
74

INTRODUCTION

In 2019, the Government of the Republic of 
Indonesia formally declared its intention to relo-
cate the national capital from DKI Jakarta Prov-
ince to Nusantara Capital City (Ibu Kota Nusan-
tara – IKN), situated in East Kalimantan Province, 
specifically within the regencies of Kutai Kar-
tanegara and North Penajam Paser. This reloca-
tion strategy aims to address regional disparities, 
promote equitable development, and alleviate the 
pressure on Jakarta, in particular, and the island 
of Java more broadly (Rifaid et al., 2023).

The development of IKN represents a na-
tional megaproject that is transforming the land-
scape of East Kalimantan into a contemporary 

administrative centre. This developmental initia-
tive has resulted in substantial alterations in large-
scale land use and land cover (LULC), notably 
the conversion of vegetation area into built-up ar-
eas and open land to accommodate infrastructure 
requirements, including roads, buildings, bridges, 
and other public facilities (Zhang et al., 2025). 

Building new infrastructure often reduces 
vegetation areas, which lowers their biomass 
(Karakosta and Papathanasiou, 2025). The bio-
mass in these areas is important for capturing 
carbon through photosynthesis. This helps re-
duce greenhouse gases like CO₂ and creates a 
better urban climate over time. But when green 
spaces are turned into buildings, their important 
role is at risk.
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ABSTRACT
The development of the Nusantara Capital City (Ibu Kota Nusantara – IKN) in East Kalimantan, Indonesia, poses 
significant challenges to local climate stability due to rapid changes in land cover. This study aimed to analyse 
the spatiotemporal patterns of land cover change and the resulting thermal dynamics driven by IKN development 
using remote sensing data and GIS-based spatial mapping. Landsat 8/OLI imagery from 2018 and 2022 was used 
to classify land cover, estimate biomass using the global ecosystem dynamics investigation (GEDI) dataset, and 
calculate land surface temperature (LST) and urban heat island (UHI) intensity. Research findings indicate that 
from 2018 to 2022, land cover in the Nusantara Capital City changed, with vegetated areas decreasing. The rapid 
development of IKN caused the average biomass in these areas to decline from 74.25 Mg/ha in 2019 to 66.21 
Mg/ha in 2022. Meanwhile, built-up and open land areas increased. Analysis linking land cover changes to LST 
revealed a direct correlation, where the shift in land cover contributed to a rise in LST. Consequently, between 
2018 and 2022, the UHI intensity rose from 0.05 to 0.08, indicating a shift from a very weak to a weak heat island 
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Changes in land cover can cause an increase 
in land surface temperatures (LST), which in turn 
contributes to the formation and intensification 
of urban heat islands (UHII) (de Almeida, 2021). 
UHII is defined as the average difference in LST 
between urban built environments and surround-
ing non-urban vegetated areas (Jain et al., 2020). 
Urban regions are dominated by buildings and 
infrastructure, whereas non-urban areas typically 
consist of vegetation.

The likelihood of UHI formation and the es-
calation of UHII is greater in areas undergoing 
development than in their surrounding regions. 
To mitigate the emergence of UHI, the establish-
ment of green open spaces is imperative, as they 
significantly contribute to microclimate regula-
tion by diminishing the urban heat island effect, 
enhancing thermal comfort, and bolstering cli-
mate resilience. Consequently, it is essential to 
incorporate sustainable urban development strat-
egies by expanding green and open spaces (Liao 
et al., 2021; Wang et al., 2025).

Uncontrolled city growth that takes over veg-
etated areas harms local climates and ecosystems 
in many cities worldwide (Estrada and Perron, 
2021; Samat et al., 2020; Zhuang et al., 2022). 
Cities like Beijing, Islamabad, and Bangkok 
show that when cities grow without control and 
reduce vegetated areas, it often leads to higher 
LST and UHI effects, which harm the environ-
ment and public health (Ramsay et al., 2023). 
As cities expand quickly without planning, they 
often replace natural areas with concrete and as-
phalt (Ghosh and Das, 2018; Şahin et al., 2025). 
This change affects the energy balance of surfac-
es, raising LST and making UHI effects worse. 
Losing vegetated areas reduces natural cooling, 
while more heat-absorbing materials increase 
heat in cities. These changes cause more than just 
higher temperatures. Stronger UHI effects can 
lead to many environmental and health problems. 
This highlights the need for green infrastructure 
and sustainable city planning to reduce the nega-
tive effects of urban growth on the environment 
and human health.

