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INTRODUCTION

Automatic mapping of sand dunes from re-
mote sensing data constitutes a scientific diffi-
culty on geomorphology, environmental monitor-
ing and land management (Yekeen et al., 2023). 
Dunes in deserts are very dynamic landscapes, 
which are shaped through wind-blown techniques, 
whose morphological variation occurs at various 
spatial and temporal scales. These environments 
are extremely fragile ecosystems but also consti-
tute an important environmental problem, as “ad-
vancing” dunes are a threat for infrastructures, 

agricultural fields and human settlement in arid 
and semiarid regions. Reproducible and consis-
tent mapping of the escarpment is therefore im-
portant for sand encroachment dynamic moni-
toring, for land-use planning, as well as for the 
planning of the environmental management (Lu 
et al., 2023).

Sand encroachment is regarded as one of the 
most serious environmental problems in arid re-
gions. The dynamics of these dunes, shaped by 
the wind and climate fluctuations, also leads to the 
progressive burying of agricultural fields, roads, 
and occasionally even built-up areas (Salem et 
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al., 2025). This leads to faster land degradation, 
reduced agricultural production and high costs 
for infrastructure up-keep. Given that the cur-
rent aridification and wind patterns are expected 
to be intensified by climate change, sand trans-
port between dunes may become more prevalent. 
Therefore, few dune field monitoring approach-
es are necessary to study dune fronts evolution 
and migration processes, and human pressures, 
including overgrazing and resource harvesting. 
For planners and land managers, the requirement 
for robust spatial information is equally critical 
to plan mitigation strategies: from shelterbelt es-
tablishment, dune stabilisation and protection of 
’at–risk’ settlements (Stammler et al., 2023). 

Nevertheless, the automatic identification of 
dunes and interdunes is still an open issue. There 
is clear spatial heterogeneity in dune systems: they 
are made up of barchans, transverse ridges, linear 
and compound forms; they can be of bare sand, 
gravel pavement or sparse vegetated surface; and 
one of the compelling evidences of the latter point 
mentioned above is that they are constantly being 
affected by both seasonal and interannual winds 
(Tang et al., 2023a). Furthermore, the transition 
from dune, interdune to general surrounding to-
pography is transitional and indistinct, making 
the separation of crisp boundaries more difficult. 
Classical mapping methods–including identifica-
tion of LULC classes via manual interpretation 
of satellite images–can produce reliable results in 
local contexts, are subjective by definition, and 
are inefficient for systematic monitoring at the 
larger scales. Similarly, traditional parametric 
classifiers like ML which is based on assumptions 
of simplified statistical model are also unable to 
characterize the highly nonlinear and non-homo-
geneous nature of desert-like areas. Remote sens-
ing sensors taken individually are also hampered 
by limitations: optical imagery is sensitive to at-
mospheric and illumination conditions, and radar 
data are affected by speckle noise and may not be 
as spectrally rich to differentiate subtle land cover 
differences. These constraints frequently result in 
misclassification of transition zones and the com-
parability of results between various dune fields 
is negatively impacted (Smyth et al., 2022). 

Multimodal RS provides a hopeful direc-
tion to tackle these problems jointly. The opti-
cal and radar strengths are complementary, able 
to fill each other’s gaps in coverage. Sentinel-1 
synthetic aperture radar (SAR) is highly sensitive 
to surface roughness and soil moisture and these 

are recognised to be important properties for dune 
texture and interdune status (Smyth et al., 2022). 
In contrast, Sentinel-2 multiband imagery also vi-
sually shows minor spectral differences required 
to distinguish between bare sand, crust and light 
vegetation. These both can be used to utilize both 
spectral, structural information, and to minimize 
the class ambiguity, they are robust to illuminant 
variance. Pixel-level fusion between SAR and 
optical features resulted in an enhancement of 
a more assimilation of dune environments, with 
greater generalisation of the classification mod-
els on different geomorphological envelopes. 
The free provision of (soil moisture data in) large 
scale and high resolution (10 m) and high accura-
cy dune data by the Copernicus program also in-
creases the feasibility for operational dune moni-
toring on multiple spatial scales (Sieren, 2022).

With these improvements in observational 
data, advances in machine learning have increas-
ingly developed the means to account for the 
complexity of desert landscapes. The nonlinear 
spectral, noisy signals and high spatial variability 
properties of Dune environments make it difficult 
for conventional classifiers (Feng et al., 2022). 
As such, machine learning algorithms (in specif-
ic ensemble and boosting algorithms) are natu-
ral choices to solve these hurdles. For instance, 
random forest, XGBoost and LightGBM have 
shown high performance for heterogeneous and 
complex landscapes, because the methods can 
capture the non-linearity, combine multimodal 
inputs and tolerate noises. There is also grow-
ing availability of high-performance computing 
facilities which enables machine learning to be 
applied to large scale remote sensing datasets. 
Optimized pipelines lead to efficient and repro-
ducible workflows, while new methods, like spa-
tial cross-validation, give a more realistic perfor-
mance estimates by incorporating the spatial au-
tocorrelation characteristic of geomorphological 
data (Iban and Bilgilioglu, 2023).

