

𝐿𝐿p,𝜆𝜆 = 𝐿𝐿𝑠𝑠,𝜆𝜆 − 𝐿𝐿min 

 

𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃′𝑠𝑠 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 = 

=  𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 𝑜𝑜𝑜𝑜 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃
𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 𝑜𝑜𝑜𝑜 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 𝑓𝑓𝑓𝑓𝑓𝑓 𝑎𝑎 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶  × 100 (%) 

 

𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈′𝑠𝑠 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 = 

=  𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 𝑜𝑜𝑜𝑜 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃
𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 𝑜𝑜𝑜𝑜 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 𝑓𝑓𝑓𝑓𝑓𝑓 𝑎𝑎 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶  × 100 (%) 

 

𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 = 

=  𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 𝑜𝑜𝑜𝑜 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃
𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 𝑜𝑜𝑜𝑜 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃  × 100 (%) 

 

𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 = 𝑃𝑃𝑜𝑜 − 𝑃𝑃𝑒𝑒
1 − 𝑃𝑃𝑒𝑒

 

	(3)

Overall Accuracy refers to the percentage of 
pixels correctly classified across all land cover 
classes, and is given by the formula (Das and 
Sarkar, 2019):

	

𝐿𝐿p,𝜆𝜆 = 𝐿𝐿𝑠𝑠,𝜆𝜆 − 𝐿𝐿min 

 

𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃′𝑠𝑠 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 = 

=  𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 𝑜𝑜𝑜𝑜 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃
𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 𝑜𝑜𝑜𝑜 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 𝑓𝑓𝑓𝑓𝑓𝑓 𝑎𝑎 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶  × 100 (%) 

 

𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈′𝑠𝑠 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 = 

=  𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 𝑜𝑜𝑜𝑜 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃
𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 𝑜𝑜𝑜𝑜 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 𝑓𝑓𝑓𝑓𝑓𝑓 𝑎𝑎 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶  × 100 (%) 

 

𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 = 

=  𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 𝑜𝑜𝑜𝑜 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃
𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 𝑜𝑜𝑜𝑜 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃  × 100 (%) 

 

𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 = 𝑃𝑃𝑜𝑜 − 𝑃𝑃𝑒𝑒
1 − 𝑃𝑃𝑒𝑒

 

	(4)

Kappa coefficient (Cohen’s Kappa) is a statistic 
that evaluates the degree of agreement between the 
classifications generated by a model and the clas-
sifications based on ground truth data, taking into 
consideration the possibility of chance agreement. 
Kappa coefficient is calculated by the formula:

	

𝐿𝐿p,𝜆𝜆 = 𝐿𝐿𝑠𝑠,𝜆𝜆 − 𝐿𝐿min 

 

𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃′𝑠𝑠 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 = 

=  𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 𝑜𝑜𝑜𝑜 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃
𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 𝑜𝑜𝑜𝑜 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 𝑓𝑓𝑓𝑓𝑓𝑓 𝑎𝑎 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶  × 100 (%) 

 

𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈′𝑠𝑠 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 = 

=  𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 𝑜𝑜𝑜𝑜 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃
𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 𝑜𝑜𝑜𝑜 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 𝑓𝑓𝑓𝑓𝑓𝑓 𝑎𝑎 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶  × 100 (%) 

 

𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 = 

=  𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 𝑜𝑜𝑜𝑜 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃
𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 𝑜𝑜𝑜𝑜 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃  × 100 (%) 

 

𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 = 𝑃𝑃𝑜𝑜 − 𝑃𝑃𝑒𝑒
1 − 𝑃𝑃𝑒𝑒

 	 (5)

where:	 Po represents the observed agreement, i.e., 
the proportion of agreement between the 
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model and reference classifications, Pe rep-
resents the expected agreement, i.e., the pro-
portion of agreement expected by chance. 

