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INTRODUCTION

Bali is one of the most popular travel destina-
tions in the world because of its stunning natural sur-
roundings, rich cultural heritage, and friendly locals 

(Chin et al., 2017). Every year, the island welcomes 
millions of tourists from both domestic and foreign 
countries, and it makes a significant economic con-
tribution to Indonesia (Law et al., 2016). Facilities 
and supporting infrastructure for tourism have rap-
idly grown to meet this demand. However, the rate 
of expansion has exerted pressure on environmen-
tal management and spatial planning, particularly 
in coastal areas that serve as the foundation for the 
growth of the tourism industry.
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ABSTRACT
The conducted research aimed to quantify urban expansion implicated by the overtourism phenomenon in Canggu, 
Bali, a crucial issue for local and international citizens. Other researchers have not explored this area extensively, 
despite its recent popularity and complex environmental problems. However, the conducted examination solely 
focused on the expansion of built-up land in a time series spanning the past decade. To rapidly map urban growth, 
archived Landsat imagery were processed and the index-based built-up index (IBI) was computed. Year-specific 
thresholds were applied to classify each annual composite into built-up and non-built-up (vegetated/other) surfac-
es. Built-up expansion was then quantified for 2014–2024 and mapped at the village scale to show both extent and 
change. Built-up area increased by 317.97 ha (22.31%) over 2014–2024, with a sharp 177.84 ha (12.48%) rise con-
centrated in 2022–2024. Kerobokan Kelod (+2.95%), Tibubeneng (+2.14%), and Canggu (+1.85%) recorded the 
largest gains; Pererenan, Cemagi, and Beraban each added up to 0.82%. Over the same period, international tourist 
arrivals grew by an average of 71.22% per month, aligning with the acceleration of built-up expansion. Causality 
is not claimed; however, the timing and spatial concentration near tourism corridors indicate strong tourism-related 
pressure on land conversion. Uncertainty arises from the IBI threshold used to separate built-up from non-built-up 
surfaces. Bare land can share spectral values with impervious surfaces and create mixed pixels. IBI was binarized 
using -0.10 in 2016 and 2020 and -0.08 in other years, so area estimates near these cutoffs are sensitive. A brief 
threshold-sensitivity test and validation with higher-resolution imagery will improve accuracy. Despite this limi-
tation, the Landsat results show concentrated, tourism-linked built-up expansion around Canggu that coincides 
with the internationally publicized overtourism surge. These village-scale metrics provide clear evidence for local 
government to control land conversion, protect blue-green infrastructure, and refine spatial-planning regulations.

Received: 2025.08.12
Accepted: 2025.09.15
Published: 2025.10.01

Ecological Engineering & Environmental Technology, 2025, 26(10), 1–14
https://doi.org/10.12912/27197050/209594
ISSN 2719–7050, License CC-BY 4.0

ECOLOGICAL ENGINEERING 
& ENVIRONMENTAL TECHNOLOGY

https://orcid.org/0000-0001-5762-5755


2

Ecological Engineering & Environmental Technology 2025, 26(10), 1–14

In Bali, overtourism has emerged as a ma-
jor issue (Dodds and Butler, 2019). It refers 
to visitor numbers that are higher than what a 
destination can sustainably handle (Milano et 
al., 2019). Both Canggu and the neighboring 
Tanah Lot area exhibit the problem (Utama et 
al., 2024). Within ten years, the landscapes that 
were formerly primarily composed of green 
space and agriculture have changed into popular 
tourist destinations. The area’s natural beauty, 
laid-back vibe, and easy accessibility are the 
reasons for the activity shift from Kuta to Cang-
gu; however, the area’s rapid development has 
resulted in ongoing traffic, declining air quality, 
increased waste and greenhouse gas emissions 
(Sunarta et al., 2022; Sunarta and Saifulloh, 
2022a, 2022b; Grekousis et al., 2024). These 
stresses are exacerbated by the growth of built-
up land, which also calls into question the long-
term viability of Bali’s tourism industry.

