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INTRODUCTION

The Earth’s surface is a dynamic object, and 
the forces acting on it influence its shape. One 
phenomenon resulting from this dynamic nature 
is land subsidence, which has occurred frequent-
ly in various regions, particularly in large cities 
(Hussain et al., 2022; Karimzadeh and Matsuoka, 

2020). Land subsidence is caused by surface pro-
cesses and human activities such as excessive 
groundwater extraction and land subsidence due 
to the load of infrastructure and buildings, as well 
as the geological and topographical conditions 
of the area (Abidin et al., 2013; Bai et al., 2022; 
Sarah et al., 2021). Utilizing synthetic aperture 
radar (SAR) imagery technology to identify areas 

Linking annual land subsidence to built-up density across 
coastal tourism zones via Sentinel-1 differential interferometric 
synthetic aperture radar

Moh Saifulloh1,2* , I Nyoman Sunarta3 , M. Baiquni4, 
Ni Made Trigunasih5 , I Made Adikampana3

1	 Marine Science Program Faculty of Marine Science and Fisheries, Udayana University, Badung, Indonesia
2	 Spatial Data Infrastructure Development Centre, Udayana University, Denpasar, Indonesia 
3	 Doctoral Program of Tourism Sciences, Faculty of Tourism, Udayana University, Denpasar, Indonesia
4	 Department of Development Geography, Faculty of Geography, Universitas Gadjah Mada (UGM), Yogyakarta, 

Indonesia
5	 Soil Sciences and Environment, Faculty of Agriculture, Udayana University, Denpasar, Indonesia
* Corresponding author’s e-mail: m.saifulloh@unud.ac.id

ABSTRACT 
Uncontrolled urban expansion has intensified land subsidence in many cities, including Bali’s coastal tourism zone. 
To provide the first area-wide assessment for South Bali, we mapped spatiotemporal subsidence from 2014–2022 
using Differential InSAR (DInSAR) on Sentinel-1 SLC data, derived built-up density from Sentinel-2, and tested 
their association. We find persistent subsidence with typical rates of −10 to −60 mm/yr, local extremes near −70 
mm/yr, and a multi-year mean near −40 mm/yr. Hotspots cluster in Padang Sambian, Dauh Puri, Sanur, Pemogan, 
and Dalung; field inspections documented wall cracking, floor settlement, and road depressions consistent with 
these clusters. Notably, despite drawing global attention over the past decade for overtourism, the Canggu tourism 
area shows no detectable subsidence in our analysis. At the full-area scale, the subsidence–density relationship is 
very weak (year-by-year correlations near zero: r ≈ −0.11 to +0.008; R² ≈ 0.0006–0.012). Using decade-average 
statistics (~2014–2022) and a focused evaluation within zones exhibiting both high built-up density and elevated 
annual subsidence (n ≈ 10,000 pixel samples), the association remains very weak (r = 0.045; R² ≈ 0.21%), although 
statistically significant (p < 0.05). Thus, while built-up density exerts a detectable effect, its contribution is mini-
mal, implying that other drivers are more influential at city scale. We recommend using these results as screening 
evidence for risk-aware planning, prioritizing investigation and monitoring in identified hotspots, and integrating 
geology, soils, hydrology, groundwater levels, and refined InSAR processing to strengthen attribution and target 
mitigation. Unrevealed factors remain a key challenge for us and future researchers to determine the primary 
causes of land subsidence in this tourism zone and urban center.

Keywords: urban agglomeration, urban tourism, coastal land deformation, DInSAR; Sentinel-1 SAR, land subsid-
ence, built-up density, LOS displacement.

Received: 2025.08.01
Accepted: 2025.08.20
Published: 2025.09.01

Ecological Engineering & Environmental Technology, 2025, 26(9), 326–336
https://doi.org/10.12912/27197050/209737
ISSN 2719–7050, License CC-BY 4.0

ECOLOGICAL ENGINEERING 
& ENVIRONMENTAL TECHNOLOGY

https://orcid.org/0000-0001-5762-5755
https://orcid.org/0000-0002-4565-3887
https://orcid.org/0000-0003-1666-6061


327

Ecological Engineering & Environmental Technology 2025, 26(9), 326–336

that are potentially experiencing subsidence as 
an effort to mitigate geological disasters and as 
an initial step in providing information for urban 
planning and regional development (Hakim et 
al., 2020; Ibrahim et al., 2024; Sahu and Rawat, 
2023). One of the radar technology methods that 
is quite effective for mapping land subsidence ar-
eas is differential interferometric synthetic aper-
ture radar (DInSAR), which has a high level of 
accuracy and can monitor large areas in a short 
time (Pawluszek-Filipiak and Borkowski, 2020; 
Sowter et al., 2016).