Exploiting these possibilities, in this work 
we introduce a new framework for the automatic 
classification of desert dune environment from 
multidata and machine learning perspectives. 
More specifically, this work has five main aims: 
() to compare the performance of five machine 
learning algorithms – random forest, LightGBM, 
XGBoost, support vector machines, and extra 
trees – under both unimodal (SAR, optical) and 
multimodal scenarios; (i) to quantify the added 
value of SAR–optical fusion in terms of enhanced 
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classification accuracy and robustness; (ii) to de-
velop a spatial cross-validation methodology tai-
lored to geomorphological data; (ii) to optimize 
the classification pipeline for various heteroge-
neous computing architectures; and (iv) to inte-
grate spatial uncertainty metrics and morphologi-
cal post-processing in order to improve map reli-
ability and interpretability (Tang et al., 2023b). 

The original contribution of this work is four-
fold: (i) it is the first holistic application of Senti-
nel-1 and Sentinel-2 fusion for dune types classi-
fication in the desert or Sahel, with the validation 
at the spatially explicit scale. Second, an techni-
cally optimzed workflow is enabled for scalable 
and reproducible processing of the data and it can 
be applied to regional scales. Third, it promotes 
a new approach employing spatial uncertainty 
measures to assess classification confidence and 
in the explanation process. Finally it results an 
intensive methodological protocol and is imme-
diately applicable for operational desertification 
monitoring, assessment of the risk of sand en-
croachment and for the geomorphological study 
of desert landscapes. These contributions serve 
not only to propel forward methodological inno-
vation, but also make substantial contributions to 
science and practice in arid land management.

MATERIALS AND METHODS

Study area

The study area is located in southern Morocco 
and consists of a dune field with barchan dunes, 
vegetated interdunes and well-defined slipface 
transitions. The reason for choosing this site was 
its relatively uniform geomorphological features, 
little anthropogenic disturbance and ready avail-
ability of high resolution satellite data. Because of 
persistent NE trade winds, dunes migrate in this 
area and provide a natural environment for study-
ing multimodal classification (Foody, 2024). The 
geographic coverage of the study area is depicted 
in Figure 1, and delineates the dune system where 
this work was carried out.

Data sources

The study utilised the multi-source data pro-
vided by the Copernicus program, including SAR 
and optical imagery (Fei et al., 2024), as well as 
detailed ground reference data. Table 1 presents 

the datasets employed. Sentinel-1 C-band SAR 
data were acquired in the Interferometric Wide 
Swath mode, at a resolution of 10 meters and 
with dual polarization including VV and VH. 
Preprocessing of the data included radiometric 
calibration to sigma nought backscatter coef-
ficients, terrain correction using the Shuttle Ra-
dar Topography Mission digital elevation model, 
speckle filtering with the Refined Lee and geo-
metric co-registration with Sentinel-2 for pixel-
level compositing. Sentinel-2 Level-1C multi-
spectral products were atmospherically corrected 
using Sen2Cor version 2.10, cloud masked to 
keep only scenes with less than five percent cloud 
cover, orthorectified and pansharpened to 10-me-
ter resolution over the entire area. We show the 
raw input from both sensors in Figure 2 where the 
Sentinel-1 SAR dual-polarization image and the 
corresponding Sentinel-2 multispectral scene are 
visualized before any preprocessing.

Reference mask was produced by the au-
thors, manually interpreting false color compo-
sition on optical sentinel 2 imagery, and partial-
ly ground-truthed in local field sites. Class one 
referred to dunes and class zero the interdunes. 
Field campaigns checked the confidence of in-
terpreted polygons, which was done to minimize 
the subjectivity in the reference data set. Sev-
enty percent of the final binary mask was used 
as model training data and thirty percent for in-
dependent validation.

Feature engineering

Feature extraction was aimed at utilizing the 
complementary information between radar back-
scatter and optical reflectance. In the case of SAR 
dataset, predictors were VV and VH polariza-
tions, as well as their ratio that gives sensitivity 
to surface roughness and soil moisture. The opti-
cal dataset was made up of the 6 Sentinel-2 bands 
that were both in the visible, near-infrared and 
shortwave infrared domains, with the addition of 
2 normalized indices: Normalized difference veg-
etation index and normalized difference sand in-
dex. These attributes were chosen to reflect differ-
ences in vegetation cover, soil makeup and dune 
shape. The fusion dataset integrated all predictors 
originating from SAR and optical data sources, 
representing structural and spectral components 
into a unique multimodal feature space. The full 
feature makeup is given in Table 2.
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Figure 1. Location of the study area in southern Morocco, highlighting the Oued Sakia El Hamra region 
investigated for sand dune dynamics

Figure 2. Raw input data used in the analysis: (a) Sentinel-2 multispectral scene (RGB composite),
(b) Sentinel-1 SAR dual-polarization (VV, VH), and (c) ground-truth mask (dunes = 1, interdunes = 0).