All these metrics and measures together offer 
a comprehensive evaluation of the accuracy and 
reliability of LULC classification models.

Change detection and analysis

Change detection in LULC involves identi-
fying and analyzing shifts in the distribution and 
characteristics of various land cover categories 
over a certain time. This approach is essential for 
observing environmental transformations, assess-
ing the impact of human activities, and analyzing 
how landscapes evolve over time (Cheng et al., 
2023). Change detection can highlight changes 
and trends in land use, such as deforestation, ur-
banization,… etc., and can offer essential infor-
mation for effective resource planning, hazards 
mapping and the promotion of sustainable land 
use management (Das and Angadi, 2022).

In this study the Post-classification compari-
son is used to analyze changes in LULC over 25 
years, it involves comparing the classified land 
cover maps derived from remote sensing imagery 
for the years 2000, 2014 and 2025, the differences 
in class distribution were analyzed to identify ar-
eas of change.

First, we proceeded to analyze change detec-
tion between the years 2000 to 2014, then from 
2014 to 2025 and from 2000 to 2025.

The classified LULC raster images were con-
verted to vector layers as part of the post-clas-
sification process by using the conversion tools 
in ArcGIS. Then “intersect” of “geoprocessing” 
tools in ArcGIS was used to calculate change for 
each class and identify areas where land cover 
has changed between two periods by performing 
a pixel by pixel comparison.

This involves comparing the two maps, ex-
amining each pixel to figure out if the land cover 
class has changed or not.

RESULTS AND DISCUSSION

LULC patterns and distribution

The LULC pattern is characterized into five 
classes, water, forest/dense vegetation, shrubland/
sparse vegetation, urban/built-up area and bare 
land. The results of classification and area distribu-
tion are shown in Table 3 and the Figure 5. These 
maps show the different LULC classes for 3 study 
years, (2000, 2014, and 2025) in the study area.

In 2000, the “bare land” class occupied the 
highest area with 1922.42 km² (43.85%) of the 
total area, while the “water” class was the least 
representative of the classes with only 2.24 km² 
(0.05%). This is due to the fact that the study area 
has only two small dams or reservoirs.

Forest and dense Vegetation covered an area 
of 22.9%, 17.64% and 17.54% during the years 

Figure 4. Map of randomly selected points for accuracy assessment of LULC map of the year 2025,
shown on a true color Landsat image of 2025
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2000, 2014 and 2025 respectively; on the other 
hand, urban and built-up area occupied 13.99 km² 
(0.32%) in 2000, 17.52 km² (0.4%) in 2014 and 
32.33 km² (0.74%) in 2025.

The class “shrubland and sparse vegetation” 
was about 1441.4 km² (32.88%) in 2000, 1792.56 
km² (40.89%) in 2014 and reaches 2132.22 km² 
(48.64%) in 2025; “bare land” occupied 1922.42 
km² (43.85%) of the total area in 2000, then 
1798.26 km² (41.02%) in 2014, and continues to 
shrink at the expense of other classes reaching 
1448.33 km² (33.04%) in 2025.

“Water bodies” class stays almost unchange-
able, the class covered 2.24 km² (0.05%) in 
2000, 2.43 km² (0.06%) in 2014 and 2.17 km² 
(0.05%) in 2025.

Vegetation areas especially forests and dense 
vegetation play an important role in the environ-
mental balance, hydrological process, and slope 
stability. However, based on the results we no-
tice the decreasing in the area covered by forests 
and dense vegetation from 22.9% (in 2000) to 
17.54% (in 2025).

On the other hand, there were a slight increase 
in built-up area, from 0.32% of the total area in 
2000 to 0.74% in 2025, which is a normal trend in 
response to the increase in the population.

Accuracy assessment of classified images

The classification results for each LULC class 
were evaluated using error matrices. Total of 120 
ground truth points were identified for every LULC 
map. In this research user’s accuracy, overall accu-
racy, producer’s accuracy, and kappa (κ) statistics 
were evaluated through error matrix analysis.