The method of processing and utilizing radar 
data in Indonesia is still in the assessment stage, but 
its use to provide fast visual information already 
exists due to the lack of cloud-free optical satel-
lite data and the advantages of radar satellite data 
that can monitor the surface without weather inter-
ference and is available during the day and night 
(Darbaghshahi et al., 2022; Wang et al., 2019). 
Therefore, this study will use radar data, namely 
Sentinel-1 image data, which can be downloaded 
for free. Sentinel-1 imagery has several other ad-
vantages, namely, it has better temporal resolution, 
has a special mission to map land subsidence with 
high precision, and has a very wide coverage area 
(20–400 km) (Cian et al., 2019; Fajrin et al., 2021; 
Fernández-Torres et al., 2024; Rafiei et al., 2022; 
Rateb and Abotalib, 2020).

Land subsidence generally occurred in urban 
areas such as the capital city of Jakarta during the 
period 1982–2010 at a rate of around 1–15 cm/year 
(Abidin et al., 2011), and the latest research for the 
duration of 2017–2022 produced an average of 
-10.96 cm/year (Harintaka et al., 2024). Further-
more, in the tourism area of Bali, particularly in 
the southern coastal region, land deformation was 
recorded at rates between -8 mm and -19 mm, with 
a maximum speed of -5 mm/year during the period 
from 2015 to 2018 (Dwiputra et al., 2020).

However, until now there has been no updat-
ed information regarding land subsidence in tour-
ism areas, especially in the agglomeration centers 
in Bali. In fact, the increase in built-up land has 
been growing from time to time (Bhayunagiri 
and Saifulloh, 2023; Diara et al., 2024; Sunarta 
et al., 2022; Sunarta and Saifulloh, 2022a). For 
example, in the 2013–2021 period, there was a 
land conversion of up to 20.23 km2 (Andyana et 
al., 2023). This situation is due to the presence 
of tourist attractions that trigger the development 
of tourism facilities such as restaurants, hotels, 
and other developments. This phenomenon has 

resulted in the development of increasingly de-
veloped areas year after year. Previous study stat-
ed that the increase in built-up land has an impact 
on the decline in agricultural land in coastal areas 
(Sunarta and Saifulloh, 2022a).

Spatial data on land subsidence in Bali’s tour-
ism areas is important for establishing urban regu-
lations and spatial planning, as well as controlling 
excessive development in tourism centers. This 
information is also crucial for local stakeholders 
to maintain urban green spaces and minimize the 
impact of flooding and seawater intrusions caused 
by this land subsidence phenomenon due to its lo-
cation in coastal areas. Therefore, we propose a 
study aimed at analyzing land subsidence spatial-
ly and temporally in tourism areas based on the 
latest data. We then link this correlation to urban 
density using a simple correlation analysis, thus 
providing concrete information regarding the re-
lationship between the two variables.

METHOD

Research site 

The local government has classified the 
southern coastline area of Bali Province, Indone-
sia, as an urban tourism area, and researchers are 
studying the effects of land subsidence there. It 
administratively encompasses North, East, West, 
and South Denpasar as well as Kuta and North 
Kuta in Badung Regency. The growth of devel-
oped areas and the number of tourists visiting 
these regions indicate that tourism has developed 
rapidly. Figure 1 shows the geographic coordi-
nates of the case study location, which is located 
at 115°10’00”E–115°13’00” E and 08°36’00”S–
08°45’00”S. The biophysical characteristics indi-
cate that the study area is flat (0–8%) and has an 
elevation of 0–50 meters above sea level. While 
this is going on, other studies in the same region 
have looked at how the footprint of the built-
up area has grown. The built-up area increased 
from 117.79 km² to 120.41 km² between 2013 
and 2021 (Andyana et al., 2023) and has impli-
cations for other environmental degradation such 
as increased greenhouse gas emissions (Sunarta 
and Saifulloh, 2022b), due to low urban carbon 
absorption (Sudarma et al., 2024). This persistent 
trend of urbanization highlights the need for com-
prehending the effects of land alteration on land 
subsidence in the region.
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Sentinel-1 data processing

