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INTRODUCTION

In recent decades, cities have experienced a 
significant increase in urban temperature due to 
population growth caused by informal and formal 
urban development, which leads to changes in 
land use and increases in infrastructure and inter-
nal mobility needs, ultimately resulting in paved 
and built-up areas (Abdullah and Al-Alwan, 
2019). While urbanization improves economic, 
social, and environmental aspects, it can raise se-
rious questions about the sustainability and liv-
ability of metropolitan areas (Wu et al., 2024). 
Urban expansion causes changes in the Earth’s 
surface, leading to variations in local climates and 

creating microclimates in urban areas, which are 
warmer than their natural or rural surroundings 
at specific times of day in mid-latitude locations 
(Angeles et al., 2024; Reyes and Aguiluz, 2023), 
This effect is known as the urban heat island 
(UHI) (Parece et al., 2016).

It should be noted that the UHI is the differ-
ence between the temperature of urban and rural 
areas, the nature of the contributing factors, and 
the urban fabric, while the surface urban heat is-
land (SUHI) is the difference between the surface 
temperature (horizontal, vertical, inclined, and 
ground level) of solid urban and rural surfaces 
(Mirabi and Davies, 2022).
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The Metropolitan Region of Brasília, known 
for being the third largest Brazilian metropolis in 
Brazil, has a population of 2,817,381 inhabitants 
according to the 2022 census, with an estimate for 
2024 of 2,982,818 inhabitants and an urban area of 
590.22 km2 (Brazilian Institute of Geography and 
Statistics [IGBE], 2025). However, it had the high-
est population growth between 1960 and 2018, with 
a change in urban expansion planning policies be-
tween 2000 and 2016, increasing in size and mov-
ing away from a monocentric structure to gradually 
become polycentric (Costa and Lee, 2019), despite 
having been built with a completely different vision 
(known as the Pilot Plan), generating a physical 
transformation with respect to its expansion (Fras-
er, 2004). For example, mass migration led to urban 
expansion and increased requirements for technical 
infrastructure, water supply and disposal, nutrition, 
and energy (Banzhaf et al., 2009).

The progressive increase in urban density and 
urbanization reduces the amount of open natural 
spaces and vegetation cover, replacing them with 
buildings, roads, and concrete surfaces (Taw-
feeq Najah et al., 2023), causing an increase in 
the SUHI phenomenon (Athukorala and Muraya-
ma, 2020) and an excessive rise in temperature 
(Gupta et al., 2020), as it increases the number 
of spaces that absorb heat and decrease cool-
ing through evapotranspiration (Leonardo et al., 
2025; Mathew et al., 2025), making cities less 
livable (Fung et al., 2024). Reported effects in-
clude increased water and energy consumption, 
decreased air quality, increased carbon emissions, 
and significant heat-related public health risks 
(Piracha and Chaudhary, 2022). However, the in-
tensity of the effect can be influenced by environ-
mental, climatic, and urban conditions (Liu et al., 
2020), and follow patterns over long periods of 
time (Mohammad and Choi, 2023).

Among the most significant public health ef-
fects of SUHIs associated with high temperatures 
are alterations in the nervous system, cardiac or 
muscular problems, dehydration (Barrera et al., 
2025), increased anxiety, exhaustion (Hossain et 
al., 2024), and death from heat waves related to 
SUHI (Heaviside et al., 2016), with the elderly 
and children, people with chronic diseases, and 
low-income households being the most vulner-
able demographic groups (Ascencio et al., 2023; 
Ferguson and Anna, 2024), causing damage to 
metropolitan life in general (Gupta et al., 2020).

Thus, the effects may be related to the size 
of the metropolitan population (Cai et al., 2016), 

concentrated economic activities, industrial pro-
cesses, and construction (Mathew et al., 2017). In 
addition, geographical factors can generate differ-
ences, with coastal cities generally suffering less 
from the consequences of SUHI than non-coastal 
cities (Smith et al., 2022), while the Global South 
suffers more in comparison than the Global North 
(Sadik and Gatto, 2022).