Details of these metrics values of the classi-
fied images of the years 2000, 2014 and 2025 are 
shown in Tables 4, 5 and 6.

In 2000, producer accuracy was 100% for 
water, 91.3% for forest/dense vegetation, 84.8% 

for shrubland / sparse vegetation, 84.3% for bare 
land and 100% for urban / built-up area. while 
user’s accuracy for the same year was 100% for 
water, 84% for forest / dense vegetation, 80% 
for shrubland / sparse vegetation, 95.6% for bare 
land and 80% for urban / built-up area (Table 4).

In 2014, producer accuracy was 100% for wa-
ter, 95.5% for forest / dense vegetation, 85% for 
shrubland / sparse vegetation, 86.4% for bare land 
and 100% for urban / built-up area. while User’s 
accuracy for the same year was 100% for water, 
91.3% for forest / dense vegetation, 87.2% for 
shrubland / sparse vegetation, 90.5% for bare land 
and 83.3% for urban / built-up area (Table 5).

In 2025, producer accuracy was 100% for wa-
ter, 90.9% for forest / dense vegetation, 91.1% for 
shrubland / sparse vegetation, 86.8% for bare land 
and 100% for urban / built-up area. While user’s 
accuracy for the same year was 100% for water, 
90.9% for forest / dense vegetation, 89.1% for 
shrubland / sparse vegetation, 94.3% for bare land 
and 81.8% for urban / built-up area (Table 6).

The overall classification accuracy for the 
years studied was 87.5% for 2000, 89.2% for 
2014 and 90.8% for 2025 in the study area. Kap-
pa coefficient (κ) for 2000, 2014, and 2025 were 
0.82, 0.85 and 0.87 respectively.

LULC change detection

After classification, we obtained three LULC 
maps for three years 2000, 2014 and 2025. These 
maps with the use of Post-classification compari-
son leads us to detect the changes that took place 
over the past twenty-five years. Changes in land 
use and land cover between 2000 to 2014, 2014 
to 2025, and 2000 to 2025 was attained (Figures 
6, 7, 8, 9 and 10).

We notice a noticeable decrease in the dense 
vegetation areas and forests for the benefit of oth-
er classes. Moreover, a slight increase in the built 

Table 3. Area distribution of the years (2000, 2014 and 2025)

LULC
classes

2000 2014 2025

Sq. km % Sq. km % Sq. km %

Water 2.24 0.05 2.43 0.06 2.17 0.05

Forest & dense veg. 1003.83 22.9 773.11 17.64 768.84 17.54

Shrubland & sparse vegetation 1441.41 32.88 1792.56 40.89 2132.22 48.64

Bare land 1922.42 43.85 1798.26 41.02 1448.33 33.04

Urban & built up area 13.99 0.32 17.52 0.4 32.33 0.74

Total 4383.9 100 4383.9 100 4383.9 100
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Figure 5. LULC maps and area distribution (a: 2000, b: 2014, c: 2025)

up area, which is due to the increase in population 
and economic activities.

2000 to 2014

In 2000, the “bare land” occupied the high-
est class with 1922.42 km² (43.85%), which 

decreased to 41.02% in 2014 (Table 7). For-
est and dense vegetation class is showing a de-
crease form 1003.83 km² (22.9%) in 2000 to 
773.1 km² in 2014 (17.64%), while shrubland 
and sparse vegetation knows an increase from 
1441.41 km² (32.88%) in 2000 to 1792.56 km² 
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(40.89%) in 2014. Built-up area is showing a 
positive trend from 13.99 km² (0.32%) in 2000 
to 17.52 km² (0.4%) in 2014, It has slightly 
increased by 3.53 km².