Primary remote sensing data for this inves-
tigation comes from Sentinel-1 radar imaging in 
Interferometric Wide Swath (IW) Level-1 SLC 
(single look complex) mode. Sentinel-1 consists 
of two satellites, Sentinel-1A and Sentinel-1B, 
that are in a constellation. They both follow the 
same orbital path, although their phases are op-
posite each other. This constellation is perfect for 
periodic investigation of ground surface defor-
mation because each satellite has a 12-day repeat 
cycle, and data is acquired every 6 days overall 
(Islam et al., 2017). Developed as a component of 
the Copernicus Earth observation program, Sen-
tinel-1 will provide worldwide data in areas like 
land management, climate change, oceans, disas-
ter mitigation, and environmental security. This 
program was launched by the European Commis-
sion and the European Space Agency. In order to 
analyze ground subsidence, the DInSAR approach 

was used in conjunction with the GAMMA soft-
ware on the ASF HyP3 platform. An interferomet-
ric pair was formed by selecting two Sentinel-1A 
images: one to serve as the reference image (the 
master) and the other as the secondary image (the 
slave). The first step of the processing is to co-reg-
ister the two images by checking if their geometric 
and spatial baselines are congruent. The coherence 
values are used to validate the picture pair qual-
ity. These values quantify the phase correlation be-
tween the images, and a minimum threshold of 0.6 
is used to verify the dependability of the results. 
After that, we’ll use the minimum cost flow (MCF) 
technique to create an interferogram and begin the 
phase unwrapping procedure. Here, using Senti-
nel-1’s radar wavelength (around 5.6 cm), we trans-
form the phase values of the interferogram into the 
real distance disparities between the ground and 
the satellite. For every 2π phase change, there is 
a 2.8 cm shift in the LOS direction (Equation 1).

Figure 1. Case study area located in the coastal tourism hub and capital city of Bali Province, Indonesia. The red 
outline marks the administrative boundary of the study area, while the accompanying photograph highlights the 

densely built-up urban core of Denpasar and the adjacent industrial tourism zones along Sanur and Kuta Beaches
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where:	DLOS is the ground surface displacement 
value in meters, λ is the Sentinel-1 ra-
dar wavelength, and π is the unwrapping 
phase difference in radians. This is equal 
to the phase difference after unwrapping 
in radians, the value of the ground surface 
displacement in meters, and the wave-
length of the Sentinel-1 radar.

Finding and mapping those negative values, 
which indicate regions with substantial land sub-
sidence, is the primary goal of this study. The 
system-determined deformation reference points, 
namely the pixels with the highest coherence val-
ues at coordinates -8.66493°S and 115.21156°E, 
are likewise subjected to the correction process. 
A geometrically corrected and UTM Zone 50S-
aligned GeoTIFF map showing line-of-sight 
displacement is the end result of this procedure. 
Elevation correction and field modeling are sup-
ported by 30-meter-resolution topographic data 
from the Copernicus GLO-30 DEM. The final 
product of the processing workflow is a map of 
the land’s deformation, which may be used for 
spatial analysis to identify areas of significant 
subsidence and trends within the research area.

Built-up land density 

This study utilizes both Sentinel-1 radar im-
ages and Sentinel-2 optical data to assess ground 
surface deformation and determine the normal-
ized difference built-up index (NDBI). Coastal 
regions with high population densities may be 
more susceptible to land subsidence; this index 
can help pinpoint locations where man-made 
features like buildings and concrete infrastruc-
ture predominate. For spectral monitoring of 
land surfaces, the multi-channel optical satellite 
Sentinel-2 is invaluable, as it delivers data with 
a spatial resolution of 10–20 meters. Here is the 
formula that is used to calculate NDBI using the 
reflectance values from the SWIR and NIR chan-
nels (Zha et al., 2003) (Equation 2):
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where:	 SWIR refers to Band 11 (1610 nm) repre-
senting shortwave infrared, and NIR refers 
to Band 8 (842 nm) representing near-in-
frared in the Sentinel-2 imagery product. 