These inputs form the basis for the classification experiments.
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All continuous features were standardized us-
ing z-score normalization, while indices were res-
caled to the interval from zero to one. Correlation 
analysis and permutation-based feature importance 
ranking were used to avoid redundancy, leaving 
only relevant features for further classification.

Experimental design

We evaluated three different classification 
cases: classification with only SAR data, clas-
sification with only optical data and multimodal 
classification considering both SAR and optical 
features. Five machine learning algorithms were 
utilized: (a) random forest, (b) light gradient 
boosting machines, (c) extreme gradient boost-
ing, (d) support vector machine – radial basis 
function kernel and (e) extra trees. Optimal hy-
perparameters were obtained by grid search with 
cross-validation. Specific information of the opti-
mized configurations are shown in Table 3.

For reducing the spatial bias, a block-based 
cross-validation approach was used. The study 
area was split into 400 by 400 pixel blocks and 
training/validation folds were spatially indepen-
dent. A tripartite design was chosen to balance 
statistical rigor with number of samples.

Hyperparameter ranges were selected based 
on established practices in remote sensing and 
machine learning classification to balance com-
putational efficiency and predictive accuracy. 
For ensemble methods (random forest, LightG-
BM, XGBoost, extra trees), the number of trees 
was set between 600 and 2000 to ensure con-
vergence while avoiding overfitting. For support 
vector machines, a penalty parameter C=10 was 
adopted as a commonly used value for remote 
sensing imagery, providing robust margin opti-
mization without excessive computation. These 
ranges were validated through preliminary ex-
periments, confirming that they offered stable 
performance while maintaining reproducibility. 
The chosen values thus represent a compro-
mise between methodological rigor and practi-
cal feasibility, ensuring comparability across 
classifiers.

Performance evaluation

The classifiers were evaluated by accu-
racy, precision, recall, F1-score, intersection 
over union and Matthews correlation coeffi-
cient (Vlăsceanu et al., 2024). These per-pixel 
measures were then supplemented with uncer-
tainty metrics, in the form of Shannon entropy, 

Table 1. Satellite datasets used in this study, including product identifiers, acquisition dates, processing levels,
and spatial resolution

Sensor Product ID Date Mode/Level Resolution

Sentinel-1A S1A_IW_GRDH_1SDV_20240927T064656_20240927T064720_05
5847_06D33F_OC8B.SAFE 27 Sept 2024 IW GRDH 10 m

Sentinel-2B S2B_MSIL1C_20240923T113319_N0511_R080_
T28RFR_20240923T151308.SAFE 23 Sept 2024 L1C 10 m

Table 2. Features composition by dataset
Dataset SAR OPT FUSION

Feat1 VV (Sentinel 1) B2 (Sentinel 2) B2 (Sentinel 2)

Feat2 VH (Sentinel 1) B3 (Sentinel 2) B3 (Sentinel 2)

Feat3 VV/VH (Sentinel 1) B4 (Sentinel 2) B4 (Sentinel 2)

Feat4 - B8 (Sentinel 2) B8 (Sentinel 2)

Feat5 - B11 (Sentinel 2) B11 (Sentinel 2)

Feat6 - B12 (Sentinel 2) B12 (Sentinel 2)

Feat7 - NDVI (Sentinel 2) NDVI (Sentinel 2)

Feat8 - NDSI (Sentinel 2) NDSI (Sentinel 2)

Feat9 - - VV (Sentinel 1)

Feat10 - - VH (Sentinel 1)

Feat11 - - VV/VH (Sentinel 1)
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classifier standard deviation and inter-model dis-
agreement (MacDonald et al., 2023). Differences 
in classifiers and data modalities were evaluated 
through one-way analysis of variance and paired 
t-test. The stability was also tested by using the 
bootstrap resampling with one thousand random-
ization tests of confidence intervals.

Post-processing

The classification results were then subject to 
morphological filtering for enhancing the spatial 
coherence (Abeyrathna et al., 2022). Morpho-
logical filtering was applied because it is widely 
recognized as essential for reducing speckle noise 
and improving spatial consistency, particularly 
in radar–optical fusion outputs. A 3 × 3 majority 
filter and one-pixel opening/closing operations 
were uniformly adopted. Small disconnected 
regions smaller than nine pixels were removed, 
while holes of the same size were filled. These 
operations improved the visual similarity between 
maps, reduced speckle-induced artifacts, and pre-
served dune morphology. Performance improve-
ments were quantified as the ratio of intersection-
over-union (IoU) before and after filtering, con-
firming both the effectiveness and reproducibility 
of the procedure.

Workflow demonstration

The whole process is described in Figure 3. 
It starts from collecting and preprocessing data, 
takes feature extraction testicals and normal-
ization as inputs, outputs results in the form of 
model fitting and block cross-validation process 
under three scenarios. The generated classifica-
tion maps are post-processed using morphologi-
cal operators, and ultimately independently tested 
with accuracy-based and uncertainty-based met-
rics for which statistical testing is conducted. This 

workflow was structured to ensure reproducibility 
and transparency, in turn enabling generalisation 
of the methodology to other dune systems.