On the other hand, water bodies area re-
mains almost unchanged (from 2.23 km² in 
2000 to 2.43 km² in 2014). The built-up and ur-
ban areas was increased especially in the cities 
of Al Hoceima, Imzouren, Beni Bouayach and 

Targuist (Figure 6), due to the normal increase 
in population and due to migration from the 
countryside and rural areas. 

2014 to 2025

Shrubland and sparse vegetation contin-
ue increasing from 1792.56 km² (40.89%) in 
2014 to 2132.22 km² (48.64%) in 2025. Built-
up area also continue showing a positive trend 

Table 4. Evaluation of accuracy (year 2000)

Classes Water
Forest & 
dense 

vegetation

Shrubland & 
sparse 

vegetation
Bare land

Urban & 
built up 

area
Total U

Accuracy Kappa

Water 5 0 0 0 0 5 1

Forest & dense veg. 0 21 3 1 0 25 0.84

Shrubland & sparse veg. 0 2 28 5 0 35 0.8

Bare land 0 0 2 43 0 45 0.96

Urban & built up area 0 0 0 2 8 10 0.8

Total 5 23 33 51 8 120 0

P accuracy 1 0.91 0.85 0.84 1 0 0.88

Kappa 0.82

Table 5. Evaluation of accuracy (year 2014)

Classes Water
Forest & 
dense 

vegetation

Shrubland & 
sparse 

vegetation
Bare land

Urban & 
built up 

area
Total U

accuracy Kappa

Water 4 0 0 0 0 4 1

Forest & dense veg. 0 21 2 0 0 23 0.91

Shrubland & sparse veg. 0 1 34 4 0 39 0.87

Bare land 0 0 4 38 0 42 0.90

Urban & built up area 0 0 0 2 10 12 0.83

Total 4 22 40 44 10 120 0

P accuracy 1 0.95 0.85 0.86 1 0 0.89

Kappa 0.85

Table 6. Evaluation of accuracy (year 2025)

Classes Water
Forest & 
dense 

vegetation

Shrubland & 
sparse 

vegetation
Bare land

Urban & 
built up 

area
Total U

accuracy Kappa

Water 6 0 0 0 0 6 1

Forest & dense veg. 0 20 2 0 0 22 0.91

Shrubland & sparse veg. 0 2 41 3 0 46 0.89

Bare land 0 0 2 33 0 35 0.94

Urban & built up area 0 0 0 2 9 11 0.82

Total 6 22 45 38 9 120 0

P accuracy 1 0.91 0.91 0.87 1 0 0.91

Kappa 0.87
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from 17.52 km² (0.4%) in 2014 to 32.33 km² 
(0.74%) in 2025. Bare land shows a decrease 
from 1798.26 km² (41.02%) in 2014 to 1448 
km² (33.04%) in 2025, this decrease is in gen-
eral in favor of shrubland and sparse vegetation 
(Figure 7).

Forest and dense vegetation occupied 
773.11 km² (17.64%) in 2014, which slightly de-
creased to 768.84 km² (17.54%) in 2025. While 
water class shows a very slight decrease from 
2.43 km² (0.06%) in 2014 to 2.17 km² (0.05%) 
in 2025 (Table 8).

2000 to 2025

From 2000 to 2025, the evolution shows a 
negative trend in “forest and dense vegetation” 
area, this class lost 5.36% of its area during the 
last 25 years (Figure 8).

Bare land class also shows a decreasing from 
2000 to 2025 by losing 10.8% of its area. While 
“shrubland and sparse vegetation” shows a posi-
tive trend, from 1441.41 km² (32.88%) in 2000 to 
2132.22 km² (48.64%) in 2025, with an increase of 
15.76%, this increase comes from bare land class 
and less from “forest and dense vegetation”.

Built up area keeps showing a positive change 
from 2000 to 2025 (an increase of 18.34%) in the 
study area. The majority of this increase is con-
centrated in the urban areas due to internal migra-
tion from the countryside to the cities or villages 
(Figure 9).