This research makes use of Band 11 (1610 
nm) for shortwave infrared and Band 8 (842 nm) 
for near-infrared. An area is more likely to be 
built up if its NDBI value is high; this value is 
created per pixel and interpreted geographically. 
In order to efficiently acquire and process multi-
temporal image data, processing is carried out 
through Google Earth Engine (GEE) (Gorelick 
et al., 2017).

Analysing correlations

A statistical analysis was carried out using the 
Pearson correlation coefficient to ascertain the 
strength of the association between land subsid-
ence and building density in the studied area. We 
opted for this approach because it quantifies the 
linear relationship between two continuous vari-
ables the Line-of-Sight (LOS) displacement val-
ue from Sentinel-1 data and the NDBI value from 
Sentinel-2 imaging and can tell us which way the 
relationship is going.

Both raster data sets must be extracted, and 
their coordinate systems and resolutions must be 
aligned before the analysis can begin. In order to 
remove inaccurate values (such as those caused 
by water bodies or dense vegetation), all overlap-
ping pixels in the research region are removed 
using zonation and masking techniques. This pro-
cess yields two sets of numerical data that can be 
compared statistically (Equation 3).
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where: r is the Pearson correlation coefficient, r  
is the NDBI variable (built-up density), 
r is the LOS displacement variable (land 
subsidence), n is the number of data pairs. 

Identify the number of data pairs, the Pearson 
correlation coefficient, the NDBI variable (built-
up density), and the LOS displacement vari-
able (land subsidence). A value between -1 and 
+1 is possible for the coefficient. The tendency 
for uplift (land subsidence reduces) increases as 
the NDBI value increases (near to +1 indicates 
a strong positive association). On the flip side, a 
number around -1 suggests a significant negative 
correlation, which means that land subsidence 
or the negative displacement value increases in 
response to the built-up density. A number ap-
proaching zero suggests that the two variables are 
not significantly related in a linear fashion.



330

Ecological Engineering & Environmental Technology 2025, 26(9), 326–336

RESULTS

Land subsidence (2014–2022)

We analyzed Sentinel-1 C-band SAR (IW, as-
cending) with a 1 to 2 month revisit from 2014 to 
2022 and derived statistics (Figure 2) and multi-
temporal maps of land subsidence as shown in 
Figure 3, where negative line-of-sight (LOS) val-
ues indicate subsidence and appear as orange to 
red on the maps, while positive values indicate 
stability or slight uplift. We found a persistent 
south-focused signal across the urban coastal 

tourism zone. Temporally, the series shows clear 
year-to-year pulses, with annual mean LOS val-
ues alternating between near-neutral and elevated 
positives that culminate in peaks in 2014 and 
2018. Annual mean LOS values were near neu-
tral in 2015 at -3.6 mm, in 2019 at -0.5 mm, and 
in 2022 at -0.5 mm, and they were higher and 
positive in 2014 at +22.2 mm with SD 9.1 mm, 
in 2016 at +4.7 mm with SD 10.1 mm, in 2017 
at +15.5 mm with SD 8.8 mm, in 2018 at +35.4 
mm with SD 8.5 mm, in 2020 at +7.7 mm with 
SD 6.6 mm, and in 2021 at +9.1 mm with SD 
3.6 mm. Variability peaked in 2016 with SD 10.1 

Figure 2. Annual land subsidence statistics (mean and standard deviation) for 2014 to 2022

Figure 3. Spatiotemporal distribution of land subsidence (mm) across the coastal tourism zone of Bali, 
2014 to 2022
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mm despite the small mean, while 2019 to 2021 
remained comparatively stable with low means 
from −0.5 to +9.1 mm and tight spreads of SD 2.6 
to 3.6 mm. By 2022 the mean returned close to 
0 mm while SD rose to 7.9 mm, indicating more 
heterogeneous behaviour within the zone.

