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INTRODUCTION

Over time, the world has undergone signifi-
cant demographic and economic evolution, re-
sulting in increased pressure on the environment 
and a growing demand for natural resources, 
food, energy, and other essentials (O’Sullivan, 

2020). The hydrological cycle, a fundamental 
component for sustaining life on Earth, is also 
influenced by economic development (Rast et 
al., 2014). Even a minor disruption of this cycle 
has detrimental effects on water and soil resourc-
es, thereby impacting food security (Ravi et al., 
2010; Patra et al., 2023; Ologunde et al., 2024). 
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ABSTRACT
Morocco is facing an alarming decline in surface water supplies, which is severely impacting dam reserves due to 
climate change and a scarcity of rainfall. The El Makhazine dam, located in the north, is crucial in supplying 800 Mm3 
annually of water, and the irrigation of 34,000 ha in the Loukkos perimeter. The study and monitoring of water and 
sediment discharge are urgently needed to plan anti-erosion interventions, thus ensuring the sustainability of regional 
water resources. This study has achieved innovation by applying the soil and water assessment tool (SWAT) model 
to the basin using high-resolution data. These data include climate, flow, and sediment concentration from 1979 to 
2019, topographic data, land use data from a high-resolution Sentinel image, and soil data from laboratory analyses. 
The SUFI2 algorithm was used to simulate the hydrological process in the basin. In contrast, the SWAT-CUP program 
calibrated and validated the model over two distinct intervals (1979–2002 and 2003–2019). The model utilized 23 
sensitivity parameters to control flows and sediments, assessing reliability through statistical indices such as NSE, 
PBIAS, and R². The results were used to analyze the basin’s water yield and calculate the water balance, revealing a 
predominance of evapotranspiration and surface runoff. Erosion rates and sediment load ranged from 5.36 to 99.86 t/
ha/yr, with an average of 29.33 t/ha/yr. The sub-watersheds were prioritized and ranked based on their erosion rates, 
with a focus on implementing erosion control interventions. The results of the Best Management Practices simulation 
indicated that terracing was the most effective practice for the region, resulting in a 64.8% reduction in erosion. The 
model has demonstrated effectiveness in simulating watershed development and simulating practices to reduce dam 
siltation. This document is a valuable guide for planners in hydrological management in northern Morocco.
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Understanding the hydrological cycle at a water-
shed scale provides better guidance for sustain-
able interventions and preservation efforts related 
to soils and water (Pande et al., 2020; Yang et al., 
2021). Consequently, watershed-level interven-
tions are now part of current strategies to combat 
soil degradation, water quality deterioration, and 
the reduction of water storage capacity in rivers 
and reservoirs.

Scientists consistently employ cutting-edge 
technologies when assessing hydrological cycles 
in watersheds. These technologies enable the rap-
id mapping of sediment-contributing areas, the 
estimation of water balance components within a 
watershed, and the quantification of the volume 
of water and sediment reaching the outlet (Li et 
al., 2021; Goharrokhi et al., 2022). Over time, all 
models developed have undergone improvements 
or have been used as a reference for creating new 
models. There is no perfect model for precisely 
simulating hydrological systems in watersheds. 
The choice of which model to apply primarily 
depends on local basin conditions, climatic and 
environmental parameters, and, most impor-
tantly, the availability of essential data for model 
implementation. In addition, some limitations 
and advantages vary from one model to another 
(Parra et al., 2018; Al-hasn et al., 2024). Review 
articles demonstrate that empirical models, such 
as USLE and its revised versions, RUSLE and 
modified MUSLE, are valid for estimating sheet 
erosion rates (Sadeghi et al., 2014; Djoukbala et 
al., 2019; Ketema and Dwarakish, 2021). None 
of these models considers parameters related to 
sediment load transported in gullies and streams. 
In contrast, the Potential Erosion Method (EPM) 
employs nearly the same parameters as the em-
pirical USLE models, except that it considers ero-
sion forms such as gullies, rills, bank cutting, and 
others (Ahmadi et al., 2020; Eltaif et al., 2022).

Sampling-based techniques have also been 
developed for soil assessment. These techniques 
typically rely on measuring radionuclides such as 
Cs-137, Pb-210, B-7, or magnetic susceptibility 
(Matisoff, 2014; Walling and Foster, 2016; Banerji 
et al., 2022). They enable the evaluation of soil 
degradation status and erosion degree with preci-
sion surpassing empirical models. However, they 
need to offer the capability to model the hydrologi-
cal system within a watershed or quantify sediment 
load transport to the outlet (Ouallali et al., 2020).

The behavior of hydrological systems, includ-
ing the water cycle, precipitation, river flow, and 

sediment input, can be simulated using hydrologi-
cal models (Santos et al., 2022; Sahu et al., 2023). 
There are numerous varieties of hydrological 
models, varying in complexity and specific ap-
plication. These include the curve number (CN) 
conceptual rainfall-runoff model, which is used to 
estimate runoff based on vegetation cover and soil 
type (Verma et al., 2022; Forootan, 2023). Linear 
reservoir physical models represent a watershed 
using a single reservoir with inputs (precipitation) 
and outputs (flow) (Nourani et al., 2009). Monte 
Carlo simulation models estimate flood probabili-
ties based on precipitation variability (Rahman et 
al., 2002; Loveridge and Rahman, 2018). Coupled 
hydrological models integrated with water quality 
models assess the impact of pollutant discharges 
on stream water quality. The soil and water assess-
ment tool (SWAT), a physically-based distributed 
model (Neitsch et al., 2011), divides a watershed 
into multiple sub-basins, considering the unique 
characteristics of each sub-basin, enabling more 
detailed modeling of spatial variability in the hy-
drological system within a watershed (Yang et al., 
2016; Worqlul et al., 2018).

The choice to utilize the SWAT model by re-
searchers and decision-makers is currently driven 
by its ability to assess the hydrological system and 
sediment yield within a watershed (Francesconi 
et al., 2016; de Oliveira Serrão et al., 2022). It in-
tegrates various hydrological processes, accounts 
for agricultural management practices, and mod-
els the spatial variability of watershed character-
istics (Krysanova and White, 2015; Briak et al., 
2019). Moreover, SWAT allows for water qual-
ity modeling in addition to erosion, making it a 
versatile tool for watershed studies (Zettam et al., 
2022). Its validation and calibration using SWAT-
CUP, based on accurate measurements of flow 
rates and sediment concentrations at hydrometric 
stations, enhances the accuracy of the results by 
adjusting the model to the specific conditions of 
the study watershed (Chiang et al., 2023; Oduor 
et al., 2023). Consequently, SWAT is widely em-
ployed in hydrology research and water resource 
management, offering a robust approach to study-
ing erosion and sedimentation, particularly in 
complex agricultural and environmental contexts.

Applying the SWAT model in Morocco pres-
ents significant challenges due to several factors. 
Firstly, the number of studies utilizing SWAT in 
the country is minimal. This limitation can be 
partly attributed to data availability constraints 
and the complexity of model application (Briak 
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et al., 2016; Ouallali et al., 2020). Secondly, 
Morocco needs more meteorological and hydro-
metric stations, which constrain the amount and 
quality of data required for calibrating and vali-
dating the model. Furthermore, available data for 
these processes, including flow rates, sediment 
concentrations, and water quality data, are often 
scarce and sometimes cover only a short period, 
further complicating model validation over an 
extended timeframe.

Furthermore, the absence of detailed soil 
maps and precise pedological data, such as bulk 
density, pH, hydraulic conductivity, particle size 
distribution, and organic matter, for most Moroc-
can areas poses a significant challenge for model 
parameterization. The accuracy of these data is 
crucial for obtaining reliable results in hydrologi-
cal simulations. Lastly, applying SWAT requires 
in-depth expertise and mastery of the tool, which 
can hinder model implementation (Halbe et al., 
2018; Bodrud-Doza et al., 2023). Despite these 
challenges, SWAT is a valuable tool for evalu-
ating and managing a nation’s water resources, 
which face significant hydrological issues (Sa-
mimi et al., 2020; Jeyrani et al., 2021), under-
scoring the need to invest in data collection and 
training to enhance the model’s application in the 
Moroccan context.