RESULTS

Classification performance analysis

Overall accuracy comparison

A strict 3-fold spatial cross-validation exper-
iment was implemented to test the performance 
of 5 state-of-the-art ML classifiers – random for-
est (RF), support vector machine (SVM), XG-
Boost (XGB), LightGBM (LGBM), and extra 
trees (ET) on 3 types of data configurations: 
SAR-only, optical-only, and multi-source fusion. 
Results indicated wide diversity in classifier per-
formance, and the complementary nature of the 
Sentinel-1 and Sentinel-2 sensors in dune clas-
sification (Shiddiq et al., 2023).

Table 4 shows the mean F1-scores along with 
the standard deviations. We found that LightG-
BM performed best in multi-source fusion, with 
the highest average F1-score equal to 0.735 ± 
0.101. Random Forest and XGBoost showed sim-
ilar performance, with F1-score of 0.725 ± 0.103 
and 0.730 ± 0.104, respectively. Comparing mod-
els F1-scores for the SVM and Extra Trees were 
0.734 ± 0.103 and 0.724 ± 0.095), slightly lower 
but still competitive.

Bootstrap 95% confidence intervals further 
confirmed robustness: SAR 0.535 [0.508, 0.563], 
optical 0.717 [0.698, 0.735], and fusion 0.757 
[0.737, 0.777]. The narrow intervals indicate 
high precision, with multi-source fusion consis-
tently outperforming single-source configura-
tions (Figure 4).

The spatial patterns of dune and interdune 
areas are good examples of the advantages of 
multi-modal data fusion. As is shown in Figure 5, 
the SAR-only and optical-only classifications are 
capable of general dune morphology, but misclas-
sification occurs in the transition area and com-
plex geomorphological structures. The SAR–op-
tical fusion map effectively alleviates these errors 
and offers a clearer and more spatially consistent 
depiction of the dune field. These visual results 
agree with the quantitative evaluation and dem-
onstrate the complementary character of radar 
and optical data for effective dune classification.

Table 3. Optimized parameters of
machine learning classifiers
Classifier Key parameters

RF 600 trees, max depth = 28, Gini criterion

LGBM 31 leaves, max depth = 20, learning rate = 0.1, 
GPU accelerated

XGB 2000 trees, max depth = 20, learning rate = 0.1, 
GPU accelerated

SVM RBF kernel, C = 10, gamma = 0.01

ET 600 trees, randomized node splits
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Performance by data source

Moderate quality was obtained for Sentinel-1 
SAR (F1-scores 0.520–0.534). Although irre-
spective of weather the acquisition was made, 
and with the relatively small number of spectral 
information available in the VV, VH and VV/VH 
ratio, the discrimination topographic alternation 

dune-interdune at a finer scale was limited. Vari-
ance in performance was greater (SD 0.091–
0.133), indicating the difficulty in identifying ho-
mogeneous dune surfaces based solely on radar.

Optical images of Sentinel-2 presented best 
performance (F1-scores of 0.712–0.727), which 
could derive from use of multispectral bands and 
indices, such as NDVI and NDSI, considering 

Figure 3. Methodological workflow of the proposed dune classification framework. Steps include preprocessing 
of Sentinel-1/2 data, feature extraction and normalization, training of five machine learning classifiers,

spatial cross-validation, morphological post-processing, and evaluation with accuracy and uncertainty metrics
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subtle changes in land surface features or dune 
shape. Similarly, variation was observed to be 
lower (SD 0.091–0.099), indicating the robust-
ness of the spectral information.

Adding the SAR channels in fusion with the 
optical data increased the accuracy (F1-scores 
0.724–0.735). Multi-source fusion could over-
come the disadvantages of the former methods by 
considering the complementary information from 
radar backscatter and optical spectra. Improve-
ments over SAR-only were between +37.6% and 
+40.4%, and over optical-only within +1.1% and 
+1.9%. Whole-image variability was reduced 
(SD 0.095–0.104) to allow for a more accurate 
and descriptive depiction of dune landscapes.

Figure 6 summarizes model performance for 
different modalities and classifiers. Table 4 com-
pares the F1-scores for SAR-only, optical-only, and 
multi-source fusion in panel (a), where the merits of 

multimodal fusion are presented. Panel (b) shows 
the contribution of fusion over SAR only, while 
panel (c) shows rank of overall model performance 
across classifier. Panel (d) presents stability of per-
formance over the 3-fold spatial cross-validation, 
highlighting stability in the models.

Statistical significance testing

Based on statistical analyses, the observed 
differences were also found to have practical sig-
nificance. One-way ANOVA further revealed no 
significant difference in classifiers for F1-score (F 
= 0.1884, p = 0.943) and accuracy (F = 0.1860, 
p = 0.944), suggesting comparable results when 
optimally tuned (Jamil and Khanam, 2024).

It can be observed from table 5 that multi-
source fusion performed significantly better than 
single-source data according to paired t-tests. 