Spatially, we observed consistent year-to-year 
shifts in subsidence hotspots across the southern 
urban tourism zone, with clusters migrating among 
Sanur, North Kuta, and the West and North Den-
pasar subdistricts. In 2014 subsidence extended 
across southern Denpasar and Kuta. In 2015 it con-
centrated in Sanur, South Denpasar. During 2016 
to 2017 peaks moved to North Kuta and to West or 
North Denpasar, including Kerobokan Klod, Da-
lung, Dauh Puri, Padang Sambian, Padang Sam-
bian Klod, and Padang Sambian Kaja. In 2018 the 
dominant area shifted west toward Padang Sam-
bian Klod and Padang Sambian Kaja as well as 
Seminyak, Legian, and Kuta. In 2019 indications 
were widespread across built-up Denpasar with 
maxima near Dangin Puri. From 2020 to 2022 the 
pattern migrated toward the center to east, with 
recurring signals in Sanur at -1 to -29 mm and a 
notable 2022 pocket in Pemogan at -9 to -33 mm. 
On the maps, the orange to red tones consistently 
mark the strongest negative displacement.

Inter-annual changes corroborate these pat-
terns. The largest subsidence rate occurred from 
2018 to 2019 at -60 mm/yr, followed by -50 mm/
yr in 2015, -40 mm/yr in 2017 and 2022, and 
-20 mm/yr in 2016 and 2021. Over nine years 
the worst-affected locations reached -70 mm/yr, 
while zone-wide averages peaked at -40 mm/yr 
during 2018 to 2019. These rates align with the 
mapped progression of hotspots from south and 
west toward the center and east, with repeated ac-
tivity in Sanur and a distinct pocket in Pemogan 
in 2022 (Table 1).

Linking land subsidence and built-up density

We analyzed Sentinel-1 C-band InSAR (IW, 
ascending) for 2014–2022 and paired line-of-
sight (LOS) displacement rasters with the built-
up density layer to extract pixel values for statisti-
cal testing, and we selected 500 sampling points 
purposively from the mapped subsidence pattern 
and the distribution of dense urban fabric, which 
we also used as anchors for the 2022 field sur-
vey (Figure 4). In the field we documented wall 
cracking and localized road depressions that align 
with the mapped clusters, with the clearest on-site 
evidence in residential areas of South Denpasar 
and West Denpasar.

Across the coastal tourism zone, annual sub-
sidence rates typically range from -10 to -60 mm/
yr, with the most affected locations reaching 
about -70 mm/yr over 2014–2022, and the zone-
wide mean over the period is approximately -40 
mm/yr. The spatiotemporal maps show recurrent 
hotspots in West Denpasar (Dauh Puri and Padang 
Sambian), South Denpasar (Sanur and Pemogan), 
and North Kuta (Dalung). Although the footprint 
of maximum subsidence shifts by year, these dis-
tricts repeatedly fall in the upper tail of the distri-
bution, and the persistence observed on the maps 
is consistent with the 2022 ground observations 
of cracking and localized pavement settlement.

We quantified the relationship between sub-
sidence and built-up density for each year from 
2016 to 2022 using correlation and coefficient 
of determination calculated from the 500 pixel 
samples, and the full results are reported in Table 
2. The coefficients of determination are very low, 
on the order of R² = 0.0006 to 0.012, and the cor-
responding correlation coefficients cluster near 
zero, spanning roughly r = −0.11 to +0.008. These 
figures indicate that, at the whole-area scale, 

Table 1. Interannual land subsidence rate statistics (mm/yr), 2014–2024
Δ Years Minimum Mean Max

Δ (2014–2015) -46.00 -26.00 -11.00

Δ (2015–2016) -17.00 10.00 45.00

Δ (2016–2017) -40.00 12.00 30.00

Δ (2017–2018) 1.00 17.00 52.00

Δ (2018–2019) -56.00 -36.00 -19.00

Δ (2019–2020) -7.00 7.00 24.00

Δ (2020–2021) -15.00 4.00 17.00

Δ (2021–2022) -39.00 -16.00 4.00

Δ (2014–2022) -65.00 -38.00 0.001
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built-up density explains little of the variance 
in the InSAR-derived subsidence, which agrees 
with the mapped pattern where strong negative 
LOS values appear along parts of the coast as well 
as in selected inland neighborhoods rather than 
tracking density uniformly. Across the full tour-
ism zone and Denpasar’s urban core, subsidence 
and built-up density are only very weakly related. 
To probe this further, we re-estimated their cor-
relation within zones exhibiting both high built-
up density and relatively elevated annual sub-
sidence rates (Figure 5), using (n ≈ 10,000 pixel 
samples) the outcome was consistent, indicating a 
very weak association. The correlation coefficient 
(r = 0.045) underscores this weakness, and the 

coefficient of determination (R² = 0.0021) shows 
that only ~0.21% of the variance in subsidence is 
explained by built-up density, with the remainder 
attributable to factors outside the model. Even so, 
the relationship is statistically significant: the co-
efficient p-value and the model’s ANOVA Signifi-
cance F are both p = 5.1 × 10⁻⁶ (< 0.05). Hence, 
while built-up density exerts a detectable effect, 
its contribution is minimal, implying that other 
drivers are likely more influential.