The development of IKN adopts a “forest 
city” concept that integrates sustainable growth 
while maintaining an ecosystem balance. The 
city is built in and around forested areas, where 
forests are planned to cover 70% of the city area. 
Although IKN follows the forest city concept, 
as the future capital, urbanisation and expansion 
will inevitably occur, resulting in population 

growth and changes in land cover (Pan et al., 
2024). This will increase land demand and drive 
land conversion from vegetated areas to built-up 
areas and open land. Urbanisation and popula-
tion growth will also trigger increased emissions 
from various anthropogenic activities, leading to 
air pollution and greenhouse gas emissions. Cou-
pled with the decline in green open spaces and 
the expansion of built-up areas, these changes 
can result in increased LST and urban heat island 
effects (Venter et al. 2023).

Although many studies have investigated 
the dynamics of LST and UHII driven by LULC 
changes in major cities, there remains a critical 
information gap regarding how these processes 
unfold in a newly developing capital city, espe-
cially in tropical forest regions such as East Ka-
limantan, Indonesia. Most previous studies have 
focused on mature areas. However, there is still a 
lack of information on how early stage infrastruc-
ture development affects the thermal environ-
ment in areas designated for future urbanisation. 
Moreover, very few studies have quantitatively 
evaluated the rate and extent of LST increases in 
response to land cover changes during the initial 
development phase of a national capital city. By 
assessing early changes in land cover and LST, 
it is possible to anticipate potential negative im-
pacts. This study is expected to contribute to the 
realisation of the forest city concept in IKN de-
velopment. In light of these considerations, this 
research aims to analyse, in an integrated manner, 
the spatiotemporal patterns of land cover change 
and the resulting thermal dynamics driven by 
IKN development.

MATERIAL AND METHODS

To analyse land cover changes in IKN, East 
Kalimantan Province, Landsat 8/OLI satellite im-
agery was used. Data were acquired for two dif-
ferent periods: 1 January to 31 December 2018 
and 1 January to 31 December, 2022. To comple-
ment the satellite imagery, additional datasets 
were utilised, including land cover reference data, 
administrative boundaries, and demographic data 
provided by the local government.

Data processing and analysis were performed 
using Google Earth Engine (GEE), ArcGIS Desk-
top 10.8, and Microsoft Excel. The location of the 
study is illustrated in Figure 1. This research con-
sisted of several steps:
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1.	Image composition: merging all available 
spectral bands using the Composite Bands tool 
in ArcGIS Desktop 10.5;

2.	Image projection: transforming the coordinate 
system of the images to the UTM zone 50S;

3.	Cloud removal: eliminating clouds and their 
shadows by utilizing the BQA band from Land-
sat 8/OLI data, following the method described 
by Nguyen et al. (2020);

4.	Scene mosaicking: combining neighboring 
scenes to produce a continuous mosaic that 
covers the entire study region;

5.	Masking: cropping the mosaic to fit the admin-
istrative borders of the research area;

6.	Calculating the normalized difference vegeta-
tion index (NDVI);

7.	Identifying land cover types; viii) Estimating 
LST.

Data analysis

The data collection process started with down-
loading satellite images from the United States 
Geological Survey (USGS) through the Earth-
Explorer platform (earthexplorer.usgs.gov). This 
included Landsat 7/Enhanced Thematic Mapper 
(ETM) images from 2011 and 2012, as well as 
Landsat 8/Operational Land Imager (OLI) im-
ages from 2013 to 2024. Prior to analysis, gaps in 
the SLC-off data from Landsat 7/ETM were filled 

using band-specific gap masks in QGIS. Both 
Landsat 7 and 8 datasets were utilized to compute 
LST, net primary productivity (NPP), and frac-
tional cover density (FCD). In contrast, Landsat 
5/Thematic Mapper (TM) data was applied for 
land cover classification but was processed di-
rectly within Google Earth Engine (GEE) rather 
than being downloaded.