The present study presents an exceptional 
opportunity to address the challenges and issues 
associated with applying the SWAT model in Mo-
rocco. As an ideal and fundamental case study, it 
offers several crucial advantages for future SWAT 
applications in the country. Firstly, our study ben-
efits from the availability of high-resolution land 
use and topographic data, an essential resource 
for accurate model parameterization. These de-
tailed data provide a more accurate representa-
tion of watershed characteristics and contribute 
to more precise modeling of hydrological and 
erosion processes. Furthermore, we have access 
to detailed pedological data based on a compre-
hensive analysis of physicochemical parameters 
in soil profiles. This wealth of pedological data 
enhances the accuracy of modeling erosion and 
sedimentation processes. Additionally, the select-
ed study area provides an ideal case regarding the 
size and spatial variability of erosion parameters, 
allowing us to obtain representative and general-
izable results for other regions in Morocco.

Another significant advantage is the pres-
ence of a downstream reservoir in the study area, 
ensuring the supply of irrigation water, drinking 

water, and hydroelectric power production. This 
characteristic makes the studied site important 
for regional water resource planning and man-
agement. Moreover, we have a historical dataset 
spanning 40 years, including daily and monthly 
data on flow rates, sediment concentrations, and 
precipitation. These extensive and detailed time 
series provide a solid foundation for model cali-
bration and validation, thus enhancing the reli-
ability of our study’s results.

The objectives of this study are as follows: 
(i) Modeling soil erosion and sedimentation pro-
cesses in the watershed using the SWAT model 
based on high-resolution land use and topograph-
ic data. (ii) Examine the spatial variability of ero-
sion and sedimentation parameters in the study 
area and identify erosion-sensitive zones. (iii) 
Calibration and validation of the SWAT model 
using 40 years of historical data on flow rates and 
sediment concentrations to ensure the reliability 
of the modeling results. (iv) Evaluate the impact 
of erosion on the region’s water resources, par-
ticularly on the downstream reservoir, by deter-
mining its sedimentation rate. (v) Recommend 
sustainable water resource management and soil 
conservation practices in the region based on 
study results and tested management scenarios. 
Thus, this study offers a reference model for 
sustainable water resource management in the 
region and contributes to addressing the hydro-
logical challenges facing Morocco.

MATERIALS AND METHODS

Study area 

The Oued El Makhazine dam, located ap-
proximately 10 kilometers southeast of Ksar El 
Kebir, controls a watershed with a surface area 
of 1.820 km2. With its reservoir having a volume 
of 773 Mm3, it regulates average annual water in-
flows of 800 Mm3 at the site. Precipitation in this 
basin, primarily influenced by its proximity to the 
Atlantic Ocean, averages around 725 mm, result-
ing in a discharge of 1.200 Mm3 measured at the 
basin’s mouth (Figure 1). The El Makhazine dam 
provides security and protection to the cities of 
Ksar El Kebir and Larache and the downstream 
plain through a significant reduction in flood 
events. The thirty-year flood flow has been sub-
stantially reduced from 4000 m3/s to 2000 m3/s. 
Additionally, this structure ensures a guaranteed 
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annual supply of 20 Mm3 of drinking and indus-
trial water for the region. Most importantly, it 
facilitates irrigation across 35,000 ha within the 
Loukkos perimeter, delivering an annual volume 
of 270 Mm3 agricultural water. 

Implementation of the model SWAT

The SWAT model offers flexibility in its opera-
tional scales, encompassing sub-daily, daily, month-
ly, and annual temporal resolutions. Within the 
framework of this investigation, ArcSWAT-2012, 
an integrated component of ArcGIS 10.3, facilitates 
the execution of the hydrological model. This inter-
face utilizes key input data, including soil qualities, 
land-use patterns, topographical information, and 
climatic databases. Notably, the SWAT model can 
generate missing climatic parameters, such as hu-
midity, solar radiation, and wind speed (Mengistu 
et al., 2019; Sharma et al., 2022).

The assessment of hydrological processes 
encompasses a diverse array of components, 
spanning infiltration, surface runoff, percolation, 
evaporation, evapotranspiration, as well as lateral 
and subsurface fluxes (Vereecken et al., 2022). 
Authoritative references, such as the SWAT man-
ual and the comprehensive research conducted by 
Abbaspour et al., (2015), offer profound insights 

into the requisite procedures for implementing 
the SWAT paradigm.

The SWAT model simulates the hydrological 
cycle and the water balance within the watershed 
using the formula (Equation 1).

	

1 
 

𝑆𝑆𝑆𝑆𝑡𝑡 = 𝑆𝑆𝑆𝑆0 · ∑ (
𝑅𝑅𝑑𝑑𝑑𝑑𝑑𝑑 − 𝑄𝑄𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 −

− 𝐸𝐸𝑎𝑎 − 𝑊𝑊𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 − 𝑄𝑄𝑔𝑔𝑔𝑔
)
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𝑛𝑛=1
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	(1)

where:	Wseep is the amount of percolation and out-
flow from the bottom of the soil profile on 
day n (mm H2O), Wseep is the amount of 
backflow on day n (mm H2O), Ea is the 
amount of evapotranspiration on day n 
(mm H2O), Qsurf is the quantity of surface 
runoff on day n (mm H2O), and Qgw is the 
quantity of backflow on day n (mm H2O).

Using the modified soil loss equation 
(MUSLE) variables (Equation 2) (Williams, 
1975; Talebizadeh et al., 2010), the SWAT model 
can additionally estimate the amount of sediment 
discharged at the watershed outlet and predict the 
sediment patterns:

	

1 
 

𝑆𝑆𝑆𝑆𝑡𝑡 = 𝑆𝑆𝑆𝑆0 · ∑ (
𝑅𝑅𝑑𝑑𝑑𝑑𝑑𝑑 − 𝑄𝑄𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 −

− 𝐸𝐸𝑎𝑎 − 𝑊𝑊𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 − 𝑄𝑄𝑔𝑔𝑔𝑔
)

𝑡𝑡

𝑛𝑛=1

 (1) 

 
𝑆𝑆𝑆𝑆𝑆𝑆 = 11.8 · (𝑄𝑄𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 · 𝑞𝑞𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 · 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎ℎ𝑟𝑟𝑟𝑟)0.56 · 

· 𝐾𝐾𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢 · 𝐶𝐶𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢 · 𝑃𝑃𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢 · 𝐿𝐿𝐿𝐿𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢 · 𝐹𝐹𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶  
 

(2) 
 
𝑅𝑅2 = (∑ (𝑄𝑄𝑆𝑆𝑆𝑆

𝑛𝑛
𝑖𝑖=1 −𝑄𝑄𝑆𝑆)·(𝑄𝑄𝑚𝑚𝑚𝑚−𝑄𝑄𝑚𝑚))2

∑ (𝑄𝑄𝑆𝑆𝑆𝑆−𝑄𝑄𝑆𝑆)2𝑛𝑛
𝑖𝑖=1 ·∑ (𝑄𝑄𝑆𝑆𝑆𝑆−𝑄𝑄𝑆𝑆)2𝑛𝑛

𝑖𝑖=1
 (3) 

 

𝑁𝑁𝑁𝑁𝑁𝑁 = 1 − ∑ (𝑌𝑌𝑖𝑖
𝑜𝑜𝑜𝑜𝑜𝑜−𝑌𝑌𝑖𝑖

𝑠𝑠𝑠𝑠𝑠𝑠)2𝑛𝑛
𝑖𝑖=1

∑ (𝑌𝑌𝑖𝑖
𝑜𝑜𝑜𝑜𝑜𝑜−𝑌𝑌𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚)2𝑛𝑛

𝑖𝑖=1
 (4) 

 

𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 =
∑ (𝑌𝑌𝑖𝑖

𝑜𝑜𝑜𝑜𝑜𝑜−𝑌𝑌𝑖𝑖
𝑠𝑠𝑠𝑠𝑠𝑠)·100𝑛𝑛

𝑖𝑖=1
∑ 𝑌𝑌𝑖𝑖

𝑜𝑜𝑜𝑜𝑜𝑜𝑛𝑛
𝑖𝑖=1

 (5) 

𝐴𝐴(%) =  𝑇𝑇𝑇𝑇 − 𝑇𝑇𝑇𝑇
𝑇𝑇𝑇𝑇  · 100 (6) 

 
 
 

	 (2)

Figure 1. Geographical location of the study area (the numbers from 1 to 31 represent the sub-basins)
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Sed represents soil loss in metric tonnes, Qsurf 
denotes surface runoff volume in mmH2O/ha, 
qpeak signifies peak flow rate in m3/s, and areahru 
represents the area of Hydrological Response 
Units (HRUs) in hectares. Additionally, KUSLE, 
CUSLE, PUSLE, and LSUSLE represent the soil erod-
ibility factors in units of 0.013 tonne m2 h/ (m3-
metric tonne cm), the vegetation cover factor, 
erosion control practice factor, and topography 
factor, respectively. The final factor is the coarse 
fragmentation factor, CFRG.