The time series reveals persistent subsidence 
concentrated in specific districts at rates typically 
between −10 and −60 mm/yr, with local extremes 
near −70 mm/yr. Field surveys corroborate these 
clusters, documenting wall cracking and minor 

Figure 4. Sample locations for extracting pixel values (land subsidence and built-up land spectral index values), 
totaling 500 points. These sample locations are also used as ground checks for land subsidence events in 

residential areas

Table 2. The relationship between land subsidence and the built-up density
Data years Coefficient determines (R2) Correlations (r)

2016 0.012 -0.11

2017 0.008 -0.09

2018 0.003 -0.06

2019 0.0006 -0.02

2020 0.004 0.006

2021 0.003 0.005

2022 0.007 0.008
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differential settlement in South and West Denpas-
ar. Taken together, the mapped patterns, numeri-
cal summaries, and ground observations show that 
built-up density is not a strong predictor at the scale 
of the entire study area, but exhibits a weak, local-
ized association within the highest-density strip. In 
the final section, we convey that the factors that 
have not been revealed are a challenge for us and 
future researchers to uncover what causes land 
subsidence in this tourism area and urban center.

DISCUSSIONS 

Land deformation is a situation when the sur-
face of the land changes horizontally and verti-
cally (Ma et al., 2023). This is caused by many 
factors such as earthquakes, landslides, surface 
loads, groundwater extraction, and other geologi-
cal disasters (Chen et al., 2023; Fan et al., 2019). 
Natural land subsidence occurs regionally, cover-
ing large areas, or locally, affecting only a small 
portion of the land surface. This is usually caused 
by the presence of cavities beneath the surface of 
the ground (Ma et al., 2023; Othman et al., 2018).

The process or movement of land subsidence 
has occurred in various regions around the world, 
especially in major cities (Sarah, 2022; Sukmawa-
ti et al., 2021; Zhang et al., 2019). The subsidence 
of the land surface that accumulates over a cer-
tain period can reach a decrease of several meters, 
causing damage to urban infrastructure, which 
may then disrupt the stability of the economy and 
social life in the area (Huning et al., 2024).

Land subsidence in North Denpasar and Ker-
obokan ranges from -8 mm to -19 mm/yr. Such 
conditions occur due to groundwater usage in the 
southern coastal areas (Dwiputra et al., 2020). 
Land subsidence has also occurred in West, South 
Denpasar, and Kuta (-100 mm to -200 mm). 
However, the exact factors influencing this are 
not yet known (Yastika et al., 2020). Our research 
complements both spatially and temporally and 
covers tourist areas that have not been studied 
by previous researchers, even though these tour-
ist areas are important and urgent to explore. Our 
findings show that the rate of land subsidence is 
27.14 mm/year, based on annual Sentinel 1-SAR 
data for the period 2014–2022. This information 
provides a basis for the management of urban ar-
eas and tourist regions in the future, to avoid the 
phenomenon of continuous land subsidence. 

Another common phenomenon in this area 
due to land subsidence is the annual flooding 
that inundates urban areas and tourism industry 
centers (Diara et al., 2024; Suyarto et al., 2023; 
Trigunasih and Saifulloh, 2022). The increasing 
number of urban transportation, besides causing 
traffic congestion, also contributes to the green-
house gas emissions that add to the land mass 
load. The spatial-temporal pattern of the land sub-
sidence map is observed, with the phenomenon 
not only located in tourist centers but also follow-
ing the main road routes. The information from 
this finding is important for future spatial plan-
ning, so that the expansion of built-up areas can 
be controlled and the tourism areas can be made 
safe and comfortable.