The effect of SUHI can be assessed and mea-
sured using various methods, but these can gen-
erally be divided into two main categories: (i) 
ground-based or field measurements, and (ii) sat-
ellite remote sensing, using specific thermal and 
shortwave bands (Mohamed et al., 2017). In the 
case of terrestrial measurement, the actual con-
ditions of the terrain are defined using mobile 
devices or fixed stations (Hu et al., 2016). This 
procedure is specific and representative of small 
areas, and in most cases, it is difficult to integrate 
the spatial heterogeneity of the changes occurring 
in urban areas. It requires the use of numerous 
sensors within and around the city, skilled labor, 
and high implementation costs over long periods 
of time. (Patriota et al., 2024).

Therefore, satellite remote sensing can pro-
vide specialized information, such as land sur-
face temperature (LST), which is more suitable 
for assessing SUHI events over long periods of 
time and large areas (Guo et al., 2024; Renc and 
Łupikasza, 2024; Yuan et al., 2023). In addition, 
when using LST data, two methods are generally 
chosen. The first consists of estimating the SUHI 
based on the division of urban and rural areas and 
the calculation of the difference in LST (Masoudi 
and Tan, 2019; Siddiqui et al., 2021). The second 
is based on using different statistical models to 
quantitatively calculate SUHI as Gaussian vol-
ume (Kumar et al., 2023). This study is of in-
terest in order to explain the gradual increase in 
temperature in cities (Fan et al., 2017; Hathway 
and Sharples, 2012), and to better analyze the 
compression of its effects, allowing local authori-
ties and cities to formulate plans and implement 
strategies to reduce damage and improve urban 
quality of life, especially in areas where the SUHI 
effect is expected to increase (Kundu et al., 2020).

The objective of this study is to analyze the tem-
poral dynamics of SUHI at low resolution (0.05°) 
for the period 2001–2016 in the Metropolitan Re-
gion of Brasilia (MRG). The aim is to compare the 
Streutker (Streutker, 2002). and quantile (Flores et 
al., 2016) methods to detect patterns of diurnal and 
nocturnal variation and to determine the use of an 
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alternative statistical approach for polycentric cit-
ies that do not follow a Gaussian surface.

MATERIALS AND METHODS

Site and location

Located in southeastern South America, in 
Brazilian territory, is the Brasília Metropolitan 
Region (BMR), as shown in Figure 1A. The city 
has an average temperature of 21.6 °C and an an-
nual rainfall of 1434.98 mm (Maciel, 2002).

During December 2001, the horizontal dis-
tribution of the monthly average surface tem-
perature (MAST) across the entire BMR region 
is shown in Figures 1B and 1C, illustrating sepa-
rately the diurnal and nocturnal patterns. The 
highest MAST recorded in the urban area of the 
BMR during that month was approximately 37 °C 
during the day, dropping to about 21 °C at night. 

MODIS data

A monthly average was calculated with a 
resolution of up to 5 km, and a statistical analy-
sis was performed of the effect of rescaling the 
LST statistical patterns and comparing them with 
the MOD11C3 Global CMG product (compos-
ite monthly average), based on the daily global 
MOD11C1 product, stored over a period of 

months at a resolution of 0.05° (5.6 km), using 
the MODIS sensor on the AQUA and TERRA 
satellites. A MODIS LST approach was imple-
mented to eliminate the effects of non-vertical 
observation, urban geometry, subpixel variation 
in surface temperature, variable surface emis-
sivity, and various atmospheric effects (Dousset 
and Gourmelon, 2003). This approach uses both 
daytime and nighttime measurements, taking ad-
vantage of the special features of the MODIS tool 
(Wan, 1999). Using seven-band thermal infrared 
(TIR) data (20, 22, 23, 29, and 31–33), the meth-
od recovers the average temperature and emissiv-
ity without the need for prior knowledge of the 
details of the temperature and water vapor profile 
(Wan and Li, 1997).

To differentiate between urban and rural land-
scapes, the MODIS land cover type (MCD12C1) 
product was used. This land cover classification 
tool (Figure 2) was created with a resolution of 
0.05°. In this way, the landscape was categorized 
into the 17 land cover types of the International 
Geosphere-Biosphere Project (IGBP) (Schneider 
et al., 2003).