The SWAT model was initially implemented 
in the watershed under study before calibration 
and validation. After these preliminary proce-
dures, the model was used for simulating Best 
Management Practices (BMPs). The model em-
ploys fine-grained spatial and temporal units, 
with HRUs serving as the geographic resolu-
tion, adopting a daily time step. These units are 
characterized by homogeneity in terms of wa-
ter, pedoclimate, and land use, as expounded 
by Gassman et al. (2007). While Hydrological 
Response Units are distributed across their re-
spective sub-basins, they are not spatially dis-
tributed. These sub-basins, in turn, create stream 
segments that divide the catchment area. Calcu-
lations in the model are carried out at the scale of 
these units, utilizing various equations derived 

from multiple studies (Neitsch et al., 2011). 
The model sequentially computes each variable 
based on available data.

In this study, we employed the SWAT model 
to assess various combinations of agricultural 
BMPs and source reduction strategies, investigat-
ing methods for reducing sediment loads within 
the basin. The assessment of model performance 
involved the application of statistical techniques 
to quantify the comprehensive soil erosion rate 
within the research area, as indicated by Briak et 
al. (2016). The model underwent calibration and 
validation processes, both of which were execut-
ed utilizing observed data.

Input datasets

Land use

The land use and land cover (LULC) data for 
this study were obtained from a recent high-reso-
lution Sentinel-2 satellite image (10 m resolution) 
(https://scihub.copernicus.eu/), which was used 
to identify several landuse groups. The selection 
of an appropriate satellite image was guided by 
evaluating cloud cover patterns over the Oued El 
Makhazine basin during recent time frames. This 
criterion led to the identification of May 16, 2022, 

Figure 2. Land use and land cover map of the study area
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as the optimal date for land use classification. Cre-
ating the land cover map for the study area was 
accomplished through an interactive supervised 
classification approach, which involved select-
ing regions of interest to enhance the precision 
of the obtained outcomes. Indeed, Google Earth 
Engine (GEE) was used to carry out the LULC 
classification utilizing the Random Forest (RF) 
algorithm. 350 Regions of Interest (ROIs) were 
created using field surveys, high-resolution base-
maps, and visual interpretation to define training 
samples for six classes (forest, agriculture, urban, 
water, inhabited areas, bare soil, and pastures, for 
example). The RF classifier (100 trees) utilized 
the NDVI and the 10 spectral bands of Sentinel-2. 
A confusion matrix was created by using 250 
stratified random validation points to evaluate ac-
curacy after classification. Among the statistical 
metrics were class-specific user’s accuracy (UA) 
and producer’s accuracy (PA), Kappa coefficient 
(κ: 0.89), and Overall Accuracy (OA: 92%). The 
technique relies on supervised learning, in which 
the RF model is trained using spectral signatures 
from ROIs to generalize pixel-wise classifications 
throughout the basin, while reducing overfitting 
through the use of ensemble decision trees. The 

distribution of the various LULCs in the basin 
studied is summarized in Figure 2.

Soil data

Soil type plays a crucial role in influencing 
both the magnitude and velocity of floods, as well 
as their specific erosive potential., Key factors, 
such as infiltration rates, moisture content, reten-
tion capacity, initial losses, and runoff coefficients, 
are all influenced, at least in part, by the character-
istics of the soil type and its thickness. Soil data 
are extracted from the soil map (10 m resolution) 
of the study area prepared as part of a soil study 
carried out in the area in 2017 by NIAR (Nation-
al Institute for Agronomic Research) (Belasri et 
al., 2017). Based on the soil map of the Oued El 
Makhazine watershed, the predominant soil types 
within the watershed include undeveloped soils 
and burnished soils, collectively covering 56% of 
the watershed’s total surface area. Raw mineral 
soils, burnished soils, and fersiallitic soils repre-
sent another significant portion, accounting for 
27% of the watershed’s surface area. Lastly, verti-
sols and calcimagnesic soils encompass 17% of the 
watershed’s surface area, as illustrated in Figure 3.

Figure 3. Soil map of the study area (Belasri et al., 2017). 1: Ferralitic soils, 2: Vertisols, 3: Calcimagnesic soils, 
4: Undeveloped soils, 5: Poorly developed brown soils, 6: Soils with raw minerals, 7: Vertisols and calcimagnesic 

soils, 8: Complex soils (Poorly developed brown soils- calcimagnesic soils), 9: Undeveloped soils with raw 
minerals, 10: Brown soils with raw minerals, 11: Dam, 12: Brown soils with raw minerals-ferralitic soils)
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Topographic data

Understanding the topographical character-
istics is pivotal in elucidating the hydrological 
dynamics of the watershed. Figure 1 above pro-
vides a visual representation of the digital eleva-
tion model employed to illustrate the topograph-
ical features and elevation profiles within the 
Oued El Makhazine watershed. The relief map 
utilized in this study is derived from the digi-
tal terrain model (ALOS PALSAR) and topo-
graphic maps encompassing the study area. The 
elevation map reveals a range of altitudes span-
ning from 21 to 1681 meters between the lowest 
point, where the dam is situated, and the hilly 
terrain. The higher elevations are predominantly 
located upstream in the basin, generally to the 
north and northeast, whereas the lower-lying ar-
eas are in proximity to the dam site (Figure 1). 
Regarding slope characteristics, Figure 4 illus-
trates the spatial distribution of slopes within the 
basin. This map was generated using the ArcGIS 
slope tool, with a Digital Terrain Model serving 
as the reference. The obtained slope values were 
categorized into five classes, typically spanning 
from < 5% to > 45%. The highest slope values 
are primarily concentrated in the central and 
eastern regions of the basin, with the upstream 

zone also displaying varying degrees of steep-
ness across different locations.

ArcSWAT-2012 utilizes topographic data de-
rived from a digital terrain model, as illustrated 
in Figure 1, to calculate stream directions, slopes, 
and accumulations. Leveraging this information 
and the identification of outlets, the automatic 
delineation of sub-basins is achieved. Soil maps, 
slope data, and land use information facilitate the 
definition of the watershed through the establish-
ment of Hydrologic Response Units (HRUs) by 
the SWAT model.

ArcSWAT-2012 also possesses the capability 
to generate data tables for all HRUs, watershed 
units, and watercourses. Furthermore, it can de-
termine parameter values within the hydrological 
cycle based on input data and time dependencies. 
Consequently, modeling data encompassing sedi-
ment generation, water discharge, evaporation, 
evapotranspiration, fluxes, percolation, as well 
as simulated flows and sediment deposition are 
computed. For an accurate representation of real-
basin conditions, data calibration and validation 
are imperative. In this context, the SWAT Cali-
bration and Uncertainty Processors were selected 
due to their availability for calibrating and vali-
dating the simulated outputs of ArcSWAT-2012.

Figure 4. Slope map of the study area
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Swat-cup

Linking to the SWAT-CUP model, a software 
tool primarily designed for data calibration, vali-
dation, and sensitivity analysis within the SWAT 
model (Abbaspour et al., 2007), has been em-
ployed in this study. It utilizes the output data files 
generated by SWAT, specifically in the TxtInOut 
format, to enhance the dependability of results by 
incorporating various parameters that influence the 
water cycle, such as CN2, Sol_AWC, SOL_K, and 
other relevant factors. The application of the Sufi-2 
methodology involved calibrating, validating, and 
conducting sensitivity analyses of simulated flows 
and sediment outputs in comparison to observed 
values. Utilizing the Sufi-2 algorithm, the estima-
tion of measurement uncertainty (for both flow and 
sediment) was performed within the 95% predic-
tion uncertainty (95PPU) framework of the SWAT-
CUP software (Abbaspour et al., 2015). This es-
timation considered sensitivity parameters used 
during model calibration, each defined by prede-
termined minimum and maximum ranges.

Abbaspour et al. (2015) introduced two met-
rics to assess the precision of model uncertainty 
calibration. The initial metric, denoted as P, ex-
presses the percentage of measured data (inclu-
sive of errors) that fall within the 0-1 interval of 
the 95% prediction interval (PPU), with 1-P rep-
resenting model error (Abbaspour et al., 2004). 
The second metric, denoted as R, represents the 
ratio of the standard deviation of the measure-
ment to the width of the 95% probability of pre-
diction (PPU) band (Abbaspour et al., 2015). This 
parameter, ideally below 1.5, functions as an indi-
cator for model calibration and validation.