Land cover change analysis

Land cover classification was performed using 
a supervised maximum likelihood method. Train-
ing sites corresponding to different land cover types 
were selected based on their spectral characteristics 
and visual assessment. The classification scheme ap-
plied in this research followed the system introduced 
by Anderson et al. (1976). The land cover categories 
identified comprised water bodies, built-up areas, 
open land, trees, and non-tree vegetation.

To assess the accuracy of the land cover clas-
sification, a stratified random sampling approach 
was used to select 200 sample points from each 
land cover category. The classified land cover 
was then compared to ground-truth reference data 
using a confusion matrix, based on the method 
outlined by Congalton and Green (2008). Accord-
ing to Lillesand et al. (1979), a classification ac-
curacy of at least 85% is considered satisfactory 
for remote sensing applications.

Figure 1. Strategic area in the Nusantara Capital City
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A supervised classification method utilizing 
the maximum likelihood algorithm was used for 
land cover classification, dividing land use into 
12 categories: dry land forest, mangrove forest, 
swamp forest, plantation forest, built-up land, open 
land, dry land farming, rice field, bush, and pond. 
This algorithm classifies pixels as specific objects 
based on the sample’s shape, size, and orientation 
within the feature space, using ArcGIS software.
The research was conducted in several phases:
	• image cropping was performed by executing 

commands on GEE for the years 2018 and 
2022;

	• supervised classification involved selecting 
200 sample points to represent pixels for each 
land cover category;

	• the transformation of classified raster data into 
vector data was done using ArcMap 10.8 to 
determine the area of land cover change from 
the classified images;

	• calculation of land cover area;
	• analysis of changes in land cover area.

Above ground biomass

The estimation of biomass was obtained from 
the Global Ecosystem Dynamics Investigation 
(GEDI) level 4A biomass dataset. The GEDI data 
underwent filtering through the Google Earth En-
gine. Biomass data from 2019 to 2022 were uti-
lized on a monthly basis, depending on data avail-
ability. Since only biomass data was needed, the 
AGBD band was exclusively used. The GEDI bio-
mass data is derived from LiDAR measurements 
taken from space by the GEDI instrument aboard 
the International Space Station (ISS). Biomass 
estimates in the GEDI dataset are generated using 
models and algorithms developed by Dubayah et 
al. (2021). The raw LiDAR waveforms collected 
by GEDI are processed into relative height (RH) 
metrics, which are stored in the Level 2A (L2A) 
dataset. These RH metrics act as inputs for bio-
mass estimation models that have been calibrated 
across various global regions and plant functional 
types (PFTs). The models then produce estimates 
of aboveground biomass density (AGBD), which 
are made available in the Level 4A (L4A) dataset.

Land surface temperature

Top of atmosphere (TOA) radiometric cor-
rection – the surface temperature was calculated 
by converting pixel values, initially in the form of 
digital numbers (DN), into radiant values using 

QGIS 3.36. The initial phase of processing satellite 
images involves radiometric correction, which in-
cludes making adjustments to improve the contrast 
of each pixel, thereby ensuring that the data cap-
tured accurately represents real-world conditions 
(Richards 1986). This process aims to remove 
disruptions caused by errors in the sensor’s opti-
cal system, atmospheric influences, and changes in 
the sun’s elevation angle (Jenerowicz et al., 2023). 
For Landsat 8 imagery, radiometric correction was 
performed using the raster calculator tool in QGIS 
3.36, following the method described by Barsi et 
al. (2014), as illustrated in Equation 1.