Area covered by “water” which is the small-
est class, remains almost unchangeable (0.05%).
The Figure 10 shows the change trends and evo-
lution of all the five classes analyzed in this study 
from 2000 to 2025 (Table 9). 

DISCUSSION

Over the course of 25 years, our analysis 
showed that patterns of LULC had significantly 
changed from 2000 to 2025. The results show a 
dynamic evolution of the landscape marked by 
changes in the types of land cover, suggesting the 
influence of different natural and human forces.

The alterations observed in LULC are a result 
of both human activities and natural processes. 
Several trends were observed, among them forest 
degradation and urban expansion with observable 
increases in the built-up area at the expense of 
other land cover classes which aligns with trends 
observed and documented in previous studies 
(Gashu and Gebre-Egziabher, 2018; Naikoo et 
al., 2020; Patra et al., 2018).

Various factors contribute to the observed 
changes in LULC. Population expansion, drought 
periods, economic development, and infrastruc-
ture projects have accelerated the process of ur-
banization, resulting in the conversion of rural and 
natural landscapes into urban areas. Additionally, 
land cover changes have been impacted by fac-
tors such as climate, land management practices 
and strategies, and policy measures, which have 
contributed to the observed changes in LULC 
(Sang et al., 2023; Tan et al., 2024).

The sustainability of the environment and 
ecosystem services is significantly affected by 
land cover change. The loss of natural habitats 
and ecosystems can negatively affect soil fer-
tility, water quality, and biodiversity, which in 
turn impacts ecosystem function and resilience 
(Millennium Ecosystem Assessment, 2005). 
Moreover, expanding urban areas increase the 

Figure 6. Change in built up area between 2000 and 2014 (a: city of Al Hoceima, b: Cities of Imzouren
and Beni Bouayach)
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Figure 7. Change in bare land between 2014 and 2025 (City of Al Hoceima, Ajdir and parts of Nekor plain)

Figure 8. Change in forest and dense vegetation – Deforestation and forest degradation between 2000 and 2025 
(a: Study area, b: Issaguen, c: Bay of Al Hoceima)
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vulnerability of populations to environmental 
threats including pollution and flooding.

Furthermore, landslides investigations re-
quire good understanding of LULC dynamics 
and patterns. Changes in land cover can have 
a serious impact on soil stability which lead 

to increase the risk of landslides (Chen et al., 
2019), This effect is most pronounced in case 
of forest degradation and urbanization. In order 
to protecting infrastructures and human lives, 
mapping changes in LULC helps identify areas 
which are vulnerable to landslides and supports 

Figure 9. Change in built up area between 2000 and 2025 (a: Nekor Plain, b: City of Al Hoceima)

Figure 10. Change detection map from 2000 to 2025 in the study area

Table 7. Change assessment (2000 to 2014)
2014 (area in km2)

2000 (area in km2)

Classes Water
Forest & 
dense 

vegetation

Shrubland 
& sparse 

vegetation
Bare land

Urban & 
built up 

area
Total

Water 2.11 0 0 0.1 0.02 2.23

Forest & dense veg. 0.03 596.58 304.24 102.61 0.21 1003.7
Shrubland & sparse 
veg. 0.01 163.21 962.77 313.68 1.61 1441.3

Bare land 0.28 13.18 522.93 1375.65 10.21 1922.3

Urban & built up area 0 0.07 2.45 6 5.47 13.99

Total 2.43 773.04 1792.4 1798.04 17.52 4383.9
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the development of effective mitigation tech-
niques and land use planning.

Although our approach is solid, there are a 
few things to be aware of; first, the temporal and 
spatial resolution of our research was restricted 
by the lack of high-quality satellite images.

Secondly, various parameters, including spa-
tial resolution, spectral characteristics, and clas-
sification algorithms, may affect the precision of 
LULC classification (Shi et al., 2025).