In the context of Sufi-2, the user has the flex-
ibility to choose from eleven objective functions 
extracted from the observed.txt file, and this se-
lection significantly impacts the available calibra-
tion solutions. The choice is often aligned with 
the specific objectives of the study. The model’s 
fitness was assessed using the Nash-Sutcliffe 
model efficiency coefficient (NSE) (Equation 4), 
the percent bias (PBIAS) (Equation 5), and the 
coefficient of determination (R²) (Equation 3).
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In the context of the given expression, where-
in Qmi denotes the observed value, Qsi represents 
the simulated value, Qm is the mean of the ob-
served values, and Qs is the mean of the simulated 

values, the coefficient of determination, denoted 
as R2, is employed as a statistical measure.
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In the presented context, Ysim signifies the 
predicted stream flow (m³/s) at time t, while Yobs 
represents the observed stream flow (m³/s) at the 
same time instance.

Model sensitivity parameters

The monthly streamflow and sediment load 
data used for model calibration and validation 
were obtained from four primary gauge stations 
located within the study watershed (Sahel, Md-
ouar, Oughane, and Makhazine stations). Data 
availability for these stations spanned from 1979 
to 2019, based on records provided by the Na-
tional Water Resources Authority. Before model 
application, all datasets underwent quality control 
procedures to detect and correct inconsistencies 
or missing values. To ensure model stability and 
reliability, the simulation period was divided into 
three distinct phases: a warm-up period (1979–
1981), a calibration period (1982–2002), and a 
validation period (2003–2019). These intervals 
were uniformly applied across all selected sta-
tions to allow for consistent performance com-
parison and robust uncertainty analysis.

A global sensitivity analysis was conducted 
using the Sequential Uncertainty Fitting version 2 
(SUFI-2) algorithm embedded in the SWAT-CUP 
software package (Abbaspour, 2011). Key param-
eters influencing simulated flow and sediment out-
puts were identified and categorized according to 
their dominant effects: those affecting hydrologi-
cal processes (e.g., CN2, GW_DELAY) and those 
influencing erosion and sediment transport (e.g., 
USLE_K, SED_EXPO_CO1). Parameter bounds 
were initially defined based on SWAT-CUP guide-
lines and refined iteratively through successive 
simulations (Tables 1 and 2) (Yang et al., 2008).

A total of 1500 iterations were executed to ex-
plore the parameter space and reduce predictive 
uncertainty. Model convergence was observed 
after approximately 400 iterations, as indicated 
by stable values of the Nash–Sutcliffe Efficien-
cy (NSE) and Percent Bias (PBIAS). Following 
established performance thresholds, simulations 
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were deemed acceptable when the NSE exceeded 
0.5 and the PBIAS remained below ± 25% during 
both the calibration and validation phases (Gho-
raba, 2015; Halecki et al., 2018). These criteria 
ensured that model predictions were both statisti-
cally reliable and practically helpful for decision-
making in watershed management contexts.

Best management practices (BMPs)

Our primary emphasis was on evaluating 
how the SWAT model captured the representa-
tion of four practical land management prac-
tices: contouring, strip cropping, terracing, and 

reforestation. Contouring applied to a field, 
through the retention of water in small depres-
sions, achieves the following outcomes: (1) di-
minishes surface runoff, (2) mitigates sheet and 
gully erosion by reducing the erosive force of sur-
face runoff and averting or minimizing channel 
development. Strip-cropping diminishes surface 
runoff by retaining water in small depressions, 
imparts surface roughness to decelerate runoff, 
and curtails sheet and gully erosion by obstruct-
ing channel formation. Implementation of terrac-
ing in a field results in (1) a reduction in peak 
flow rate due to shorter slopes, (2) a decline in 
surface runoff by retaining water in depressions, 

Table 1. Sensitivity parameters used for flow calibration and validation
Parameter Definition Min Max

R__CN2.mgt Runoff curve number -0.2 0.2

R__SOL_AWC().sol Available water capacity of the soil layer in question (mm H20/mm soil) -0.25 0.25

R__SOL_BD().sol Wet bulk density -0.5 0.6

R__SOL_K().sol Saturated hydraulic conductivity -0.25 0.25

V__GWQMN.gw Minimum water depth for water transfer from shallow aquifer to stream, 
from shallow aquifer to watercourse 0 2

V__REVAPMN.gw Maximum water threshold in shallow aquifer for revap to occur (mm) 0 500

V__ESCO.hru Soil evaporation compensation factor 0.01 1

V__SURLAG.bsn Response time due to surface runoff 0.5 10

V__GW_DELAY.gw Time taken for groundwater transiting the shallow aquifer to reach the 
watercourse (days) 30 450

V__ALPHA_BF.gw Groundwater base flow recession constant 0 1

V__CH_N2.rte Manning’s coefficient ”n” of the main channel 0 0.3

v__GW_REVAP.gw Coefficient allowing the transfer of water from the aquifer to the overlying, 
unsaturated soil horizons. 0 0.2

v__CH_K2.rte Effective hydraulic conductivity in main watercourses 5 130

r__SLSUBBSN.hru Average sub-basin slope length 0 0.2

v__SURLAG.bsn Response time due to surface runoff 0.5 10

r__HRU_SLP.hru Average slope steepness (m/m) 0 0.2

r__OV_N.hru Manning’s ”n” value for overland (kg/ha) -0.2 0

v__ALPHA_BNK.rte Baseflow alpha factor for bank storage (days) 0 1

Table 2. Sensitivity parameters used for sediment calibration and validation
Paramètre Définition Min Max

v__ADJ_PKR.bsn Peak flow adjustment factor for sediment conveyance in the 
subbasin (tributary channels) 0.5 2

v__CH_COV1.rte Channel erodibility factor -0.05 0.6

r__USLE_K().sol Soil erodibility factor (0.013 t.m2.h/m3.t.cm) 0 0.65

v__SPCON.bsn Linear parameter for calculating the maximum amount of sediment 
that can be entrained during channel transport 0.0001 0.01

v__SPEXP.bsn Exponent parameter for calculating reentrained sediments in channel 
sediment transport 1 1.5

v__USLE_P.mgt Conservation practice factor 0 1

v__CH_COV2.rte Facteur de couverture végétale du canal -0.001 1
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and (3) diminished sheet and gully erosion by en-
hancing sediment settling in runoff, diminishing 
its erosive potential, and preventing the formation 
of rills and gullies. The implementation of Best 
Management Practices (BMPs) was based on ad-
justing two pivotal parameters. The initial param-
eter, the curve number (CN), plays a crucial role 
in calibrating the hydrological components of the 
SWAT model. The second component involves 
the USLE Support Practice Factor (USLE_P). 
The modifications to these parameters were in-
formed by previous research and modeling en-
deavors conducted in watersheds, as detailed in 
Neitsch et al. (2005) and Arabi et al. (2008).

RESULTS

Analyzing model sensitivity

The watershed was divided into 31 subwater-
sheds and 425 hydrologic response units (HRUs) 
using ArcSWAT software, with flow and sedi-
ment measurements taken at hydrometric stations 
in subwatersheds 9, 16, 19, and 22. Tables 3 and 
4 present the optimal values for 23 parameters 
used in the calibration and validation of flow and 
sediment content over a 41-year period. For ex-
ample, a significant response of an outcome mea-
sure indicates that it is very sensitive to the output 

results (Guzman et al., 2015). When we consider 
a parameter to be sensitive, its p-value approach-
es 0, and we find that 23 parameters exhibit the 
highest sensitivity within our study area. These 
parameters include CN2.mgt, ALPHA_BF.gw, 
GW_DELAY.gw, GWQMN.gw, GW_REVAP.
gw, ESCO.hru, CH_N2.rte, CH_K2.rte, ALPHA_
BNK.rte, SOL_AWC(..).sol, SOL_K(..).sol, 
SOL_BD(..).sol, SFTMP.bsn, HRU_SLP.hru, 
OV_N.hru, SLSUBBSN.hru for flow parameters, 
and CH_COV1.rte, ADJ_PKR.bsn, CH_COV2.
rte, USLE_P.mgt, SPEXP.bsn, SPCON.bsn, 
USLE_K(..).sol for the sediment patterns.

In our study region, we have identified criti-
cal determinants with high sensitivity, including 
Manning’s coefficient ‘’n’’ for the main channel 
CH_N2 and SOL_K. These parameters result in 
increased water infiltration from surface water and 
soil runoff. Additionally, we consider the GWQMN 
parameter, which influences the quantity of water 
passing through the soil and, consequently, runoff, 
as a key component in our research.