The land conversion of Canggu coast reflects 
the dynamics of urbanization typical of quickly 
developing areas (Suamba et al., 2022). Competi-
tion for land is heightened by population growth 
and the growing need for social, economic, as 
well as tourism services. Strong accessibility 
draws investment and concentrates administra-
tive as well as economic activities, which speeds 
up conversion. New construction can boost em-
ployment and growth, but poor management de-
stroys ecosystems, reduces urban green space, 
and causes spatial conflict.

A reliable method for monitoring these 
changes over long periods of time and over wide 
regions is remote sensing. Cost-effective analy-
sis of land cover dynamics is made possible by 
multi-temporal satellite imagery, and the Landsat 
program provides a lengthy, continuous archive 
that goes back to 1972. The current sensors that 
provide spatial and temporal resolutions appropri-
ate for in-depth change detection include Landsat 
8 OLI/TIRS and Landsat 9 OLI-2/TIRS-2 (He-
mati et al., 2021, Wulder et al., 2019).

The index-based built-up index (IBI) was 
used in this study to identify and assess the 
growth of built-up areas in Canggu and nearby 
coastal villages. In order to suppress the back-
grounds of water and vegetation and enhance the 
built-up signal, Xu (2008) developed the IBI, 
which combines NDBI, SAVI, and MNDWI. 
According to reports, the accuracy of the Land-
sat 7 and Landsat 8 applications was 88.86% and 
82.52%, respectively (Estoque and Murayama, 

2015). In Tehran, comparisons revealed that the 
overall accuracy of the IBI was 87.66%, while 
the Urban Index, NDBI, and Normalized Dif-
ference Impervious Surface Index were 81.67%, 
81.91%, and 52.20%, respectively (Ezimand et 
al., 2018). Other studies in Chbar Ampov Dis-
trict, Phnom Penh, confirm strong results with 
overall accuracy of 95–98% and Kappa values 
of 0.85–0.88 (Mohiuddin et al., 2023). They 
also note that IBI yields positive values over 
built-up areas while filtering water and vegeta-
tion, improving extraction precision (Kaur and 
Pandey, 2022).

The issue of overtourism in Bali has not been 
widely examined by previous researchers. Re-
cent research publications, especially case stud-
ied in Canggu shows that residents experience 
typical disruptions of overtourism, including an 
influx of long-stay foreign visitors, noise pollu-
tion, traffic congestion, rapid gentrification, and 
inter-community conflict. Still, people who live 
there tend to make sense of these things (Suyan-
dnya et al., 2025). Another study on how tourists 
feel about tourism infrastructure found a modest 
positive link between infrastructure density and 
perceived overcrowding. This means that infra-
structure can make visitors unhappy (Antonio 
and Alamsyah, 2024). A subsequent study exam-
ining travelers’ opinions of overtourism reveals 
that destination sentiment averages 70% posi-
tive, with certain sites falling below this aver-
age, indicating less fulfilling visitor experiences. 
A strong correlation between tourist numbers and 
the physical environment indicates that environ-
mental pressure increases as visitor numbers 
grow (Khairina and Irawan, 2025).

Many recent studies focus only on the tour-
ist perspective, so the information presented 
in this paper is novel and adds complexity by 
examining impacts through built-up land ex-
pansion. This research aimed to detect built-up 
land from Landsat satellite imagery, then ana-
lyze the expansion of built-up land over a de-
cade (2014–2024). The authors provided the first 
village-scale, reproducible dataset and maps that 
quantify where and how quickly built-up land 
expanded during the recent overtourism surge 
in Canggu-Bali, supplying decision-ready infor-
mation for spatial planning and growth control. 
It was hypothesized that built-up area increased 
significantly over 2014–2024, which is in line 
with the phenomenon of overtourism in this 
tourist area. The resulting indicators and maps 
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support local government in controlling land 
conversion and in formulating or refining re-
gional spatial planning regulations that protect 
blue–green infrastructure while accommodating 
tourism demand.

METHODS

Research site 

The study concentrated on Bali’s southern 
coastal corridor, which runs from Canggu to the 
Tanah Lot tourist destination. Between 8°36’00” 
and 8°40’00” S and 115°4’00” and 115°11’00” E, 
the study area spans 5,968.98 hectares (Figure1). 
Twelve administrative villages spread over three 
subdistricts in two regencies are included. Mengwi 
Sub-district (Pererenan, Tumbak Bayuh, Munggu, 
Cemagi) and North Kuta Sub-district (Kerobo-
kan, Kerobokan Kelod, Tibubeneng, Canggu) in 

Badung Regency were investigated. Kediri Sub-
district (Beraban, Belalang, Pangkung Tibah, and 
Bengkel) in Tabanan Regency was visited.