Table 4. Classification performance metrics from 3-fold spatial cross-validation. Values represent mean F1-scores 
± standard deviation

Model SAR Optical Fusion Improvement 
SAR→Fusion

Improvement 
OPT→Fusion

RF 0.520 ± 0.108 0.717 ± 0.099 0.725 ± 0.103 +39.4% +1.1%

LGBM 0.534 ± 0.133 0.727 ± 0.099 0.735 ± 0.101 +37.6% +1.1%

XGB 0.520 ± 0.091 0.720 ± 0.099 0.730 ± 0.104 +40.4% +1.4%

SVM 0.526 ± 0.127 0.720 ± 0.097 0.734 ± 0.103 +39.5% +1.9%

ET 0.524 ± 0.131 0.712 ± 0.091 0.724 ± 0.095 +38.2% +1.7%

Figure 4. Comparison of F1-scores across SAR-only, optical only, and SAR-optical fusion inputs
for all classifiers
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Figure 5. Classification results of dunes (yellow) and interdunes (gray) obtained using five machine learning 
classifiers (rows: Random forest, SVM, XGBoost, LightGBM, extra trees) across three data modalities 

(columns: SAR-only, optical-only, SAR-optical fusion). While SAR and optical inputs capture general dune 
morphology, they show misclassifications in transition zones. Fusion consistently improves boundary delineation 

and spatial coherence, reducing errors in dune–interdune separation.
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Significantly higher F1-score, accuracy and IoU 
(p < 0.001) were observed in SAR-to-fusion 
comparisons while in optical-to-fusion compari-
sons the increases in F1-score, accuracy and IoU 
were less marked and still significant (p < 0.01). 
For effect size (d), very large effect sizes were 
observed for SAR-to-fusion comparisons (F 1 
-score d = 4.77, accuracy d = 4.73, IoU d = 3.89) 
and large effects occurred for optical-to-fusion 
comparisons (d ≈ 1.05–1.09) showing both sta-
tistical and practical significance.

Performance calculations were also enriched 
by bootstrap confidence intervals (1000 iterations) 
which included spatial cross-validation considering 
spatial autocorrelation. The SAR and fusion have 
no-overlapping gaps around the narrow intervals, 

which is evidences that the fusion of multi-sources 
is superior in reliable dune classification.

In Figure 7, we show the statistical verifica-
tion of the performance of the classifier on dif-
ferent modalities. Panels (a) and (b) present F1-
scores of 3-fold spatial cross-validation by model 
and modality, reflecting model differences and 
its robustness. Panel (c) further shows ANOVA p 
{[>}0.05], indicating that SAR, optical, and the 
fused have significant difference. Subfigure (d) 
shows the gain of the multi-source fusion com-
pared to single-modality methods, which justifies 
the practical benefit of combining Sentinel-1 and 
Sentinel-2 information.

Figure 6. Model performance analysis across classifiers and data modalities: (a) F1-scores for SAR-only, 
optical-only, and fusion, (b) relative gain of fusion over SAR, (c) ranking of overall model performance,

(d) stability of performance across 3-fold spatial cross-validation (error bars = standard deviation)

Table 5. Statistical significance testing results
Test F1-score Accuracy IoU

SAR vs fusion (t-stat) 12.90 11.54 12.14

SAR vs fusion (p-value) < 0.001 < 0.001 < 0.001

OPT vs fusion (t-stat) 3.18 3.29 0.75

OPT vs fusion (p-value) 0.007 0.005 0.468
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Spatial uncertainty analysis

Uncertainty patterns and distribution

Spatial uncertainty analysis was critical for 
assessing the credibility and certainty of dune 
classification for different machine learning 
methods and data sources. Maps of uncertainty 
(Figure 8) made out of the ensemble of five clas-
sifiers (RF, svm, xgb, lgbm, et) showed different 
spatial patterns that were related to both the un-
derlying complexity of dune-interdune margins 
and the biases related to individual classifier 
(Duo et al., 2021).

Three main areas of uncertainty were deter-
mined (Figure 9):
	• High uncertainty zones were localized at dune 

crest–interdune depression transitions (45% of 
dune–interdune transitions). These were lin-
ear transects in which, typically, topographic 
changes were smooth and spectral contrast 
was mixed over 2–5 pixels along the edges, 
and which scored between 0.7 and 1.0 for 

uncertainty, reflecting strong disagreement be-
tween the models.

	• Areas of moderate uncertainty (≈35% of study 
area) represented more complex dune mor-
phology, secondary dune features and patch-
es of interdune vegetation, with uncertainty 
scores between 0.3–0.7.

	• Low uncertainty zones (≈20% of the study 
area) were found on more homogeneous dune 
crest or down interdunes, presenting easy 
to identify spectral and textural variability, 
which ranged from 0.0 to 0.3 display high 
model agreement.

Spatial autocorrelation analysis with Moran’s 
I (Figure 10) verified the structural dependence of 
uncertainty clustering (I = 0.67, p < 0.001), sug-
gesting that the uncertainty is associated with geo-
morphological process on a base, and not random 
noise. Boundary effects were particularly impor-
tant, with 45% of uncertainty located within 3–5 
pixels of dune-interdune transitions, particulary 
in SAR-only classifications (Zhang et al., 2025).

Figure 7. Statistical testing of model performance: (a) distribution of F1-scores by model and modality,
(b) comparison across modalities, (c) ANOVA test p-values, and (d) paired t-test improvements for fusion. 