	 Lλ = MLQcal + AL	 (1)

where:	Lλ – Radiance spectral TOA (watts/m2 
Srad μm), ML – (Radiance_mult_band x), 
x band 10 and band 11 (Landsat 8/OLI), 
AL – (Radiance_add_band x), x = band 10 
and band 11 (Landsat 8/OLI),

	 Qcal – uantized and calibrated pixel val-
ues (Digital Number).

Temperature brightness

Brightness temperature refers to the micro-
wave radiation emitted from the upper layers of 
the Earth’s atmosphere (Grankov et al., 2017). It 
is calculated using the spectral radiation values 
derived from digital numbers. Brightness tem-
perature serves as an indicator for estimating the 
surface temperature (Ali et al., 2023). This radia-
tion value was subsequently converted from the 
Kelvin scale to the Celsius scale. The calculation 
of brightness temperature utilised band 10 from 
the Landsat 8 image, processed with the raster 
calculator tool in QGIS 3.36. The conversion 
from spectral radiation to temperature follows the 
equation presented in Equation 2, based on the 
USGS (2019) method.

	 𝑇𝑇𝑏𝑏 =  ( 𝐾𝐾2

ln (𝐾𝐾1
𝐿𝐿λ 

+ 1)
) − 273.15 

 

NDVI = 𝑁𝑁𝑁𝑁𝑁𝑁−𝑅𝑅𝑅𝑅𝑅𝑅
𝑁𝑁𝑁𝑁𝑁𝑁+𝑅𝑅𝑅𝑅𝑅𝑅 

 

 

𝑃𝑃𝑃𝑃 = ( 𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 − 𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑚𝑚𝑚𝑚𝑚𝑚
 𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑚𝑚𝑚𝑚𝑚𝑚 − 𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑚𝑚𝑚𝑚𝑚𝑚

)
2
 

 

 

ε = 𝑚𝑚 𝑃𝑃𝑃𝑃 + 𝑛𝑛 
ε = 0.004 𝑃𝑃𝑃𝑃 + 0.986 

 

𝐿𝐿𝐿𝐿𝐿𝐿 = 𝑇𝑇𝑇𝑇
[1 + (λ × 𝑇𝑇𝑇𝑇

𝑐𝑐2 ) × ln ε]
 

 

	 (2)

where:	Tb – Temperature brightness (℃),
	 K1 – Calibration constant 1, K2 – Cali-

bration constant 2, Lλ – Radiance spectral 
TOA (watts/m2 Srad 𝜇m). 

Normalized difference vegetation index

The normalized difference vegetation index 
(NDVI) is a measure of vegetation greenness 
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obtained through the digital analysis of satel-
lite sensor brightness data. In this research, 
Landsat 8 OLI/TIRS Level 2 data were utilized, 
focusing on band 4 (RED) and band 5 (NIR), 
which were combined to calculate the NDVI 
value. This calculation was executed using the 
raster calculator tool in QGIS 3.36, adhering to 
the formula provided by Brewer (2012), as de-
picted in Equation 3:

	

𝑇𝑇𝑏𝑏 =  ( 𝐾𝐾2

ln (𝐾𝐾1
𝐿𝐿λ 

+ 1)
) − 273.15 

 

NDVI = 𝑁𝑁𝑁𝑁𝑁𝑁−𝑅𝑅𝑅𝑅𝑅𝑅
𝑁𝑁𝑁𝑁𝑁𝑁+𝑅𝑅𝑅𝑅𝑅𝑅 

 

 

𝑃𝑃𝑃𝑃 = ( 𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 − 𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑚𝑚𝑚𝑚𝑚𝑚
 𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑚𝑚𝑚𝑚𝑚𝑚 − 𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑚𝑚𝑚𝑚𝑚𝑚

)
2
 

 

 

ε = 𝑚𝑚 𝑃𝑃𝑃𝑃 + 𝑛𝑛 
ε = 0.004 𝑃𝑃𝑃𝑃 + 0.986 

 

𝐿𝐿𝐿𝐿𝐿𝐿 = 𝑇𝑇𝑇𝑇
[1 + (λ × 𝑇𝑇𝑇𝑇

𝑐𝑐2 ) × ln ε]
 

 

	 (3)

where:	NDVI – normalized difference vegetation 
index, NIR – Near Infrared (band 5 Land-
sat 8), RED – Red light radiation from a 
pixel (band 4 Landsat 8).