Relationship between LST and NDI and EVI

The normalized difference vegetation index 
(NDVI) stands out as the most widely used vege-
tation index. This metric emerged from observing 

Figure 1. Distribution of horizontal surface temperature in the BMR. A) The BMR domain and
B) the monthly average LST during the day and °C) nighttime periods in December 2001
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variations in the albedo of bare soil, with constant 
reflectance in red light (0.62–0.75 μm) and near-
infrared (NIR, 0.75–1.4 μm), and areas covered 
by vegetation, which significantly increase NIR 
albedo compared to the visible part of the spec-
trum. In contrast, the enhanced vegetation index 
(EVI) refines the vegetation signal, increasing 
sensitivity where biomass is abundant and better 
monitoring vegetation by reducing atmospheric 
effects and separating the signal from the canopy 
background signal, as indicated in Equations 1 
and 2 (Flores et al., 2016).
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where:	 red (0.62–0.75 μm), NIR (0.75–1.4 μm), 
and blue (0.459–0.479 μm) are surface 
reflectance’s that are corrected or par-
tially corrected for atmospheric effects; 
L is the canopy background adjustment 
(nonlinear and differential transfer of red 
and NIR from the canopy); C1 and C2 are 
coefficients of the aerosol resistance term, 
which, adapted to MODIS-EVI, are: G 
(gain factor), C1 = 6, C2 = 7.5, and L = 1.

SUHI estimation

To determine the SUHI, the quantile method 
and the Streutker method proposed by Flores et 
al. (2016), and Streutker (2002), respectively, 
are used. 

On the one hand, Streutke’s approach, pro-
posed in 2002, uses a Gaussian distribution to de-
termine the intensity of the UHI effect in a spatial 
distribution. This pattern, based on a continuous 
change in LST, described in equations 3 and 4, cal-
culates the intensity, centroid, shape, and spatial 
extent of SUHIs. All this is done to understand its 
magnitude and scope, without the need for local 
measurements. Since it analyzes the difference 
between city and countryside temperatures at the 
same time, it works well for studying many cities 
and also eliminates meteorological problems and 
other errors (Hung et al., 2006).
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where:	 the location of a pixel at (x, y) is indicated 
as LST (x, y). This value is divided into 
two parts: a constant value and a part 
that changes linearly with temperature. 
The background temperature is shown by 
LST0 + a1x + a2y (part of equation 2), and 
the SUHI pattern is represented by the re-
maining section (Equation 3). The combi-
nation of LST0 is the average temperature 
in a rural area, and the coefficients (a1 and 
a2) describe the background temperature 
of a pixel (Streutker, 2003). To determine 
the longitudinal and latitudinal exten-
sions of the SUHI, the parameters ax and 

Figure 2. Type of ground cover in BMR
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ay are used, respectively; for the centroid, 
they are x0 and y0; for the magnitude, it is 
a0 , which is the height of the Gaussian 
(Streutker, 2002). The area of each SUHI 
footprint with an adjusted Gaussian sur-
face was approximated as the area of an 
ellipse as described below:
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where:	 based on the longitudinal (ax ) and lati-
tudinal (ay ) extensions of the Gaussian 
model, the axes of the transformed ellipse 
are created, a'x y a'y.

In contrast, the quantile approach developed 
by Flores et al. (2016) uses a statistical quantile 
analysis of urban and rural land surface tempera-
ture. This is achieved by distinguishing urban-
ized areas using the MODIS MCD12C1 dataset, 
which has a resolution of 5 km. The monthly MO-
DIS LST dataset, initially compiled every eight 
days (MOD11A2) with a resolution of 1 km, was 
rescaled to 5 km. This adjustment facilitates the 
separation of rural pixels from urban ones, allow-
ing for a distinct statistical evaluation. In this way, 
unusual data are eliminated and the intensity of 
the lowest and highest LST readings is reduced. 
Based on this statistical work, the following for-
mula was applied:
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where:	Q3
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 is the median of the LST distri-
bution over the rural area and 

Q3
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 the 
0.95 quartile of the urban area of the LST 
distribution, with a resolution of 5 km 
(Flores et al., 2016).