This corridor was chosen because, with Pe-
titenget Beach, Canggu Beach, and Tanah Lot as 
its anchors, it is a significant hub for the growth of 
tourism. The region is ideal for spatial analysis of 
tourism-driven urbanization because of the rapid 
expansion of amenities and attractions like Atlas 
Beach Club and Bali Beach Glamping, which 
have increased land conversion. The necessity of 
keeping an eye on land-use change and its effects 
on the environment is highlighted by the recent 
transition from vegetated and agricultural land to 
built-up uses.

Data sources and preprocessing

Landsat 8 imagery (USGS Landsat 8 Collec-
tion 2 Tier 1 TOA Reflectance) from the Google 
Earth Engine archive was used. The radiometric 

Figure 1. Area study in the Canggu tourist area, village boundaries (white) and coastal tourist destinations (red), 
with the approved Canggu tourist area (yellow). Visualization with Landsat basemap

with RGB (NIR-SWIR1-SWIR2) where the bold colors indicate built-up areas
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and geometric quality of Tier 1 data, which facili-
tates land-change analysis, led to their selection 
(USGS, 2021). For every year from 2014 to 2024, 
the time frame runs from March to December. In 
order to validate the choice of IBI threshold and 
to assist in the interpretation of built-up change, 
historical Google Earth imagery was also studied.

Preprocessing was done to guarantee tempo-
ral comparability and maximize usable observa-
tions. The QA_PIXEL band was used to apply 
cloud and cloud-shadow masking. Those pixels 
were filtered to keep only clear-sky observations 
after a bitwiseAnd operator identified cloud and 
shadow bits. By lowering noise, this step en-
hanced the caliber of calculations that followed. 
In accordance with Chander et al. (2009), top-
of-atmosphere (TOA) Reflectance from Landsat 
8 Collection 2 Tier 1 for radiometric calibration 
were used in order to standardize reflectance over 
time. Reliable multi-temporal comparisons are 
supported by this adjustment, which takes sensor 
and illumination variations into account.

Calculation of the index-based 		
built-up index (IBI)

An extremely efficient algorithm called the 
IBI was created to precisely identify and evaluate 
built-up areas using satellite imagery. In order to 
distinguish urbanized areas from other types of 
land cover, this index combines several spectral 
indices. The following bands of Landsat 8 OLI 
data were used in this study: green (Band 3: 0.53–
0.59 μm), red (Band 4: 0.64–0.67 μm), near-infra-
red (NIR, Band 5: 0.85–0.88 μm), and shortwave 
infrared (SWIR1, Band 6: 1.57–1.65 μm). Three 
important spectral indices, i.e. NDBI, SAVI, and 
MNDWI are integrated by IBI.

a)	Normalized difference built-up index (NDBI) 
According to Zhao et al. (2003), NDBI is 

a spectral index created especially to identify 
urbanized or built-up areas. It separates urban 
features from other types of land cover by us-
ing the reflectance difference between the NIR 
and SWIR1 bands. Equation 1 is used to calcu-
late NDBI:

	 𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 =  𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 1 − 𝑁𝑁𝑁𝑁𝑁𝑁
𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 1 + 𝑁𝑁𝑁𝑁𝑁𝑁 

 

𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 =  𝑁𝑁𝑁𝑁𝑁𝑁 − 𝑅𝑅𝑅𝑅𝑅𝑅 × 1 + 𝐿𝐿
𝑁𝑁𝑁𝑁𝑁𝑁 + 𝑅𝑅𝑅𝑅𝑅𝑅 + 𝐿𝐿  

 

𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 =  𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺 − 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 1
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2  
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	 (1)

In comparison to the NIR band, built-up areas 
typically exhibit higher reflectance in the SWIR1 
band. As a result, urban or developed areas are 

usually indicated by positive NDBI values, 
whereas non-built-up features like vegetation or 
water are represented by negative or nearly zero 
values. Because of its ease of use and efficiency 
in identifying populated areas through multispec-
tral satellite imagery, this index is frequently uti-
lized in urban studies.