Land surface emissivity

To determine land surface emissivity (LSE), 
it is necessary to obtain the vegetation proportion 
(Pv) from an image (Rouse et al., 1974). The Pv 
value was computed using the raster calculator 
tool available in QGIS 3.36. This computation 
adheres to the formula provided by the USGS 
(2016), as outlined in Equation 4:
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	 (4)

where:	Pv – proportion of vegetation,
	 NDVI – normalized difference vegeta-

tion index, NDVImin – minimum value 
normalized difference vegetation index, 
NDVImax – maximum value normalized 
difference vegetation index.

LSE must be calculated to estimate the LST. 
LSE influences the emission of radiation by a 
blackbody and determines the efficiency of heat 
energy transmission to the atmosphere (Avdan 
and Jovanovska, 2016). It represents the ability 
to convert thermal or heat energy into radiant 
energy. The LSE was computed using the raster 
calculator tool in QGIS 3.36, based on a formu-
la incorporating soil and vegetation emissiv-
ity as described by Sobrino et al. (2004), with 
constants 𝑚 = 0.004 and 𝑛 = 0.986, shown in 
Equation 5:
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ε = 0.004 𝑃𝑃𝑃𝑃 + 0.986 
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[1 + (λ × 𝑇𝑇𝑇𝑇
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where:	 ε – ground surface emissivity, Pv	 – pro-
portion of vegetation.

Land surface temperature:

The surface temperature can be calculated 
using the thermal bands in Landsat 8 OLI/TIRS 
Level 2 imagery and converting them to bright-
ness temperature values to obtain the surface 
temperature. Surface temperature estimation 
involves determining the spectral radiance and 
brightness temperature. The LST calculation in 
band 10 was performed using the raster calcula-
tor feature in QGIS 3.36, and the results of both 
were then averaged using the mean formula. The 
LST calculation, as presented by USGS (2019), 
was used to analyse the surface temperature, as 
shown in Equation 6:
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)
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ε = 𝑚𝑚 𝑃𝑃𝑃𝑃 + 𝑛𝑛 
ε = 0.004 𝑃𝑃𝑃𝑃 + 0.986 

 

𝐿𝐿𝐿𝐿𝐿𝐿 = 𝑇𝑇𝑇𝑇
[1 + (λ × 𝑇𝑇𝑇𝑇

𝑐𝑐2 ) × ln ε]
 

 

	 (6)

where:	LST – land surface temperature,
	 Tb – brightness temperature, λ – wave-

length of emitted radiance, c2 – h × 
𝑐𝑐
𝑠𝑠   = 

1.4388 × 10-2 mK = 14388 µmK,
	 ε = emissivity

The LST values were categorized based on 
the land cover classes by extracting data points 
from 100 randomly chosen locations within each 
class. This procedure was conducted using Arc-
GIS software. Subsequently, the LST data from 
2018 to 2022 were analyzed to assess whether an 
increase in LST had occurred.

Urban heat island (UHI) intensity

The UHI was calculated to evaluate the ther-
mal effects of urban growth in the IKN region. 
This index is characterized by the temperature 
difference between the average LST of urban and 
non-urban areas, particularly green open spaces 
(Jain et al., 2020). In this research, urban regions 
were depicted by built-up land categories, where-
as non-urban areas (green open spaces) were 
defined as regions with vegetation. The average 
LST for each type of land cover was derived from 
classified Landsat 8 images for the years 2018 
and 2022. The UHI intensity was subsequently 
determined for both years to assess the rise in 
LST from 2018 (prior to development) to 2022 
(during ongoing development).

The UHI intensity was calculated using the 
equation proposed by Xu et al. (2013) as follows:

	 TR = (T1 – TA)/TA	 (7)
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where:	TR denotes the relative surface tempera-
ture, TI stands for the LST measured in 
the urban core, and TA indicates the LST 
in the surrounding peripheral area – this 
defines the UHI intensity classification as 
shown in Table 1.