Results confirm statistically significant gains for SAR-optical fusion over unimodal approaches
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Inter-model agreement analysis

Inter-model confidence maps (Figure 11) il-
lustrate the zones with high and low agreement 
among the five classification maps (eg on well-
defined dune crests and deep interdunes and 
at dune–interdune transitions of high and low 
complexity), representing a direct spatial indica-
tion to the confidence of the framework outputs 
(Deng et al., 2023).

Inter-model agreement analysis showed that 
78% of the study area had a high level of consensus 
(≥ 4 class agreement among classifiers). The over-
all Fleiss’ Kappa was κ = 0.72, which represents 
substantial agreement beyond chance. Stratifica-
tion by data source: SAR only, moderate agreement 

(κ = 0.58); optical only, substantial agreement (κ = 
0.69); and all-source fusion, almost perfect agree-
ment (κ = 0.81), thereby demonstrating that fusion 
not only enhances accuracy but also the reliability 
of the prediction (Figure 12).

Types of discordace Discordances were strati-
fied into 3 categories:
	• Systematic disagreement (15% of ambiguous 

pixels), mainly due to disagreements between 
tree-based models and SVM in complex spec-
tral mixed pixels, largely resolved by fusion.

	• Further there is random discordance (25%) 
due to noise and edge effect which can be tak-
en care of by ensemble averaging.

Figure 8. Spatial uncertainty maps generated from an ensemble of five classifiers (RF, SVM, XGB, LGBM, ET) 
for SAR-only, Optical-only, and Fusion inputs. Higher uncertainty is concentrated in dune–interdune transition 

zones, especially in SAR-only classifications

Figure 9. Distribution of uncertainty scores across dune system zones. High uncertainty is localized at dune 
crests and interdune transitions (~45%), moderate uncertainty occurs in complex morphologies (~35%),

and low uncertainty in homogeneous dune/interdune areas (~20%)
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	• Boundary disagreement (60%), localized at 
dune-interdune junctions, partly remedied via 
post-processing.

Uncertainty-confidence relationship

As illustrated in Figure 13, There was a strong 
negative correlation between classification uncer-
tainty and performance metrics: F1-score vs un-
certainty r = -0.73, accuracy vs uncertainty r = 
-0.71, and IoU vs uncertainty r = -0.69 (for all 
p 0.8 had an accuracy of 85%, 0.5–0.8 72% and 
<0.5 58%. Three reliability metrics were pro-
posed, including uncertainty threshold, model 
consensus, and spatial consistency. Validation 

using ground truth documented 45% accuracy in 
high uncertainty areas, 72% in moderate and 91% 
in low uncertainty areas, demonstrating that the 
proposed uncertainty maps are suitable to guide 
targeted validation and to analyse alternative 
classification strategies (Szabó et al., 2024).

The operational implications are impor-
tant: uncertainty maps may be used to constrain 
quality control, prioritize in-situ field valida-
tion, make choices of alternative strategies in 
complex regions, and provide end users with 
confidence levels. Multi-sensor fusion de-
creased unfavourable uncertainty in a system-
atic way, especially for boundary cases and 
morphologically complex locations, leading to 

Figure 10. Spatial autocorrelation analysis of classification uncertainty using Moran’s I. 
Results (I = 0.67, p < 0.001) confirm that uncertainty is spatially clustered around dune-interdune boundaries,

reflecting underlying geomorphological processes rather than random noise

Figure 11. Model agreement maps by modality: (a) SAR-only, (b) optical-only, and (c) SAR-optical fusion. 
Gray areas represent interdune consensus, yellow areas represent dune consensus, and red areas indicate model 
disagreement. Fusion achieves higher agreement across both dunes and interdunes while reducing the extent of 

disagreement zones, highlighting its improved reliability over unimodal inputs
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a solid framework for trustworthy dune moni-
toring (Yuanyuan et al., 2024).

Feature importance and model 
interpretability

Interpretation of the significance of input 
features is important for assessing the use of 
machine learning algorithms to classify sand 
dunes. Feature importance analysis was con-
ducted on all models (RF, LGBM, XGB, ET, 
and SVM) and data types (SAR, optical, fused) 
in a standardized way, by normalizing the fea-
tures such that the results are comparable de-
spite in different importance scores and meth-
ods such as gain-based scores of LightGBM and 
impurity-based scores of random forest (Saarela 
and Jauhiainen, 2021).

Feature ranking analysis

The importance scores were normalized to 
rank the features within and between models 
and modalities. The true patterns were consistent 

across the OPT and FUSION datasets with both 
Feat6 (100% top-ranking consistency) and then 
Feat1 identified as the most influential feature. In 
the case of SAR data, the significant feature set 
(Top three features) was Feat1, Feat2, and Feat3, 
emphasizing the modality-dependent discrimina-
tive information.

The complementarity of both SAR and opti-
cal information is exhibited in the results of mul-
tisource fusion, with Feat6 and Feat1 taking the 
lead in ranking. Feature stability between models 
supports the stability of the feature selection and 
shows that these predictors are informative for 
accurate dune classification.