Lastly, the reliability of our findings may be im-
pacted by uncertainties related to data preprocess-
ing and classification errors (Cánibe et al., 2022).

Further studies needs to concentrate on tack-
ling the detected constraints and investigating 
supplementary elements driving land use and 
land cover transformations, like socio-economic 
processes, land tenure structures, and policy mea-
sures. Assessments of LULC change detection 
can be made more accurate and reliable by incor-
porating participatory mapping methods, machine 
learning algorithms, and sophisticated remote 
sensing techniques (Zafar et al., 2024). More-
over, multidisciplinary research incorporating 

ecological, social, and economic viewpoints is 
required to create sustainable land management 
plans and lessen the negative effects of changing 
land cover on ecosystems and human welfare.

CONCLUSIONS

The main objective of this study was to pro-
duce and provide a standardized multi-decadal 
LULC change analysis for the study area (northern 
central Rif of Morocco) by using three temporal 
snapshots (2000, 2014 and 2025), with a consistent 
classification scheme and a strict evaluation of ac-
curacy for each class. This goal was accomplished, 
producing three comparable maps with overall ac-
curacies ranging from 87.5% to 90.8% and Kappa 
coefficient between 0.82 and 0.87, guaranteeing 
strong cross-temporal comparisons.

The analysis revealed noticeable patterns. 
Between year 2000 and year 2025, forest cover 
decreased by 5.36%, primarily on western parts 
of the study area where forests are abundant and 
slopes are high, while Built-up areas expanded 

Table 8. Change assessment (2014 to 2025)
2025 (area in km2)

2014 (area in km2)

Classes Water
Forest & 
dense 

vegetation

Shrubland 
& sparse 

vegetation
Bare land

Urban & 
built up 

area
Total

Water 2.04 0.02 0.17 0.19 0 2.43
Forest & dense 
veg. 0 567.96 185.06 19.73 0.28 773.04

Shrubland & 
sparse veg. 0.03 185.59 1302.98 297.93 5.88 1792.4

Bare land 0.09 15.18 642.58 1123.02 17.2 1798.04
Urban & built up 
area 0.01 0.01 1.23 7.32 8.95 17.52

Total 2.17 768.76 2132 1448.17 32.33 4383.9

Table 9. Change assessment (2000 to 2025)
2025 (area in km2)

2000 (area in km2)

Classes Water
Forest & 
dense 

vegetation

Shrubland 
& sparse 

vegetation
Bare land

Urban & 
built up 

area
Total

Water 1.82 0.05 0.17 0.16 0.03 2.24

Forest & dense veg. 0.01 594.77 357.95 50.16 0.8 1003.7
Shrubland & sparse 
veg. 0.04 157.14 1077.03 200.66 6.42 1441.3

Bare land 0.3 16.77 694.56 1192.23 18.38 1922.3
Urban & built up 
area 0 0.03 2.3 4.96 6.7 13.99

Total 2.17 768.76 2132 1448.17 32.33 4383.9
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by 0.42%, particularly in the urban areas. These 
findings provide the first spatially explicit, multi-
decadal evidence of land cover transitions in the 
central Rif, and help us to gain a deep understand-
ing of the complex interactions between natural 
processes and human activities, and how these 
dynamics jointly influence and modify land-
scapes and ecosystems.

By addressing the gap of limited temporal 
coverage and inconsistent classification in prior 
studies, this work establishes a robust baseline for 
future environmental monitoring. The findings 
provide essential foundational data for upcoming 
studies and opens new prospects for integrating 
LULC change data into landslide susceptibility 
modelling, erosion risk mapping, and land man-
agement strategies, offering decision-makers a 
reliable tool for mitigating environmental degra-
dation in this erosion-prone mountainous region.

Therefore, integrating concise and detailed 
LULC data into landslide mapping can accurately 
enhance our understanding of how land cover 
variations affect slope stability and support better 
risk mitigation strategies.
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