RESULT AND DISCUSSION

Land cover changes

Between 2018 and 2022, notable changes in 
land cover occurred. In 2018, before the devel-
opment of the IKN began, built-up areas covered 
10,732.2 hectares, which increased to 11,626.8 
hectares by 2022. Starting in 2019, with the com-
mencement of IKN construction, extensive land 
clearing took place to prepare the infrastructure, 
including roads, public facilities, office build-
ings, and housing for officials. This led to an 
increase in open land from 13,112.9 hectares in 
2018 to 16,858.9 hectares in 2022. Vegetation 
area decreased from 226,548.8 hectares in 2018 
to 222,457.7 hectares in 2022. Water bodies also 
reduced in size from 5,148.1 hectares to 4,678.2 
hectares during the same period. Overall, built-up 
and open land areas expanded, while vegetation 
and water bodies declined. Land cover maps from 
2018 and 2022 are displayed in Figures 2 and 3, 
with details of land cover change presented in 
Figure 4 and Table 2.

Ecosystem dynamic investigation

The Global ecosystem dynamics investiga-
tion (GEDI) analysis was initiated in 2018, with 
data becoming accessible in 2019. Consequently, 
it cannot be utilized to describe biomass condi-
tions prior to the establishment of the IKN, but 
it is useful for examining the initial phases of de-
velopment. According to the GEDI analysis, the 
average biomass in the IKN region at the start of 

development was 74.25 megagrams per hectare. 
This figure rose to 85.98 Mg/ha in 2020, then 
slightly declined to 82.17 Mg/ha in 2021, and ex-
perienced a sharp drop to 66.21 Mg/ha in 2022. 
This notable reduction in biomass was attributed 
to extensive development, especially in the core 
area of IKN’s government center. The changes in 
biomass in IKN from 2019 to 2022 are illustrated 
in Figure 5.

Land surface temperature

The spatial analysis results of LST indicated 
an increase across all types of land cover from 
2018 to 2022. In 2018, the LST for different 
land cover classes ranged between 27.63 °C and 
29.50 °C. By 2022, these temperatures rose to a 
range of 30.95 °C to 34.08 °C. This rise in LST 
was attributed to the reduction of vegetated ar-
eas and the expansion of built-up and open lands, 
leading to higher temperatures across all land 
cover classes in 2022. This suggests that physi-
cal development directly contributes to the rise in 
local temperatures. The observed trend highlights 
the inverse relationship between vegetation cover 
and LST: areas with more vegetation tend to have 
lower LST values (Marando et al., 2022; Saha et 
al., 2024). The spatial distribution of LST in the 
IKN for the years 2018 and 2022 is illustrated in 
Figures 6 and 7, while Figure 8 presents the aver-
age LST corresponding to each land cover cat-
egory for those years. 

The core urban area, represented by built-up 
land, corresponds to the highest land surface tem-
perature, while the surrounding peripheral region, 
primarily covered by vegetation, exhibits lower 
LST values. UHI increased from 0.05 in 2018 to 
0.08 in 2022, indicating a shift from a very weak 
to a weak heat island effect. This increase in UHII 
is illustrated in Figure 9.

The increase in UHI from 2018 to 2022 sug-
gests that, despite the development of IKN still 
being in its early stages, it has already signifi-
cantly intensified the UHI (Fajary et al., 2024). 
If this issue is not addressed in urban manage-
ment, it will hinder the achievement of IKN’s 
vision as a forest city. Without ecological miti-
gation, the continued development of IKN could 
lead to the following:
1.	A sustained rise in LST
2.	The formation of UHI, which worsens thermal 

comfort
3.	A decline in quality of life

Table 1. Description of the UHI intensity classes
Relative brightness 
temperature (TR) UHI intensity class

−0.02 < TR≤0.07 Very weak heat island

0.07< TR≤0.10 Weak heat island

0.10< TR≤0.15 Moderate heat island

0.15< TR≤0.20 Strong heat island

0.20< TR≤0.40 Very strong heat island
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4.	Hindering the achievement of the IKN de-
velopment which is based on the forest city 
concept.