When it comes to controlling sediment trans-
port in the basin’s channels and streams, SPCON 
stands out as the most sensitive parameter, set 
at 0.004 (Li et al., 2021). Furthermore, SPEXP 
exhibits significantly higher sensitivity than 
USLE_P, prompting us to adjust its value to 0.947 
to calculate redistributed sediments in channel 
sediment conveyance. Both USLE_P and SPEXP 

Table 3. Sensitivity parameters used for flow simulation and their calibrated values
Parameter names Rank Min_value Max_value Final value t-statistic P-Value

R__CN2.mgt 1 -0.020 0.044 -0.009 -0.353 0.72

V__ALPHA_BF.gw 2 0.541 0.775 0.759 0.687 0.49

V__GW_DELAY.gw 3 382.764 520.392 465.203 0.410 0.68

V__GWQMN.gw 4 2.075 2.436 2.363 0.994 0.32

V__GW_REVAP.gw 5 -0.047 0.008 -0.035 -0.069 0.95

V__ESCO.hru 6 0.681 0.761 0.713 0.038 0.97

V__CH_N2.rte 7 -0.084 0.141 -0.040 14.865 0.00

V__CH_K2.rte 8 -78.418 -38.005 -56.958 0.277 0.78

V__ALPHA_BNK.rte 9 0.871 0.987 0.891 -0.717 0.47

R__SOL_AWC(..).sol 10 0.083 0.304 0.251 -0.275 0.78

R__SOL_K(..).sol 11 -1.149 -0.638 -0.954 1.927 0.05

R__SOL_BD(..).sol 12 -0.098 0.088 -0.014 0.147 0.88

V__SFTMP.bsn 13 11.241 15.142 15.106 0.250 0.80

R__HRU_SLP.hru 14 0.101 0.133 0.120 -0.610 0.54

R__OV_N.hru 15 -0.055 -0.019 -0.026 1.244 0.21

R__SLSUBBSN.hru 16 0.056 0.105 0.091 -0.128 0.90

Note: V: means the existing parameter value is to be replaced by a given value; R: means an existing parameter 
value is multiplied by (1 + a given value).
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parameters impact sediment movement within 
channels and streams (Li et al., 2021) and have 
implications for soil treatment practices within 
the watershed.

Calibrating, validating, and performance 
model analysis

According to several authors, adopting a multi-
objective and multi-variable calibration approach 
is preferable over a mono-objective strategy 
(Wang et al., 2019). In our study, we consider three 
objective functions to assess model performance. 
These functions quantify the model’s efficiency by 
measuring the correlation between the variability 
in observed data and the accuracy of the model’s fit 
(Duru et al., 2018). When the NSE is greater than 
0.50, the PBIAS for streamflow is within ± 25%, 
and the PBIAS for sediment is within ± 55%, the 

model simulation is considered adequate (Moriasi 
et al., 2007). The best results from multi-objective 
optimization during both calibration and validation 
are summarized in Table 5. The NSE, PBIAS, and 
R2 values obtained demonstrate a favorable align-
ment between observed and simulated data, indi-
cating a satisfactory model performance. Notably, 
R2 exhibits high values during both periods. While 
flow rates increase when transitioning from the 
adjustment phase to the validation stage, sediment 
concentration shows only a slight decrease.

However, the hydrological cycle variables 
began to show meaningful and reasonable values 
after calibration based on the model’s sensitivity 
parameters. Calibration attempts to correlate the 
model’s response as accurately as possible with 
the empirical and observational data collected at 
the hydrological gauging station.

Table 4. Sensitivity parameters used for sediment simulation and their calibrated values
Parameter names Rank Min_value Max_value Final value t-statistic P-value

V__CH_COV1.rte 17 0.380 0.716 0.495 0.716 0.47

V__ADJ_PKR.bsn 18 -0.289 2.571 1.435 -0.485 0.63

V__CH_COV2.rte 19 0.081 0.780 0.762 0.984 0.33

V__USLE_P.mgt 20 0.957 2.147 1.296 0.862 0.39

V__SPEXP.bsn 21 0.816 1.126 0.947 -2.161 0.03

V__SPCON.bsn 22 0.003 0.014 0.004 -11.831 0.00

R__USLE_K(..).sol 23 -0.062 0.345 0.283 -1.385 0.17

Note: V: means the existing parameter value is to be replaced by a given value; R: means an existing parameter 
value is multiplied by (1 + a given value).

Table 5. Results of the multi-objective optimization for the calibration and validation period (NSE, R2, and PBIAS) 
(Sediment concentration values are only available for the El Makhazine station; NA means not applied)

Stations Parameters
Calibration period Validation period

Flows Sediments Flows Sediments

Sahel (sb-9)

NSE 0.70 NA 0.62 NA

R2 0.72 NA 0.63 NA

Pbias -7.15 NA 1.53 NA

Mdouar (sb-16)

NSE 0.64 NA 0.44 NA

R2 0.70 NA 0.50 NA
Pbias 19.99 NA -21.63 NA

Oughane (sb-19)

NSE 0.58 NA 0.58 NA

R2 0.75 NA 0.63 NA

Pbias -66.84 NA -37.48 NA

Makhazine (sb-22)

NSE 0.68 0.62 0.75 0.73

R2 0.73 0.62 0.78 0.78

Pbias -27 14 -25 2.56

Note: Sediment concentration monitoring within the El Makhazine watershed is limited to a single station at the 
outlet of sub-basin 22; thus, sediment data statistics are designated as ‘not applicable’ (NA) for all other sub-basins.
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The outcomes of the multicriteria calibration 
for both flow and sediment, conducted through 
the Sufi-2 method within SWAT-CUP, are depict-
ed in the Figures 5 and 6.

The data indicate that the calibration has been 
successful, as there are no significant differences 
between the observed and simulated variations in 
flow and sediment. This is particularly noteworthy 
given the relatively high correlation, as depicted 
in Figures 5 and 6. The performance of the model 
can be effectively assessed through sensitivity pa-
rameters when NSE, PBIAS, and R2 values are 
satisfactory, following the approach outlined by 
Uniyal et al. (2019). This framework is applica-
ble in our case, as shown in Table 5, suggesting 
that the flow and sediment calibration procedure 

aligns well with measurements and falls within 
acceptable limits.

The model underwent validation spanning 
an eight-year duration, from 1993 to 2000. Sufi-
2 incorporates a distinctive iterative process 
comprising an equivalent number of simulations 
as observed during the calibration period (Ri-
vas-Tabares et al., 2019). This iterative approach 
ensures the consistent replication of simulation 
outcomes over time by employing the same op-
timal sensitivity parameter ranges established 
during the calibration phase (Li et al., 2021). 
The model’s performance throughout the vali-
dation period is assessed through the examina-
tion of objective function output results (NSE, 
PBIAS, and R2). The values obtained serve as 

Figure 5. Observed and simulated flows (Stream Flow) for the calibration and validation periods (The L95PPU 
and U95PPU represent the lower and upper limits of the 95% prediction uncertainty interval for the model’s 

predictions, and the Best_sim refers to the best simulation and the best model parameter set obtained after the 
calibration process)

Figure 6. Observed and simulated sediment concentration for the calibration and validation periods 
(The L95PPU and U95PPU represent the lower and upper limits of the 95% prediction uncertainty interval for 

the model’s predictions, and the Best_sim refers to the best simulation and the best model parameter set obtained 
after the calibration process)
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indicators of successful model validation, as de-
tailed in Table 5 and visually presented in Fig-
ures 7 and 8.

Water yield and water balance

SWAT analyses are conducted to evaluate the 
water balance and water yield, crucial parameters 
for the effective management of water resources 
within a given catchment area (Ayivi and Jha, 
2018). Among the various components influenc-
ing the water balance, evapotranspiration emerg-
es as the primary factor contributing to water loss 
in the catchment, surpassing surface runoff, as il-
lustrated in Figure 9. Specifically, over the period 
from 1982 to 2019, evapotranspiration represents 
52.17% of the simulated time, while surface run-
off accounts for 27.71%. Notably, the remaining 
components of the water balance exhibit minimal 
fluctuations throughout the simulated timeframe. 
Consequently, within the Makhazine catch-
ment, the dominant elements are identified as 
evapotranspiration (ET) and surface runoff. This 

dominance is attributed to factors such as vegeta-
tion characteristics in the study area and elevated 
temperatures, particularly during the dry season.