b)	Soil-adjusted vegetation index (SAVI)
A modified form of the normalized difference 

vegetation index (NDVI), the SAVI is intended 
to enhance vegetation detection in regions with 
high soil exposure and little vegetation cover 
(Huete, 1988). Equation 2 displays the math-
ematical formula.
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By lessening the impact of bare soil reflec-
tance on the vegetation signal, the constant L, 
which is usually set to values between 0 and 1 
(usually 0.5), makes up for soil brightness. SAVI 
is more dependable for assessing vegetation dy-
namics in complex landscapes because of this 
modification, which guarantees that it works well 
in areas with little vegetation cover or mixed with 
exposed soil, such as urban or semi-arid regions.

c)	Modified normalized difference water index 
(MNDWI)
A spectral index called the MNDWI was 

created to enhance the identification of wa-
ter features in satellite imagery. It successfully 
separates water features from other types of 
land cover by utilizing the difference in reflec-
tance between the green and shortwave infrared 
(SWIR1) bands (Xu, 2006). Equation 3 displays 
the mathematical formula.
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	 (3)

Positive MNDWI values are the result of the 
high reflectance of water bodies in the Green 
band and low reflectance in the SWIR1 band. On 
the other hand, land features like vegetation and 
soil usually produce values that are negative or 
very close to zero. By substituting the near-infra-
red (NIR) band with SWIR1, which lessens soil 
interference, the MNDWI provides improved ac-
curacy over its predecessor, NDWI. Because of 
this, MNDWI works especially well in urban and 
semi-urban areas, where bare soil and built-up 
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structures can make it more difficult to detect wa-
ter. Because of its increased accuracy, MNDWI 
is a useful tool for land-use classification and hy-
drological studies.

d)	Index-based built-up index
These three indices were combined to calculate 

IBI using the Equation 4:
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	 (4)

While other land features, like vegetation and 
water bodies, have values near zero or negative, 
built-up areas are given positive values by IBI. In 
satellite imagery, this distinction makes it easier to 
identify built-up land. By combining these indices, 
the IBI algorithm can reduce background noise, 
such as pixels from vegetation and water, and ex-
tract built-up land with greater accuracy. Prior re-
search has confirmed that this algorithm performs 
exceptionally well in detecting urban areas under 
a range of environmental and geographic circum-
stances. Because of its dependability as well as 
high temporal and spatial resolution of Landsat 8, 
IBI is a perfect tool for examining changes in land 
use in the areas that are rapidly urbanizing, like the 
tourist destinations of Canggu and Tanah Lot.

Satellite image interpretation

After computing the IBI, we converted each 
raster to a binary map using year-specific thresh-
olds. The 2016 and 2020 scenes used a threshold 
of –0.10; all other years used –0.08. The thresh-
olding strategy followed the Otsu method (Otsu, 
1979), which underpins the IBI procedure de-
scribed by Xu (2008). Although Xu reported an 
effective threshold near 0.013 in his case study, 
the values were adjusted to local conditions after 
visual validation against high-resolution Google 
Earth imagery.

For an annual IBI image, let its histogram have 
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​. The between-class variance for 
a threshold at bin t calculated by Equation 5, and 
the optimal Otsu threshold index by Equation 6.
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Let T* be the IBI value at the center of bin t*. 
The binary classification is then (Equation 7)
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	(7)

where:	pk is the probability of the k – th IBI his-
togram bin; ω(t) is the cumulative prob-
ability up to bin t ; μ(t) is the cumulative 
first moment; μT is the global mean of the 
histogram; 

𝑝𝑝𝑘𝑘 (∑𝑝𝑝𝑘𝑘
𝐿𝐿

𝑘𝑘=1
= 1) 

ω(𝑡𝑡) = ∑𝑝𝑝𝑘𝑘
𝑡𝑡

𝑘𝑘=1
 

 

μ(𝑡𝑡) = ∑𝑘𝑘
𝑡𝑡

𝑘𝑘=1
 𝑝𝑝𝑘𝑘 

 

μ𝑇𝑇 = ∑𝑘𝑘
𝐿𝐿

𝑘𝑘=1
 𝑝𝑝𝑘𝑘 

 

σ𝑏𝑏2(𝑡𝑡)  is the between-class 
variance; t* is the maximizing threshold 
bin; T* is the corresponding IBI threshold 
value; and B(x) is the binary built-up label 
at pixel x.