Thus, a statistical analysis of the LST was per-
formed separately for urban and rural areas. As an 
example, Figure 3 shows the rural LST field for 
both daytime (Figure 3B) and nighttime (Figure 
3C), and a box plot with quantiles (Figure 3A) for 
June 2015.

RESULTS AND DISCUSSION

Surface urban heat island (SUHI)

In the case of the centroid, x0 = -47.94 and y0  
= -15.76 were used. Table 1 shows the daytime 
SUHI magnitudes, using the Streutker method, 

compared to the surrounding areas of the BMR, 
and how far this heat extended in all months. The 
highest daytime temperature occurred in Febru-
ary (3.65 °C), while the lowest was observed in 
October (-1.53 °C). This result coincides with the 
study by Moreira et al. (2023), which indicates 
similar values during the local spring (41.9 °C 
and -3.2 °C in September and December, respec-
tively), and an increase in LST over the years, 
indicating that vegetation cover was unable to re-
duce LST; However, for Campos et al. (2024), the 
highest peaks occur in the summer months on the 
coast of Brazil. In addition, Angeles et al. (2024) 
mention that negative values in the Streutker 
method are due to a contrary effect of the UHI, 
which is the result of cooling temperatures caused 
by sea breezes.

The maximum footprint area occurred in 
November (1.032 km2) and the minimum in De-
cember (49 km2). Table 1 also shows the corre-
lation coefficient of the Gaussian fit (R2) which 
was close to 0.10. Thus, increases in SUHI can 
occur homogeneously with respect to the growth 
of the spatial extent of urbanization (Kimothi et 
al., 2023). Although large areas are explained, it 
is necessary to take into account intra-urban vari-
ations, which, as indicated by Han et al. (2021), 
show notable variations in LST and intra-SUHI 
values when comparing parks and recreational ar-
eas with dense buildings.

To illustrate how the SUHI of the BMR 
changes throughout the year, Figure 4 shows the 
patterns of average annual surface temperature 
(both daytime and nighttime) in three different 
zones: urban, border, and rural. Graphs are shown 
describing the average temperatures recorded 
during 2001–2016, along with the standard devia-
tion of the LST, for each of these three zones. In 
general, high temperature values in built-up areas 
are to be expected, due to the influence of con-
crete and asphalt (Portela et al., 2020), while solar 
radiation generates differences between daytime 
and nighttime SUHI (Athukorala and Murayama, 
2020; Estoque et al., 2017).

The temporal evolution of the MAST for the 
daytime period (Figure 4A), where the maximum 
MAST for this period is observed in September 
for the urban (35 °C), border (35 °C), and rural 
areas (34 °C), while the minimum average values 
are observed in April for the urban (27 °C), bor-
der (28 °C), and rural areas (26 °C). These can 
mostly occur early in the morning and at midday 
or in the afternoon, related to urban geometry, and 
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Figure 3. Boxplot diagram for values of LST showed in A), indicating quantile 0.05 (Q1), median (Q3),
quantile 0.95 (Q5), B) Mean monthly diurnal LST (5 km resolution) over the urban area of the BMR

for June 2015. (Q4) and quantile 0.95 (Q5) y C) Mean monthly diurnal LST over the rural area
of the BMR for June 2015.

these results are in line with those mentioned by 
Lai et al. (2018). Diurnal variations in LST are 
mainly driven by shortwave radiation, but veg-
etation types also generate notable differences: 
cropland has a high LST value, followed by scru-
bland and grassland, with forests having the low-
est value (making them a candidate for mitigating 
SUHI) (Wang et al., 2025).

At night, the temporal evolution of the MAST 
(Figure 4B), with maximum values in October 
for the urban (20 °C), border (19 °C) and rural 
areas (18 °C), unlike the minimum average val-
ues observed in July for the urban (17 °C), bor-
der (16 °C) and rural areas (16 °C). In the case 
of large cities, such as Brasilia, the absorption of 
electromagnetic energy by buildings and the pro-
portion of vegetation can enhance the nighttime 
effect (Almeida and Teodoro, 2020); it can also 

affect medium-sized cities with different climatic 
conditions and urban expansion factors than those 
in this study, such as Akure and Osogbo, located 
in Nigeria (Oyeniyi et al., 2025). However, as in-
dicated by Li et al. (2025), as the urban area ex-
pands, the nighttime SUHI tends to decrease. This 
may be due to the thermal inertia of urban ma-
terials that influence the nighttime SUHI, where 
smaller cities have a higher ISR, which potential-
ly amplifies it (Li et al., 2020).