The graphical representation in Figure 9 de-
lineates the yearly mean of distinct water balance 
components in each sub-basin from 1982 to 2019, 
along with the cumulative annual average for the 
entire basin. Evapotranspiration and surface run-
off jointly contribute to 79.88% of the entirety of 
water equilibrium components, while lateral flow 
and deep aquifer recharge collectively constitute 
only 4.20%. Owing to the absence of a deep aqui-
fer in the region, losses due to water transmission 
and recharge to the deep aquifer remain below 
2%. The spatial distribution of water balance el-
ements within each sub-watershed is intricately 
influenced by factors such as land use type, soil 
characteristics, slope, and precipitation patterns. 

Assessing water balance and yield is essen-
tial for understanding hydrological behavior in 
the Makhazine watershed and directly supports 
the study’s goal of modeling watershed processes 
with SWAT. Identifying evapotranspiration and 

Figure 7. Scatter plot of observed and simulated monthly flows (StreamFlow) 
for the calibration & validation periods

Figure 8. Scatter plot of observed and simulated monthly sediment concentrations 
for the calibration & validation periods
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surface runoff as dominant components provides 
critical insights into water distribution and avail-
ability, which are essential for effective water re-
source management. The spatial variation of these 
components across sub-basins highlights the im-
pact of land use, soil, and topography, underscor-
ing the need for tailored conservation strategies. 
These findings also lay the groundwork for cali-
brating and validating the model, ensuring reliable 
simulations over the 41 years. Quantifying water 
yield ultimately contributes to the evaluation of 
the region’s water resources and supports the de-
velopment of sustainable management practices.

The SWAT model predicts water yield values 
ranging from 551.74 mm to 634.89 mm, with a 

Figure 9. Water balance for the simulated period (1982–2019) expressed as a percentage compared to annual 
precipitation (ET: Evapotranspiration, SURQ: Surface runoff, GW_Q: Groundwater delay, LATQ: Lateral flow, 

TL: Transmission losses)

mean of 592.9 mm (Figure 10). The peak water 
yield is observed at sub-basin 27, in contrast to 
the minimum at sub-basin 23. Noteworthy is the 
concentration of higher values in the eastern and 
extreme north-western zones of the study area. 
At the same time, the central expanse of the wa-
tershed consistently presents moderate water 
yield values.

Sediment yield

Upon completion of the model calibration 
and validation phases employing precise sensi-
tivity settings, SWAT-CUP generates text files 
containing monthly sediment yield values for 

Figure 10. Water yield distribution map in each sub-watershed of the study area
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individual sub-basins. The anticipated sedi-
ment yields exhibit a spectrum, ranging from 
5.36 t/ha/yr in sub-watershed 17 to 99.86 t/
ha/yr in sub-watershed 25, with an average of 
29.34 t/ha/yr (Figure 11). Depending on the 
state of the factors driving erosion, this figure 
shows the areas that produce the most sedi-
ment. The southern part of the basin is where 
more sediment is released, as it is mainly oc-
cupied by friable marl formations, which favor 
runoff, relatively high slopes, easily degradable 

undeveloped soils, and degraded reworked 
croplands and/or pastures unprotected against 
erosion. The downstream part of the watershed 
generally releases less sediment and is less 
prone to erosion. Because of the state of the 
major erosion factors limiting the erosive pro-
cess, these low losses also occur in the central 
part of the basin. Analysis of erosion rates over 
the years and across the various sub-watersheds 
has enabled us to identify the area most prone 
to erosion. Figure 12 illustrates the distribution 

Figure 11. Distribution map of sediment yield values (t/ha/y) in the watershed

Figure 12. Map of erosion rates in the Oued Makhazine basin
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of erosion rates and risks in the watershed. This 
map was created using a reclassification based 
on the classes most commonly used in scientif-
ic literature. An erosion rate of less than 7 t/ha/
yr is generally considered very low and within 
acceptable limits, indicating stable soil condi-
tions and minimal surface runoff (Ganasri and 
Ramesh, 2016). However, when erosion values 
exceed 20 t/ha/yr, they become alarming, often 
signaling accelerated soil loss that can degrade 
land productivity and water quality, particular-
ly in agricultural or deforested areas (Abdul-
wahid et al., 2022; Talebizadeh et al., 2020). 
In general, the northern part of the basin is bet-
ter protected against erosion due to its physical 
and chemical characteristics. By contrast, the 
southern part of the study area is the most vul-
nerable, with the highest erosion rates.

Table 6 presents an order of priority for 
anti-erosion intervention, where basins 25, 
28, 29, 30, 31, 23, 24, 21, and 26 are identi-
fied as the primary sources of sediment, located 
mainly in the extreme south of the study area. 
These areas, which are at excessive risk of ero-
sion, represent approximately 36.53% of the to-
tal watershed area, or more than a quarter. The 
center of the watershed (sub-basins 5, 8, 12, and 
17) appears to be the most stable area in terms 
of erosion, showing low sediment production, 
representing 3.05% of the total watershed area. 
However, half of the study area (50.11%) falls 
within the average erosion class, with average 
rates ranging from 7 to 20 t/ha/yr (Table 6). By 
adopting the erosion rate classification most 
used in the scientific literature, where a rate ex-
ceeding 20 t/ha/yr indicates an alarming state 
of soil loss, suitable land management practices 
can be simulated for this area, particularly in 
basins 10, 21, 22, through to 31.

Best management practices (BMPs)

Estimation of the sediment yield of BMPs

The calibrated SWAT model was applied to 
compute soil loss, utilizing four distinct meth-
odologies to assess erosion induced by various 
practices. Adjustments to the model’s general pa-
rameters were made to accommodate the integra-
tion of four separate Best Management Practices 
(BMPs). The parameter modifications, elucidated 
in Arbi et al. (2008), were rooted in prior research 
and modeling endeavors conducted in watersheds 
with relevant data for sediment load calibration.

Assuming it is challenging to develop a water-
shed’s entire area, BMP predictions were only ap-
plied to sub-watersheds in the El Makhazine water-
shed that had erosion rates exceeding 20 t/ha/year. 
The general parameters of the model were adjusted 
to account for the application of different agricul-
tural BMPs. These changes to the parameters are 
based on previous research and modeling attempts 
on the watersheds. The primary parameters that 
need to be adjusted when implementing BMPs are 
the CN and USLE-P parameters. The parameters to 
be modified and incorporated into the SWAT mod-
el are shown in Table 7. The reduction in sediment 
production resulting from the use of these related 
practices was simulated using these values.

Subsequently, the SWAT model was deployed 
to calculate the annual average sediment loads for 
the El Makhazin watershed. The ensuing Table 8 
delineates the anticipated quantities of eroded silt 
in each subwatershed after the implementation and 
simulation of agricultural best management prac-
tices. Recommendations for the identification and 
implementation of these best management practices 
have been proffered based on the study’s findings.

Terracing

One of the most appropriate practices in the 
El Makhazine basin seems to be the implementa-
tion of terracing to reduce the effect of slope and 
runoff (Figure 13). The average rate of erosion 

Table 6. Classification of sub-watersheds according to priority for anti-erosion intervention based on different soil 
erosion classes in the El Makhazine watershed

Erosion rate (t/ha/an) Sub-watershed Percentage (%) Erosion class

0–7 5,8,12,17 3.05 Low

7–20 1,2,3,4,6,7,9,11,13,14,15,16,18,19,20 50.11 Medium

20–40 10,22,27 10.31 High

> 40 21,23,24,25,26,28,29,30,31 36.53 Excessive
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has been reduced to a value of 10.32 t/ha/year, i.e. 
a reduction rate of about 64.8%, calculated using 
the following equation (Equation 6):

	

1 
 

𝑆𝑆𝑆𝑆𝑡𝑡 = 𝑆𝑆𝑆𝑆0 · ∑ (
𝑅𝑅𝑑𝑑𝑑𝑑𝑑𝑑 − 𝑄𝑄𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 −

− 𝐸𝐸𝑎𝑎 − 𝑊𝑊𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 − 𝑄𝑄𝑔𝑔𝑔𝑔
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where:	 (A) is the erosion reduction rate in per-
cent, (Ti) is the average rate from the first 
simulation after calibrating the model in t/
ha/yr, and (Ts) is the average rate in t/ha/
yr after applying a BMP.

Strip-cropping

Strip cropping ranks second in terms of ero-
sion reduction, with an average rate of 14.37 t/
ha/year, a decrease of 51.02% (Figure 13). This 
technique also addresses the effect of slopes as a 
significant cause of erosion.