Published work shows that IBI thresholds 
vary by season, landscape, and sensor charac-
teristics. Reported examples include –0.070 (Es-
toque and Murayama, 2015), –0.083 (Bouhen-
nache et al., 2019), 0.26 for 2013 and 0.20 for 
2016 (Sekertekin et al., 2018), and –0.336 (Xi et 
al., 2019). More recent analyses also note year-to-
year variation linked to regional factors (Kebede 
et al., 2022). These differences reflect how veg-
etation cover, land-use composition, and atmo-
spheric conditions shape reflectance; for example, 
rainy-season vegetation can resemble bare soil, 
complicating separation from built-up surfaces. 
In contrast, simpler land-use mosaics (e.g., water 
bodies, urban forests, and dense built-up cores) 
tend to yield more stable thresholds.

Following thresholding, the rasters were re-
classified to built-up = 1 and non-built-up = 0 and 
quantified area by village using the Zonal Histo-
gram tools in ArcGIS 10.8. This produced a con-
sistent spatial dataset of built-up extent for each 
administrative unit and provided the basis for as-
sessing decadal land-conversion dynamics in the 
Canggu coastal tourism of Bali.

Quantifying built-up expansion 

To report built-up area expansion consis-
tently, the portion of end-year built-up land that 
was newly converted since the baseline year was 
quantified. This expresses expansion as a percent-
age of the final built-up area (Equation 8).
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𝐼𝐼𝐼𝐼𝐼𝐼 =  
𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 − 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 + 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀

2
𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 + 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 + 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀

2  
 

 

σ𝑏𝑏
2(𝑡𝑡) =

[μ𝑇𝑇 ω(𝑡𝑡) − μ(𝑡𝑡)]2

ω(𝑡𝑡) [1 − ω(𝑡𝑡)]  

 
 
 
 
 

𝑡𝑡∗ = arg max
𝑡𝑡∈{1,…,𝐿𝐿−1}

σ𝑏𝑏
2 (𝑡𝑡) 

 

 
 
 

 

 

𝐵𝐵(𝑥𝑥)  = {1, 𝐼𝐼𝐼𝐼𝐼𝐼 (𝑥𝑥) ≥ 𝑇𝑇∗ (𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 − 𝑢𝑢𝑢𝑢)
0, 𝐼𝐼𝐼𝐼𝐼𝐼 (𝑥𝑥) < 𝑇𝑇∗ (𝑛𝑛𝑛𝑛𝑛𝑛 − 𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 − 𝑢𝑢𝑢𝑢) 

 

 

𝐸𝐸𝑡𝑡1→𝑡𝑡2 = 

= 𝐴𝐴built(𝑡𝑡2) − 𝐴𝐴built(𝑡𝑡1)
𝐴𝐴built(𝑡𝑡2) × 100% 

 

 

	 (8)

where:	Et1→t2 is built-up expansion between 
years t1t2(%); Abuilt(t) is built-up area at 
year t (ha), obtained from the binary IBI 
raster (count of built-up pixels × pixel 
area); t1 ​is baseline year; t2 is later year.

RESULTS AND DISCUSSION

Index-based built-up index

Built-up land has clearly expanded through-
out the study area, according to the Landsat 8 
time-series analysis. Built-up surfaces are rep-
resented by red zones in Figure 2, which show a 
noticeable spread from 2014 to 2024. Addition-
ally, mean IBI values increase over time, ris-
ing from -0.19 in 2014, -0.22 in 2016, -0.18 in 
2018, -0.21 in 2020, -0.20 in 2022, and -0.17 in 

2024 (Figure 2). The 2024 highest mean shows 
a stronger built-up signal and is consistent with 
the mapped expansion. The vegetation dynam-
ics surrounding tourist zones, where agricultural 
and vacant parcels displayed regrowth and in-
creased canopy density, are reflected in the low-
est mean in 2016. As agricultural fields momen-
tarily restored vegetation cover along the Per-
erenan and Pangkung Tibah coasts in 2020, the 
annual mean decreased in comparison to 2018 
and 2022 (Figure 3). Built-up areas exhibited 
stable spectral behavior that permitted consis-
tent separation from other land covers in spite 
of these transient fluctuations (As-syakur et al., 
2012; Rasul et al., 2018).