 Figure 5. (a) Mean land subsidence, 2014 to 2022 (mm/yr); (b) mean built-up density, 2016 to 2022; the white 
line delineates the highest-density zone; (c) pixel-level linkage between built-up density and land subsidence; 

(d) field photograph illustrating conditions in a high-density
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The coastal emphasis in our maps reflects 
known limits of C-band InSAR in mangrove and 
intertidal settings and should be read with cau-
tion. Over dense vegetation the radar senses the 
canopy rather than the ground, so wind, moisture 
and tidal effects lower coherence and destabilize 
phase unwrapping exactly along the shore. At 80 
m pixel spacing many edge pixels mix land and 
water, and even with a water mask applied during 
unwrapping some near-shore pixels remain valid 
and can carry phase steps inland as narrow nega-
tive LOS bands. No external tropospheric correc-
tion was applied, so coastal humidity gradients 
and sea-breeze structure can imprint long-wave-
length stripes that resemble gentle deformation. 
Values are referenced to a highest-coherence point 
and may retain small orbital or DEM ramps, and 
ascending-only geometry blends vertical motion 
with the east–west component. Together these fac-
tors create both random noise and systematic bias 
at the coast, including on Serangan Island and oth-
er mangrove margins, and they explain why some 
narrow shoreline belts appear as high subsidence.

These coastal artifacts also depress the area-
wide relationship with the built environment. Many 
of the most negative LOS values occur in pixels 
dominated by vegetation or land–water mixtures 
rather than by built-up density, so they add vari-
ance that is unrelated to urban loading and they drag 
whole-area correlations toward zero. When the anal-
ysis is confined to coherent, fully urbanized pixels, 
mixed-pixel and canopy effects are largely excluded 
and the signal better reflects processes that plausibly 
scale with urban fabric, which is why the focused 
test in the highest-density strip yields a small posi-
tive correlation (r = 0.045; R2 = 0.21%) even though 
the region-wide association remains weak.

Uncertainty is therefore highest for single-
year coastal pixels and lowest for multi-year, co-
herent urban clusters. Reported rates near man-
groves and tidal flats should be treated as quali-
tative to semi-quantitative indicators rather than 
definitive vertical subsidence, and scene-wide 
means and pairwise deltas can shift by millime-
tres to centimetres under different referencing or 
residual ramps without changing the rank order 
of inland hotspots. The most reliable inferences 
come from patterns that persist across years on 
stable, high-coherence ground.

To reduce these limitations in follow-up work 
and to inform policy, researchers should prioritize 
stricter shoreline treatment (coherence masking 
and an inland buffer), explicit ramp removal with 

re-referencing to a demonstrably stable point, 
tide-stage aware pair selection, complementary 
descending tracks to separate vertical and hori-
zontal components using look vectors, and time-
series processing with atmospheric correction. 
Local government should interpret coastal belts 
as screening signals, not design values, and focus 
engineering investigation and monitoring on per-
sistent inland hotspots while requiring settlement-
aware design and groundwater management for 
new works in high-risk districts.

CONCLUSSIONS 

Sentinel-1 DInSAR and field checks confirm 
persistent land subsidence across Bali’s urban 
tourism corridor, concentrated in parts of South 
and West Denpasar and North Kuta. Citywide, 
the link with built-up density is very weak; using 
decade-average data and a focused test within the 
densest urban belt, the association remains weak, 
positive, and localized, indicating that urban form 
alone does not explain the regional pattern. Inter-
pretation near mangrove and intertidal belts car-
ries higher uncertainty due to vegetation motion, 
mixed land-water pixels at ~80 m, and unmodeled 
coastal atmosphere; nonetheless, the multi-year 
persistence of inland clusters and their field confir-
mation provide robust evidence of ongoing ground 
lowering in key neighbourhoods. We recommend 
treating these results as a screening baseline for 
risk-aware planning: prioritize geotechnical inves-
tigation and settlement-aware design in recurring 
hotspots; strengthen groundwater monitoring and 
management where pumping may contribute to 
subsidence; maintain an integrated InSAR-GNSS-
leveling monitoring program; and incorporate sub-
sidence risk into zoning and permits for new coast-
al and high-load developments. Further analysis 
should jointly consider built-up density with geol-
ogy, soils, hydrology, and groundwater levels to 
refine attribution and support targeted mitigation.
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