SUHI during the day and night

In Figure 5A, a scatter plot compares the two 
methods across all months. A linear regression 
analysis reveals a slope of 0.98 and an intersec-
tion of -0.48, with a correlation coefficient of 0.12. 
Furthermore, in the nighttime period (Figure 5B), 
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the linear fit gives a slope of 1.12 and an inter-
section of 0.95, along with a correlation index of 
0.14. The temporal variation of NDVI and EVI 
is the cause of this relationship (Angeles et al., 
2019). Applying other methods also confirms a 
positive trend of gradual increase in SUHIs in 
Brazil, where latitude, population, and biome 
type are factors that explain diurnal and nocturnal 
variations (Patriota et al., 2024).

Table 2 presents the results of the BMR, 
based on the quantile method focused on day-
time quantiles. The upper quantile (Q5) of the 
urban MAST reached its maximum in Septem-
ber, with 36.72 °C, while the minimum was re-
corded in June, with 28.28 °C. The highest av-
erage rural LST (Q3) occurred in September, 

reaching 34.89 °C, while the lowest was recorded 
in March, at 26.51 °C. The daytime SUHI reached 
its highest point in January (3.08 °C) and its low-
est in July (1.51 °C). These values may be sus-
ceptible to impervious surfaces, bare earth, and 
green spaces (Athukorala and Murayama, 2021), 
which can affect daytime and nighttime values on 
a monthly and regional basis (Lai et al., 2018).

During the nighttime period, as shown in Ta-
ble 3 and Figure 5A, the highest quantile value 
(Q5) for urban MAST was observed in October 
(20.45 °C) and the lowest in July (16.49 °C). 
The highest mean value for rural MAST (Q3) 
was observed in October (18.43 °C) and the 
lowest in July (14.13 °C). The nighttime SUHI 
shows maximum values in July (2.36 °C) and 

Figure 4. Temporal evolution of MAST of the BMR in urban areas (red lines), border areas (blue line),
and rural areas (green line). A) Daytime period and B) nighttime period

Table 1. Mean SUHI intensity and spatial coverage, including standard deviation, for the BMR estimated
using the Streutker (2002) approach during the period 2001–2016

Month LST0 (°C) a0 (°C) a'x
 
(km) a'y(km) Footprint area (km2) R2

January 27.23 ± 1.96 2.81 ± 1.17 3.16 ± 32.15 8.73 ± 6.11 74.5 ± 127.4 0.08

February 27.51 ± 1.73 3.65 ± 2.38 12.23 ± 6.76 8.68 ± 5.39 119.7 ± 143.9 0.12

March 26.51 ± 1.63 2.96 ± 0.95 10.82 ± 3.92 5.44 ± 1.30 58.9 ± 25.9 0.06

April 26.93 ± 1.68 2.37 ± 0.83 11.29 ± 4.32 4.48 ± 2.33 54.9 ± 37.9 0.05

May 26.98 ± 1.23 1.90 ± 0.92 6.47 ± 10.54 1.67 ± 5.55 64.1 ± 72.9 0.04

June 26.76 ± 1.04 1.74 ± 1.13 7.31 ± 10.24 4.28 ± 4.16 70.4 ± 54.2 0.03

July 28.31 ± 1.03 1.72 ± 2.12 -0.29 ± 13.56 1.23 ± 6.50 80.2 ± 72.3 0.02

August 31.59 ± 1.03 1.69 ± 1.51 -3.71 ± 15.34 -8.93 ± 33.46 332.2 ± 812 0.03

September 34.98 ± 1.78 0.93 ± 1.92 -4.55 ± 37.79 2.75 ± 15.47 247 ± 524.7 0.06

October 34.88 ± 3.30 -1.53 ± 2.78 7.49 ± 13.08 76.06 ± 184.36 848.1 ± 2,433.8 0.13