Extensive conversion along the main tourism 
corridor is confirmed by a pixel-by-pixel compar-
ison between 2014 and 2024 (Figure 3). A thor-
ough replacement of agricultural land by built-up 
surfaces can be seen when tracking values from 
the southern region, close to Como Beach Club, 
northward along Padang Lingjong Road and the 
nearby Pantai Batu Bolong Road. The flanks of 

Figure 2. Multi-temporal index-based built-up index (IBI) maps (2014–2024) for the Canggu tourism areas, 
green indicates low IBI (< −0.30), and yellow–red indicates increasing IBI and higher likelihood

of built-up surfaces (red > −0.08)
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these roads, which run north to Canggu Village, 
become areas of rapid change. These trends show 
how the demand for tourism infrastructure is driv-
ing rapid urbanization, underscoring the necessity 
of ongoing observation and evidence-based spa-
tial planning to control growth while preserving 
remaining green space.

Built-up expansion 

The IBI raster was reclassified into two 
classes: built-up and non-built-up. Water bodies, 
shrubs, plantations, urban forests, rice fields, and 
other vegetated land are all considered to be part 
of the non-built-up class. According to earlier re-
search, construction sites with bare soil frequent-
ly display spectra resembling those of impervious 
surfaces and were probably mapped as built-up 
(Kaur and Pandey, 2022). 

The Canggu-Tanah Lot corridor exhibits a 
consistent increase in the amount of built-up area 
between 2014 and 2024. According to Table 1, the 
amount of built-up land was 1,107.27 hectares in 
2014, 1,160.19 hectares in 2016, 1,191.69 hect-
ares in 2018, 1,207.71 hectares in 2020, 1,247.40 
hectares in 2022, and 1,425.24 hectares in 2024. 
The annual growth is consistent with the fast ur-
banization of the region brought on by tourism 
and the expansion of auxiliary infrastructure.

With a total increase of 22.31% over the 
course of ten years, this expansion shows a sub-
stantial change in the land use of the area. The 
largest change, which accounted for more than 
half of the total change over the course of the 
study, happened during the 2022–2024 period, 

when built-up land increased by 12.48% (Figure 
4). This quick growth coincides with the spike in 
post-pandemic travel and the construction of in-
frastructure to meet the rising demand. Different 
rates of expansion are revealed when the data is 
broken down into intervals. Built-up land grew 
4.56% between 2014 and 2016, then 2.64% be-
tween 2016 and 2018 and 1.33% between 2018 
and 2020. Prior to the dramatic increase in the last 
two years of the study, a moderate acceleration of 
3.18% growth was noted between 2020 and 2022.

This development boom coincides with the 
post-pandemic surge in travel. The main driver of 
land-use change, particularly along Bali’s south-
ern coast, was the swift recovery in foreign ar-
rivals (Antara and Sumarniasih, 2024; Wirata and 
Ermawati, 2024; Wisnumurti, 2023). The number 
of arrivals increased from 1,310 in February 2022 
to 454,801 in February 2024, and from 246,504 in 
July 2022 to 625,665 in July 2024 (Central Bureau 
of Statistics, 2024). The recovery strength and te-
nacity were highlighted by the average monthly 
growth of 71.22% from February to October.

The demand for lodging, entertainment, and 
other tourism-related services increased as the 
number of visitors increased, hastening the con-
version of vegetated and agricultural land into ur-
ban areas. According to the results of the remote 
sensing, the built-up areas in Canggu and the sur-
rounding areas have significantly expanded, ex-
tending northward toward Tanah Lot. These trends 
monitor the growth of supporting infrastructure 
and the escalation of tourism-related activities.