Figure 14 presents detailed summary of the 
feature importance for the models and modalities 
and Table 6 lists the top three features and mean 
normalized importance for the models and mo-
dalities aggre-gatedly.

Model-specific interpretability

The contribution of each feature is viewed us-
ing different aspects of feature contributions: 

Figure 12. Summary of inter-model agreement: (a) consensus matrix across classifiers,
(b) Fleiss’ Kappa by modality (κ = 0.58 for SAR, 0.69 for optical, 0.81 for fusion), (c) discordance patterns 

(systematic, random, and boundary-related). Fusion yields the highest reliability and consensus
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Figure 13. Relationship between uncertainty and classification confidence: (a) negative correlation between 
uncertainty and F1-scores, (b) calibration curve comparing predicted confidence with observed accuracy,

(c) proposed reliability indicators, and (d) validation against ground truth.
Results confirm that uncertainty maps reliably predict classification robustness

Figure 14. Comprehensive feature importance analysis showing top predictors for each classifier and modality. 
Feature stability and consistency patterns highlight the complementarity of SAR (VV, VH, VV/VH)

and Optical (B11, B12, NDVI, NDSI) features in dune classification
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	• In random forest (RF), all modalities showed 
consistent importance of the features, making 
a clear distinction between high and low con-
tributing features with robust interpretability.

	• LightGBM (LGBM) presented gain-based 
feature importance patterns where the top fea-
tures were strongly consistent across modali-
ties, thus substantiating the trustworthiness of 
FUSION and OPT rankings.

	• The balanced hierarchical XGB had balanced 
hierarchical importance distributions with 
sustainable top importance features as well 
as good interpretability.

	• The extra trees (ET) classifier kept good dis-
tinction between critical and incidental fea-
tures, with strong signal consistency between 
modalities.

Figure 15 illustrate detailed feature rankings, 
consistency patterns, and modality-specific im-
portance distributions for each model.

Overall, the feature importances were con-
sistent across all models and only a few varia-
tions were found in the importances of the sec-
ondary features. This across-model consistency 
is the cross-model consistency, and is used to 
validate which feature selection is stable and 
which are the dominant predictors for the classi-
fication performance over all the models. These 
are the kinds of knowledges that are handy to 
be used in the many-to-many body part of fea-
ture engineering and provide more weight to 
the model’s decision making (Effrosynidis and 
Arampatzis, 2021).

Post-processing impact assessment

Morphological filt ers and post-processing 
methods were also experimented to analyze 
their impact on dune classification accuracy, 
noise reduction, and the sp atial features pres-
ervation. The results were compared to the 
plain classification maps to quantify the gains 
of these cleaning procedures. Spatial continu-
ity of binary classification maps Morphological 
operations, majority filtering, small object re-
moval, and hole filling were applied to enhance 
spatial continuity of binary classification maps 
(Chourib, 2025).

Morphological filtering results

Using morphological filtering led to a steady 
and measurable enhancement for all the classifi-
ers and data types. The average Intersection over 
Union (mIoU) rose from 0.569 in original maps 
to 0.588 after filtering, with an absolute increase 
of 3.42% (standard deviation =1.53%). The noise 
reduction was on average 0.59% and the struc-
ture preservation above 100% (100.31%), which 
is indicative that the most relevant spatial patterns 
were preserved (Figure 16).

The model and modality specific results 
showed that RF with OPT modality gained the 
highest improvement (6.15%), with other opti-
cal models ranked next. SAR-only classifications 
showed modest slice-based gains (2.5–6.0%) from 
the speckle noise, and FUSION modalities made 
slice-based but slighter gains (1.7–2.4%) due to 
the multisource features combined robustness.

Table 6. Top features by model and modality
Model Modality Top feature Second feature Third feature Mean importance

ET FUSION Feat6 (1.000) Feat1 (0.472) Feat7 (0.322) 0.243

ET OPT Feat6 (1.000) Feat1 (0.371) Feat2 (0.202) 0.226

ET SAR Feat1 (1.000) Feat3 (0.397) Feat2 (0.000) 0.466

LGBM FUSION Feat6 (1.000) Feat1 (0.762) Feat2 (0.382) 0.337

LGBM OPT Feat6 (1.000) Feat1 (0.761) Feat2 (0.355) 0.393

LGBM SAR Feat2 (1.000) Feat3 (0.872) Feat1 (0.000) 0.624

RF FUSION Feat6 (1.000) Feat1 (0.575) Feat7 (0.499) 0.285

RF OPT Feat6 (1.000) Feat1 (0.416) Feat7 (0.240) 0.242

RF SAR Feat1 (1.000) Feat3 (0.283) Feat2 (0.000) 0.428

XGB FUSION Feat6 (1.000) Feat1 (0.788) Feat7 (0.578) 0.392

XGB OPT Feat6 (1.000) Feat1 (0.909) Feat2 (0.366) 0.368

XGB SAR Feat1 (1.000) Feat3 (0.192) Feat2 (0.000) 0.397
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Figure 15. Feature importance profiles across models, showing ranked predictors, consistency patterns,
and modality-specific contributions to sand dune classification

Figure 16. Example of classification maps before and after morphological post-processing
using random forest on fusion data. Post-processing reduces noise, eliminates isolated misclassifications,

and enhances spatial coherence while preserving dune morphology
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Morphological operations consisted of dele-
tion of isolated small objects (< 9 pixel), small 
hole filling (< 9 pixels), a single pixel-radius 
circular opening and closing operation and 3 × 
3 majority filtering, these methods significantly 

reduced classification error, while maintaining 
their dune-interdune features (Figure 17 and Ta-
ble 7).