November 30.28 ± 2.08 -0.01 ± 1.86 12.43 ± 10.47 60.66 ± 191.88 1,032.5 ± 3,084.1 0.07

December 28.91 ± 2.18 1.57 ±  2.90 20.89 ± 30.05 2.46 ± 41.32 49.2 ± 1,161.2 0.06

Note: The table shows the verage temperature for rural area LST0 (°C), SUHI magnitude: α0 (°C),
longitudinal extent:  a’

x (km), latitudinal extent:  a'y (km), footprint area (km2), and R-squared fit.
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minimum values in April (1.72 °C). Compared 
to other cities that are not part of the urban cen-
ter, such as São João de Pirabas in Brazil, the 
SUHI intensifies more at night than during the 
day due to the air temperature and relative hu-
midity in the early hours of the day (Do Vale 
et al., 2025), as is the case in small cities, men-
tioned by Li et al. (2025). However, Monteiro et 
al. (2021), found that the Metropolitan Region 
of Brasília has more intense nighttime SUHI 
than daytime SUHI, compared to other cities in 
the same country, mainly in the dry season, due 
to intense verticalization, urban density, and the 
thermal properties of building materials.

These values are shown in Figure 6B in con-
trast to the daytime case, where it can be seen 

that the intensity of the nighttime SUHI is lower. 
These characteristics may be due to the fact that 
as the urban area increases, the SUHI increases 
steadily over evaluation periods similar to those 
in this study (Chen et al., 2020). In the case of Li 
et al. (2025), in warmer climatic zones, the day-
time SUHI is more intense, while the nighttime 
SUHI values are high in arid regions.

According to Figure 6C, variations can be 
identified in the period studied, which means 
changes in the horizontal and vertical structure 
of the city of Brasilia, influencing SUHI values 
in both methods. This information is related to 
Nova et al. (2021), since urbanization can vary 
over long periods of time and ultimately the ef-
fects of SUHI. These effects can be related to 

Figure 5. Scatter plot of SUHI, obtained by the Streutker method versus SUHI with the difference in quantiles
(

Q3
rural 

 

Q5
urban 

 

Q5
urban − Q3

rural ): a) daytime period, b) nighttime period

Table 2. Monthly average daytime LST (°C) for rural and urban areas and SUHI intensity (°C) at 5 km resolution 
for BMR during the period 2001–2016

Month Q3
 
(Urban LST) Q5

 
(Urban LST) Q3

 
(Rural LST) Q5 (Rural LST) SUHI Diurnal (°C)

January 28.42 ± 2.31 30.37 ± 2.13 27.29 ± 2.05 29.31 ± 2.07 3.08 ± 0.81

February 28.74 ± 2.05 30.55 ± 2.35 27.54 ± 1.77 29.25 ± 1.79 3.01 ± 0.83

March 27.39 ± 1.81 29.06 ± 1.93 26.51 ± 1.62 28.46 ± 1.80 2.55 ± 0.53

April 27.63 ± 1.93 29.03 ± 2.03 26.88 ± 1.67 28.97 ± 1.81 2.15 ± 0.48

May 27.41 ± 1.44 28.81 ± 1.53 26.85 ± 1.26 28.99 ± 1.29 1.96 ± 0.59

June 27.20 ± 1.11 28.28 ± 1.17 26.67 ± 1.06 28.45 ± 1.14 1.61 ± 0.45

July 28.72 ± 1.17 29.76 ± 1.34 28.25 ± 1.08 30.10 ± 1.08 1.51 ± 0.47

August 32.16 ± 1.14 33.25 ± 1.28 31.55 ± 1.06 33.54 ± 1.06 1.70 ± 0.34

September 35.29 ± 2.08 36.72 ± 2.13 34.89 ± 1.89 37.38 ± 1.81 1.83 ± 0.54

October 34.72 ± 3.64 36.61 ± 3.55 34.71 ± 3.33 37.76 ± 3.67 1.90 ± 0.48

November 30.38 ± 2.29 32.45 ± 2.21 30.19 ± 2.07 33.46 ± 2.43 2.26 ± 0.71

December 29.41 ± 2.33 31.65 ± 2.42 28.82 ± 2.19 31.48 ± 2.44 2.84 ± 0.95

Note: The table shows values for the median Q3 and the 0.95 quantile Q5.
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patterns of land use change, such as commercial 
and residential areas and lack of green spaces 
(Barbosa and Dutra, 2024). Therefore, vegetated 
land can help mitigate the effects, serving as an 
alternative for sustainable urban growth (Kimo-
thi et al., 2023).