The boom increased social and environmen-
tal pressures while also bringing about economic 

Figure 3. Pixel value profile graph of the index-based built-up index (IBI) comparing 2014 and 2024
in the Canggu central tourism activities 
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gains. The local and international media have ex-
tensively covered the visible signs of overtourism, 
which include congestion, increased waste, dete-
riorated air quality, and vegetation loss (Kompas, 
2024; Responsible Travel, 2024; Baloch et al., 
2023). Continuous monitoring and spatial plan-
ning that supports growth while preserving green 
space and coastal ecosystems are necessary, ac-
cording to the evidence (Figure 5).

Land use changes 

The map shows a clear coastal gradient in ur-
banization. Yellow marks long-established built-
up areas; these form a continuous core in the 
southeast around Kerobokan Kelod and Kerobo-
kan. Moving northwest through Tibubeneng and 
Canggu, dense red pixels appear around Berawa, 
Kayu Putih, and Canggu Beaches, indicating re-
cent conversion of agricultural or open land. This 
band of new construction extends past Pererenan 
and Munggu toward Cemagi and Tanah Lot, where 
red patches cluster near beach nodes and tourism 
facilities. Farther northwest, red concentrations 

near Kedungu and Pangkung Tibah mark emerg-
ing expansion fronts along the urban edge. Inland, 
red spurs cut into the teal background (unchanged 
non–built-up) in Tumbak Bayuh, Pererenan, and 
Munggu, tracing lot-by-lot infill along roads and 
village centers. Although sizeable teal areas re-
main between settlements, their fragmentation 
signals an ongoing loss of non-built land. Analy-
sis of the 2014–2024 period confirms these pat-
terns (Figure 6). 

The highest conversion rates from non-
built-up to built-up occur in Kerobokan Kelod 
(2.95%), Tibubeneng (2.14%), Canggu (1.85%), 
and Kerobokan (1.39%). All exceed the study-ar-
ea average and reflect strong demand for tourism-
related construction. Kerobokan and Kerobokan 
Kelod act as gateways to the southern tourism 
belt, concentrating villas, restaurants, as well as 
commercial services that serve growing domestic 
and international flows. As development pushed 
outward, Tibubeneng positioned between Cang-
gu and Kerobokan converted land rapidly and 
now functions as a transition zone with high-end 

Table 1. Statistical summary of built-up and non-built-up area coverage (2014–2024)

Years
Built-up areas Non-Built-up areas

Area (pixel) Area (ha) Area (pixel) Area (ha)

2014 12303 1107.27 54019 4861.71

2016 12891 1160.19 53431 4808.79

2018 13241 1191.69 53081 4777.29

2020 13419 1207.71 52903 4761.27

2022 13860 1247.40 52462 4721.58

2024 15836 1425.24 50486 4543.74

Figure 4. Percentage of built-up land expansion for each biannual transition (2014–2024)
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Figure 5. Spatial distribution of built-up area expansion (red zones) during the 2014–2024 period

Figure 6. Land conversion map of the Canggu tourism areas, with emphasis on red-shaded zones representing 
the expansion of built-up areas along coastal tourism destinations between 2014 and 2024
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lodging and entertainment. This shift, however, 
increases pressure on local ecosystems as well as 
water and waste services.

Urbanization has continued to spread west 
from Canggu toward Tanah Lot. Although rates 
in Pererenan, Cemagi, and Beraban are lower 
0.80–0.82%, they still indicate steady expan-
sion into amenity-rich coastal landscapes. 
Cemagi and Beraban attract investment in 
luxury accommodation, while Pererenan is 
emerging as a quieter alternative to the Canggu 
beachfront. Even villages with comparatively 
low pressure (Pangkung Tibah, Belalang, and 
Bengkel) show measurable conversion of 0.13–
0.43% (Figure 7). Together, these results show 
that as tourism infrastructure and urban servic-
es extend along the coast and inland corridors, 
no locality in the study area remains unaffected 
by land-use transformation.

The mapped changes show a two-stage dy-
namic overall. Development initially focused 
on core nodes, like Kerobokan, Kerobokan 
Kelod, and Tibubeneng. As those nodes became 

saturated, the focus shifted to nearby villages, 
resulting in corridor-wide sprawl from Canggu 
to Tanah Lot. There are significant planning and 
sustainability ramifications (Warastuthi et al., 
2024). High accessibility areas are subject to 
disproportionate pressure, and major conversion 
can worsen environmental quality by decreasing 
carbon reserves, increasing the risk of flooding, 
and reducing green space (Andyana et al., 2023; 
Diara et al., 2024; Sudarma et al., 2024).