Contouring

By simulating crops planted parallel to the con-
tour lines, the average erosion rate was reduced by 
27.3%, or 8 t/ha/year. Thus, by implementing this 
land management technique, the basin’s erosion 
rate may decrease from 29.33 to 21.33 t/ha/year 
(Figure 13). Contouring revealed results that were 
in opposition to the current study’s findings when 

conducted north of our study area and in various 
topography and soil conditions. In the Kalaya ba-
sin, cultivation parallel to contour lines simulation 
accelerated erosion rates, whereas terraces were 
classified in the first BMP class, and strip cropping 
was classified in the second (Briak et al., 2019).

Reforestation

This study used the SWAT model to simulate 
the hydrological response of selected sub-water-
sheds to changes in land use, with a particular 
focus on reforestation as a soil conservation mea-
sure. Sub-watersheds 21, 27, and 28 were identi-
fied as the most sediment-producing areas based 
on a spatial erosion risk assessment and the cali-
brated model’s sediment yield outputs. To evalu-
ate the potential impact of land use modification, 
a scenario-based simulation was conducted in 
which the current land cover, dominated by agri-
cultural or bare land, was gradually replaced with 
forest cover within the model environment.

The SWAT model integrates land use data with 
soil and topographic characteristics to estimate 
sediment yield at the sub-watershed level using the 
modified universal soil loss equation (MUSLE). 
MUSLE accounts for runoff energy and peak flow 
when predicting erosion rates (Arnold et al., 1998; 

Table 7. Evaluated BMPs, revised SWAT parameters, and adopted criteria for the Makhazine watershed

BMP type BMP name Adjusted 
parameter Value Adoption criteria References

Structural 
practices

Terracing

TERR_SL (.ops) (0.1*SLOPEþ0.9) *100/SLOPE

All subbasins/All 
landuse/All soils/All 

slopes

Neitsch et 
al., 2005

Arabi et al., 
2008

Briak et al., 
2019

Silva et al., 
2024

TERR_CN (.ops) -6 (CN=68.52)

TERR_P (.ops)

0.11, for slope 0-5%; 0.12, for slope 
5–15%; 0.16, for slope 15–30%, and 

0.18 for
slope > 30%

Contour farming
CONT_P(.ops)

0.55, for slope 0-5%; 0.57, for slope 
5–15%; 0.8, for slope 15–30%, and 

0.9 for
slope >30%

All subbasins/All 
landuse/All soils/All 

slopes

Arabi et al., 
2008

Briak et al., 
2019

Silva et al., 
2024CONT_CN(.ops) -3 (CN=71.52)

Vegetative 
measures Strip cropping

STRIP_P(.ops)

0.27, for slope 0-5%; 0.29, for slope 
5–15%; 0.4, for slope 15–30%, and 

0.45 for
slope > 30% All subbasins/All 

landuse/All soils/All 
slopes

Arabi et al., 
2008

Briak et al., 
2019

Silva et al., 
2024

STRIP_CN(.ops) -3 (CN=71.52)

STRIP_C(.ops)
STRIP_N(.ops)

Adjusted based on the area
weighted average values for the

strips in the system (STRIP_C (0.4); 
STRIP_N (0.15))

LULC 
Change Reforestation

Change of the 
land use in the 
target HRUs

Reforestation of 30% in the target 
HRUs

Erosion > 20 t/ha
Slope > 30%

Arnold et al.,
(2012)

Ricci et al., 
2020
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Neitsch et al., 2011). Adjusting the land use inputs 
and rerunning the simulation under the refores-
tation scenario enabled the model to effectively 
capture the reduction in surface runoff and sedi-
ment detachment resulting from increased vegeta-
tion cover and root stability. As shown in Table 8, 
this approach significantly reduced erosion rates: 
by 22.2% in sub-watershed 21, by 21.8% in sub-
watershed 27, and by 18.9% in sub-watershed 28. 
These results demonstrate that reforesting and re-
vegetating high-erosion zones can substantially 
reduce sediment yield (Figure 13). This finding 
aligns with previous studies that highlight veg-
etation cover as one of the most influential factors 
in mitigating soil erosion (Gassman et al., 2007; 

Pandey et al., 2009). The simulation supports the 
feasibility of nature-based solutions for erosion 
control, providing decision-makers with a cost-
effective alternative to traditional structural mea-
sures, such as check dams or terracing. Thus, the 
SWAT modeling framework proves valuable in 
assessing land management scenarios and guiding 
sustainable watershed planning.

DISCUSSION

The SWAT model sensitivity analysis in this 
study revealed that V__CH_N2 and R__SOL_K 
parameters have the most significant impact on 

Table 8. Predicted erosion values in sub-catchments following application of BMPs (values in bold refer to sub-
catchments in which BMPs have been applied)

Sub-watershed Current status Terracing Contouring Strip copping Reforestation

1 18.59 18.59 18.59 18.59 16.11

2 16.34 16.34 16.34 16.34 17.70

3 8.42 8.42 8.42 8.42 8.95

4 15.16 15.16 15.16 15.16 15.62

5 6.84 6.84 6.84 6.84 6.27

6 12.31 12.31 12.31 12.31 12.79

7 9.62 9.62 9.62 9.62 9.04

8 7.07 7.07 7.07 7.07 5.76

9 8.38 8.38 8.38 8.38 9.26

10 30.00 4.06 17.63 8.63 30.68

11 11.16 11.16 11.16 11.16 11.08

12 5.36 5.36 5.36 5.36 4.39

13 16.58 16.58 16.58 16.58 15.21

14 18.42 18.42 18.42 18.42 17.17

15 10.00 10.00 10.00 10.00 9.88

16 11.94 11.94 11.94 11.94 10.92

17 5.36 5.36 5.36 5.36 5.44

18 13.38 13.38 13.38 13.38 12.77

19 18.53 18.53 18.53 18.53 18.54

20 17.49 17.49 17.49 17.49 16.15

21 52.19 5.33 25.61 12.75 39.99
22 21.18 2.92 13.71 6.84 13.15

23 63.29 7.97 43.24 21.65 63.78

24 59.16 7.88 41.60 20.81 60.72

25 99.86 13.21 59.91 29.88 89.30

26 50.52 6.53 32.31 16.13 43.74

27 21.99 3.29 13.74 6.70 17.24
28 80.90 9.76 40.97 20.36 62.90
29 71.14 10.86 52.12 26.02 72.92

30 64.87 9.17 46.45 23.21 65.46

31 63.29 8.11 42.89 21.43 63.65
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Figure 13. Simulated average annual sediment yield for different types of BMPs in the watershed (bathymetry 
corresponds to the siltation rate obtained by bathymetric measurements of the dam bottom)

flow rates. On the other hand, V__SPCON and 
V__SPEXP are more sensitive to sediment con-
centration. The investigation revealed that the 
sensitivity of both streamflow rates and sedi-
ment transport to the same set of factors has been 
observed in several Moroccan catchments with 
characteristics similar to those of our study re-
gions. For example, the Kalaya watershed (Briak 
et al., 2016), the R’dom watershed (Brouziyne 
et al., 2018), the N’fis watershed (Markhi et al., 
2019), and the Arbaa Ayacha watershed (Oual-
lali et al., 2020). The objective functions used 
showed a significant and satisfactory fit in terms 
of model performance. Nevertheless, model per-
formance is influenced by more than the param-
eters of sensitivity and by the target function. It is 
also influenced by the reliability of measurements 
(flow and sedimentation) from meteorological 
sites (Du et al., 2019) and the geographical loca-
tion of these sites (Ricci et al., 2018). The four 
weather stations surrounding the basin provide 
little information on the geographical distribution 
of precipitation. Installation of a hydrometry sta-
tion to measure sediment flux and concentration 
downstream of the basin. This site is spatially 
unsuitable to maximize model performance in 
most of the watershed. In fact, despite the lack of 
observations and rainfall events, some peaks in 
flow and sediment have been recorded in certain 
months. Similarly, SWAT was unable to detect 
smaller spikes (Ouallali et al., 2020). 

In the context of the water balance, evapo-
transpiration plays a paramount role within the in-
vestigated region. This phenomenon is intricately 
linked to the presence of arid terrains and agricul-
tural expanses. The intricate interplay of physi-
cal and chemical properties primarily dictates 

the hydrological dynamics within the catchment. 
These attributes not only govern the generation 
of observed flow but also exert a significant influ-
ence on the spatial distribution of specific water 
constituents, particularly noteworthy in light of 
the prevalence of marl and clay lithology in the 
downstream segment of the basin, as elucidated 
by Ikenberry et al. (2017). The synergistic impact 
of lithological characteristics, slope gradients, 
and land use patterns amplifies surface runoff 
while concurrently imposing constraints on infil-
tration processes.