CONCLUSIONS

The analysis revealed that the Brasília Met-
ropolitan Region exhibits diurnal and nocturnal 
variability in the SUHI, reaching its maximum 
during the day in January, with 3.08 °C, and 

Table 3. Monthly average nighttime LST (°C) for rural and urban areas and SUHI intensity (°C) at 5 km resolution 
for the BMR during 2001–2016 

Month Q3
 
(Urban LST) Q5

 
(Urban LST) Q3

 
(Rural LST) Q5(Rural LST) SUHI Nocturnal (°C)

January 18.47 ± 1.44 20.14 ± 0.99 18.01 ± 1.34 20.12 ± 0.94 2.13 ± 0.96

February 18.64 ± 1.08 20.17 ± 1.17 18.10 ± 0.83 19.84 ± 0.96 2.07 ± 0.45

March 18.70 ± 1.01 20.09 ± 1.21 18.28 ± 0.80 19.92 ± 0.99 1.81 ± 0.65

April 18.02 ± 0.99 19.32 ± 1.00 17.60 ± 0.75 19.39 ± 0.86 1.72 ± 0.59

May 16.41 ± 0.93 17.85 ± 1.03 15.81 ± 0.78 18.08 ± 0.87 2.04 ± 0.45

June 15.29 ± 0.88 16.88 ± 1.00 14.59 ± 0.81 17.10 ± 0.86 2.29 ± 0.41

July 14.95 ± 1.02 16.49 ± 0.95 14.13 ± 0.82 16.83 ± 0.76 2.36 ± 0.31

August 15.95 ± 1.00 17.46 ± 1.03 15.17 ± 0.91 17.92 ± 0.76 2.29 ± 0.39

September 18.17 ± 0.83 19.42 ± 0.93 17.44 ± 0.72 19.91 ± 0.71 1.98 ± 0.46

October 18.93 ± 1.20 20.45 ± 1.18 18.43 ± 0.81 20.52 ± 0.94 2.02 ± 0.46

November 18.03 ± 1.23 19.65 ± 1.15 17.85 ± 1.02 20.03 ± 1.13 1.80 ± 0.46

December 18.68 ± 1.17 20.22 ± 1.12 18.22 ± 1.17 20.37 ± 1.16 2.00 ± 0.76

Note: The table shows values for the median Q3 and the 0.95 quantile Q5.

Figure 6. Temporal evolution from 2001 to 2016, monthly average LST (°C) with standard deviation
for the LST period for BMR: a) daytime period, b) nighttime period, c) SUHI intensity (°C)
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falling to its minimum in July, with 1.51 °C. In 
contrast, during the night, the highest SUHI val-
ues are recorded in July, at 2.36 °C, while the 
lowest are observed in April, at 1.72 °C. 

In contrast, the comparison of SUHI between 
the quantile and Streutker methods yielded a low 
correlation close to 0.10, as the BMR does not fit 
a Gaussian surface, making the quantile method 
essential. Therefore, the traditional Gaussian ap-
proximation is not suitable for cities with mul-
tiple thermal hotspots, while the quantile method 
proved to be more robust in capturing the spatial 
heterogeneity of surface temperature, comple-
menting the Streutker method for cities with more 
than one maximum surface temperature center.

It is important to mention that the heterogene-
ity of urban areas, due to variations in topography 
and altitude, can influence verticalization, gener-
ating uncertainties in the estimation of LST and 
therefore SUHI. In addition, the azimuth and ze-
nith angles of each pixel are unique, which causes 
the geometric view of a city’s thermal image to 
be diverse. Therefore, to address this problem, it 
is recommended that future studies include LST 
data with better resolutions (less than 1 km), pro-
vided that they comply with the corresponding 
time series (annual and monthly).
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