Built-up expansion and overtourism

Built-up land expanded sharply from the 
Canggu tourist area to the Tanah Lot destina-
tion along Bali’s southern coast. The obtained 
time-series results show an average built-up 
area of 1,182.85 ha (4.84%) per year. There was 
a clear surge of 12.48% during 2022–2024, co-
inciding with the transition from the COVID-19 
pandemic to the post-pandemic period. Because 
literature on overtourism in Bali, and Canggu 
in particular, is limited, this interpretation was 

Figure 7. Percentage of land use changes in coastal villages of south Bali tourism area
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supported with international media reports. 
These reports indicate that after the pandemic 
Bali received 6.33 million international tour-
ists in 2024 and is targeting 6.5 million in 2025; 
however, only about one-third were recorded as 
paying the tourism levy, indicating weak local 
policy enforcement (de Guzman, 2025).

CNA describes “Concrete Canggu,” where 
low land prices, unregulated growth, and the 
absence of a coherent master plan have creat-
ed daily congestion and visible environmental 
pressure (Paulo and Pardomuan, 2024). SCMP 
details the on-the-ground reality: the famous 
Canggu shortcut routinely becomes a car park, 
with traffic jams and piles of rubbish (Smith, 
2024). ABC News (Foreign Correspondent) 
documents a property boom that has turned rice 
paddies into “Instagrammable” villas and large-
scale projects aimed at foreign residents and 
digital nomads (see Figure 8a). Local activists 
describe this change as “from heaven to hell,” 
with an estimated 1,000 ha of farmland lost each 
year (Birtles and Waterhouse, 2024).

The Guardian complements this with declas-
sified 1965 spy-satellite imagery compared with 
2024 views, visually showing how the coast-
line from Seminyak to Canggu has shifted from 
quiet villages to dense rows of resorts and villas; 
the article links these changes to overtourism, 

land-use pressure, and weak early levy collec-
tion (Neilson, 2025) see Figure 8c and Figure 
8d. Reuters also reports the moratorium as part 
of a broader national plan to reform tourism, not-
ing about 200,000 foreign residents and issues 
ranging from crime as well as job competition to 
waste, as well as 2.9 million foreign visits in the 
first half of 2024 (Nangoy, 2024). International 
news outlets also point out that waste and pollu-
tion are common signs of too many tourists. Re-
uters shows how urgent the situation is by show-
ing pictures of beaches full of plastic (Widianto, 
2024). Some travel sites go even further and 
have “No List” features that make people think 
twice about going to places like Bali, which have 
too many visitors and a “plastic apocalypse” 
(Fodor’s Travel, 2024; Vlamis, 2024).

 The obtained findings provide the inaugu-
ral empirical trajectory that correlates tourism 
dynamics during prosperous years with spatial 
urban expansion. The fact that 2022–2024 made 
the most contribution to the decade’s growth sup-
ports the idea that overtourism is linked to land 
conversion, mobility saturation, waste burdens, 
and environmental dangers downstream. These 
numbers give us a way to measure how Bali is 
changing from a tourist model based on volume 
to one based on quality.

Figure 8. Photographic views illustrating the transformation of rice field landscapes in Canggu: (a) and
(b) depict former agricultural areas now dominated by hotels, villas, and various tourism-related facilities;

(c) and (d) show the rapid expansion of built-up infrastructure and tourism amenities in the vicinity
of Canggu tourism areas
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CONCLUSION

This study bridged a critical evidence gap 
on overtourism in the Canggu coastal tourism 
areas by providing corridor-wide, decade-scale, 
Landsat-based evidence of built-up land conver-
sion using the index-based built-up index. The 
first village-scale, reproducible dataset and maps 
that locate as well as characterize the pace and 
direction of expansion, offering decision-ready 
information for spatial planning and growth con-
trol, were delivered. The findings support the hy-
pothesis that built-up area increased substantially 
over the study period in ways consistent with the 
overtourism dynamic in this coastal tourism zone.
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