Furthermore, the incomplete consideration of 
water percolation through the soil to the ground-
water table is acknowledged, given its potential 
contribution to flows beyond the basin’s confines, 
as highlighted by Arnold et al. (1993). The an-
ticipated repercussions of climate change intro-
duce an additional layer of complexity to the 
partitioning of the water balance. The Moroccan 
Rif region, recognized as a focal point for cli-
mate change impacts (Beroho et al., 2020; Bou-
lahfa et al., 2023), is anticipated to undergo sig-
nificant alterations, including increased surface 
runoff, enhanced infiltration, recharged aquifers, 
and reduced evapotranspiration. The dominance 
of evapotranspiration and its relationship to land 
use and lithology are consistent with the model 
hydrological processes using SWAT with high-
resolution data. The influence of marl and clay 
formations on runoff and infiltration supports the 
goal of investigating spatial variability in erosion 
and sedimentation processes. Acknowledging 
groundwater percolation highlights the need for 
improved calibration using long-term hydrologi-
cal data, as outlined in the study’s methodology. 
Including climate change impacts addresses the 
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objective of evaluating future challenges to the 
region’s water resources. Together, these insights 
contribute to the development of sustainable man-
agement strategies for the Makhazine catchment 
and similar areas of Morocco.

The application of the SWAT model in this 
study yielded a computed mean annual sediment 
yield of 29.33 t/ha/yr, with peak and trough val-
ues reaching 99.86 t/ha/yr and 5.36 t/ha/yr, re-
spectively. This concurs with analogous rates 
measured by bathymetric surveys in the basin 
and values observed in neighboring catchments 
(Kalaya and Arbaa Ayacha) (Briak et al., 2016; 
Ouallali et al., 2020), underscoring the model’s 
robustness and adaptability to diverse hydrologi-
cal contexts. The SWAT model also evaluated the 
effects of four BMPs on soil erosion and sedi-
ment yield in the El Makhazine basin, Morocco 
(terracing, strip cropping, contouring, and refor-
estation). Terracing was found to be the most ef-
fective BMP, followed by strip cropping, contour 
farming, and afforestation. Effectiveness varies 
depending on watershed slope, soil type, land 
use, and precipitation characteristics. The results 
of our study are consistent with results from oth-
er regions. The terraces act as physical barriers, 
slowing runoff and thus allowing sedimentation 
of suspended particles before they reach the dam. 
By channeling rainwater and reducing its speed, 
the terraces effectively limit the impact of erosion 
on the soils upstream, thus preserving the quality 
of the water stored in the dam. In addition, by re-
ducing the flow of sediment, these practices help 
extend the duration of usefulness of dams by re-
ducing siltation in reservoirs, thereby ensuring a 
continuous supply of water for various uses, from 
irrigation to domestic consumption (Briak et al., 
2019; Zettam et al., 2022). Interestingly, cultiva-
tion parallel to the contour line showed a coun-
terintuitive increase in erosion rates, emphasizing 
the site-specific nature of BMP effectiveness (Ah-
san et al., 2023; Wang et al., 2022; Barrett et al., 
2016; Briak et al., 2019) and highlighting the im-
plications and limitations of the SWAT model and 
BMP simulation. This study finds that BMPs can 
reduce erosion and improve watershed manage-
ment; however, these results require validation 
and verification using other methods and data.

The SWAT model’s ability to replicate spatial 
variation in sediment and water yield dynamics 
throughout the Oued El Makhazine basin was 
significantly enhanced by the use of high-resolu-
tion (10 m) land-use/land-cover (LULC) and soil 

maps (M’Barek et al., 2023). HRUs could be pre-
cisely delineated due to this fine-scale resolution, 
which captures critical small-scale factors that 
control runoff generation and sediment transport 
(Goulden et al., 2023), such as localized slopes 
prone to erosion, agricultural field boundaries, 
and soil variability. As a result, when compared to 
studies that used coarser inputs (such as ≥ 30 m) 
(Briak et al., 2019; Ouallali et al., 2020; Beroho 
et al., 2025), the model showed better accuracy 
in predicting sediment concentrations (e.g., R2 > 
0.82 for sediment calibration) and water produc-
tion patterns. By resolving the effects of sensitive 
soil types (like vertisols) and land cover transi-
tions (like deforestation to agriculture) on sedi-
ment loads at sub-catchment scales, the 10-m data 
resolution directly supported our goal of identi-
fying targeted soil conservation strategies. This 
level of detail is not possible with datasets with 
lower resolution.

Despite the strengths of this study, certain 
limitations must be acknowledged. First, the lim-
ited availability and uneven distribution of hy-
drometeorological data, especially sediment con-
centration measurements, reduced the accuracy 
of model calibration. Second, the SWAT model 
does not explicitly simulate extreme precipitation 
events, which could impact erosion forecasts un-
der changing climatic conditions. Future research 
should expand the monitoring network and in-
corporate remote sensing data to more accurately 
represent land use and precipitation. Additionally, 
integrating climate change scenarios into SWAT 
simulations would enhance the model’s forecast-
ing capabilities for long-term watershed planning.

This study contributes directly to several 
United Nations Sustainable Development Goals 
(SDGs), particularly SDG 6 (clean water and san-
itation) and SDG 15 (life on land). By applying 
the SWAT model to assess hydrological processes 
and soil erosion dynamics in the El Makhazine 
catchment, the research supports improved water 
resource management and reduced land degrada-
tion, key targets under these SDGs. The identifi-
cation and evaluation of best management prac-
tices (BMPs), particularly terracing, offer practi-
cal strategies for mitigating soil erosion, improv-
ing water quality, and extending the lifespan of 
reservoirs, which are crucial for sustainable ag-
riculture and ecosystem conservation. Further-
more, by analyzing the impacts of climate, land 
use, and lithology on water balance components, 
this work offers a science-based foundation for 
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informed, climate-resilient watershed manage-
ment. These insights are particularly relevant for 
regions facing similar environmental pressures, 
supporting global efforts toward sustainable de-
velopment and resilience building in vulnerable 
agro-ecosystems.

CONCLUSIONS

This investigation examines the outcomes ob-
tained from applying the Soil and Water Assess-
ment Tool (SWAT) hydrological model to simu-
late the dynamics of the El Makhazine catchment 
from 1982 to 2018. A multi-objective optimiza-
tion methodology was employed to calibrate and 
validate the model within the watershed meticu-
lously. The evaluation of model performance was 
based on three distinct objective functions: Nash-
Sutcliffe Efficiency (NSE), Percent Bias (PBIAS), 
and the coefficient of determination (R²), resulting 
in both acceptable and satisfactory outcomes.

Optimal sensitivity parameters crucial for the 
study area were identified, primarily revolving 
around flow parameters such as CN2, ALPHA_BF, 
GW_DELAY, GWQMN, and CH_N2. Simulta-
neously, sediment-related parameters, including 
USLE_P, CH_COV1, USLE_K, SPCON, and 
CH_COV2, were identified as the most sensitive 
parameters, ensuring optimal model performance 
in capturing the hydrological complexities of the 
El Makhazine catchment. In the realm of erosion 
assessment, it is evident that a meticulous calibra-
tion and validation process has been conducted, 
incorporating a diverse set of performance metrics 
and objective functions. The computed average 
annual erosion rate is 29.33 t/ha/yr, with yearly 
variations ranging from 5.36 t/ha/yr to 99.86 t/ha/
yr, demonstrating the model’s robust performance 
across a wide range of conditions. The SWAT 
model, employed for computing water balance pa-
rameters, utilized average monthly values through-
out the simulation period, resulting in a water yield 
ranging from 551.74 mm to 634.89 mm.

Within the study area, the preeminent com-
ponent of the water balance is evapotranspira-
tion, occupying the largest share in the basin, 
closely followed by surface runoff. The prevail-
ing land use patterns, the temporal variability of 
rainfall, and, notably, the lithological attributes 
of substrates collectively contribute to the con-
strained infiltration capacity and heightened run-
off observed in the region. In a comprehensive 

assessment, the findings from the SWAT model 
application in the region exhibit promise and of-
fer insights for formulating targeted anti-erosion 
measures. The model suggests that introducing 
terracing techniques within the basin could yield 
substantial reductions in erosion and siltation 
rates downstream. By adeptly characterizing sed-
iment and water dynamics within the basin, the 
model emerges as a valuable tool for assessing 
water balance and sediment dynamics in the sub-
humid watersheds of the Western Rif.
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