Although IKN adopts the forest city concept, 
significant increases in LST remain highly likely 
if land conversion is not controlled holistically. 
Simply implementing a 70% forest coverage target 

is insufficient without a strategic spatial approach, 
thermal landscape design, or long-term monitoring. 

Based on the spatial analysis of changes in 
land use and surface temperature, as well as the 
UHII assessment, it is evident that although the 
construction of the IKN is still in early stages 
and follows the forest city concept, it has al-
ready impacted biomass, leading to increased 

Figure 2. Land cover in the Nusantara Capital City in 2018

Figure 3. Land cover in the Nusantara Capital City in 2022
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LST and UHII. Continuous monitoring and pro-
active measures are essential, as the ongoing de-
velopment may cause further significant rises in 
these indicators.

The forest city concept aims to maintain a 
high proportion of vegetation cover to ensure 

thermal balance, emphasizing not only the 
amount but also the spatial arrangement, con-
nectivity, and functionality of green areas. 
These factors are crucial for sustaining ecologi-
cal balance and mitigating the effects of UHIs. If 
green spaces are only concentrated on the city’s 

Figure 4. Changes in land cover from 2018 to 2022

Table 2. Changes in land cover of the IKN from 2018 to 2022 (ha)
Year 2022

2018

Land cover Built-up land Open land Vegetation area Water body Total

Build-up land 10732.2 38.3 85.0 0 10855.5

Open land 60.5 11615.4 1437.0 0 13112.9

Vegetation area 784.1 5170.9 220550.1 43.7 226548.8

Water body 50.0 34.3 385.6 4678.2 5148.1

Total 11626.8 16858.9 222457.7 4721.9 255665.3

Figure 5. Biomass changes during the development of the Nusantara Capital City
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outskirts without adequate integration into the 
urban core, the city center remains vulnerable 
to intense heat and environmental challenges. 
Therefore, urban planners and policymakers 
must focus on strategic placement, connectiv-
ity, and the role of green spaces within the urban 
fabric to maximize their cooling benefits.

This study contributes important data and 
insights to help guide urban management, par-
ticularly in implementing forest city principles 
to counteract the adverse microclimatic effects 
of large-scale construction, specifically regarding 
LST and UHII. As the IKN construction contin-
ues, biomass is expected to decrease, while LST 

Figure 6. Land surface temperature distribution in in the Nusantara Capital City in 2018

Figure 7. Land surface temperature distribution in Nusantara Capital City in 2022
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and UHI are expected to rise. Hence, regular 
monitoring and evaluation by the government 
are vital to uphold the sustainable development 
vision of the forest city concept, preserving eco-
logical balance and the city’s microclimate.

CONCLUSIONS

This study demonstrated a direct relationship 
between land cover change, biomass reduction, and 
increases of LST and UHI intensity in IKN. Land 
cover changes from 2018 to 2022 contributed to a 
decline in average biomass owing to the reduction 
in vegetated areas. The development of IKN has 
led to a significant increase in surface temperature, 
as shown by the increase in LST, in line with the 

transformation of land cover during that period. 
This increase in the LST has contributed to the in-
crease in the urban heat island intensity. UHI inten-
sity increased from 0.05 in 2018 to 0.08 in 2022, 
transitioning from a very weak heat island to weak 
heat island.

These environmental changes must be antici-
pated through strategic management and the ex-
pansion of vegetated land, particularly green open 
spaces, which are essential for mitigating urban 
heat and enhancing climate resilience. Further-
more, urban planners should integrate ecological 
datasets and thermal monitoring into regulations 
and management practices to ensure the success-
ful realisation of the forest city concept underpin-
ning the development of IKN.

Figure 8. Average LST for each land cover type in 2018 and 2022

Figure 9. UHI in the Nusantara Capital City in 2018 and 2022
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