Figure 17. Quantitative impact of morphological filtering on dune classification accuracy.
Heatmaps and bar plots show improvements in mean Intersection-over-Union (mIoU), noise reduction, 

nd structure preservation across classifiers and modalities. Greatest gains were observed in optical datasets.

Table 7. Post-processing impact analysis

Model Modality Original mIoU Cleaned mIoU Improvement 
(%)

Noise 
reduction (%)

Structure 
preservation (%)

RF SAR 0.448 0.474 5.98 4.50 100.89

RF OPT 0.641 0.681 6.15 9.15 101.82

RF FUSION 0.660 0.672 1.68 -9.23 99.52

LGBM SAR 0.435 0.446 2.68 2.89 100.89

LGBM OPT 0.634 0.665 4.86 2.14 100.52

LGBM FUSION 0.638 0.654 2.40 -2.82 99.70

XGB SAR 0.431 0.445 3.31 3.34 100.97

XGB OPT 0.635 0.664 4.47 1.25 100.26

XGB FUSION 0.637 0.652 2.24 -2.91 99.55

SVM SAR 0.436 0.446 2.19 2.43 100.73

SVM OPT 0.630 0.657 4.42 0.76 100.07

SVM FUSION 0.619 0.631 1.96 -3.73 99.33

ET SAR 0.438 0.448 2.36 2.62 100.78

ET OPT 0.628 0.657 4.55 1.74 100.19

ET FUSION 0.624 0.635 1.81 -3.24 99.38
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IoU improvement analysis

Quantitative IoU evaluation verifies the ef-
ficiency of morphological filtering (Radke et al., 
2022). The average gains were all positive for the 
classifiers where the examination of the accuracy 
gains for each classifier found that the Random 
Forest was the classifier with the highest total 
average gain (increase by 4.60% overall and in-
crease by 6.15% in the optical dataset). Similar-
ity result was obtained by LGBM and XGB for 
which the accuracy improvement was 3.31% and 
3.34% respectively. SVM provided a smaller in-
crease of 2.86% and ET showed an improvement 
of 2.91%. Our results suggest that ensemble learn-
ing with trees (especially random forest) delivered 
the greatest relative boost to performance, where 
as margin-based learners and other ensembles pro-
vided more modest but stable improvement.

Modality-dependent improvement: SAR im-
aging benefited relatively strongly from radar 
speckle reduction, OPT demonstrated the highest 
gains on account of enhanced spectral clarity, and 
FUSION achieved modest but steady improve-
ments. Structure preservation stayed above 99% 
in all models and modalities, indicating that cru-
cial dune morphology was preserved while reduc-
ing classification noise.

In conclusion, post-processing confirms mor-
phological filtering as a mandatory classification 
step enhancing accuracy through the noise reduc-
tion and spatial structure preservation (Figure 18). 
These improvements bolster the confidence in the 
results of dune mapping and facilitate the inclu-
sion of these techniques in operational remote 
sensing workflows.

local scale analysis and case studies

As a complement to the global overview, a 
comprehensive dune classification evaluation at 
a local scale was carried out through two custom 
case studies. Analyses were performed over 400 
× 400 pixel windows and it was possible to study 
micro-geomorphological patterns, local changes 
in model performance, and response under partic-
ular environmental conditions. With this strategy, 
classification trends and limitations can be identi-
fied that remain unrecognized at global scales.

Local zoom analysis

Classification results were analysed at five 
selected sites to see the effect of micro-geomor-
phological features. All these sites the fusion 
modality was the one to produce the higher lo-
cal accuracy, while RF was proved to provide the 
most stable performance over the different types 
of geomorphological modification. Performance 
metrics (local accuracy, uncertainty and inter-
model agreement) varied markedly between sites, 
which was indicative of the impact of environ-
mental complexity on classification success.

Results showed that significantly more un-
certainty and less accuracy are achieved in active 
migration and transitional regimes, while stable 
and mature landforms were found to have high 
classification reliability. In terms of numbers, 
the mean local accuracy in the case studies was 
0.652, average uncertainty was 0.553 and mean 
model agreement was 0.579.

Figure 19 shows high-resolution heatmaps 
of local accuracy, uncertainty, and inter-model 

Figure 18. Comparison of Intersection over Union (IoU) metrics across classification outputs. Heatmaps show: 
(a) original classification, (b) cleaned classification after morphological post-processing,

(c) percentage improvement, highlighting spatial gains in classification accuracy
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agreement per case study, emphasizing the spa-
tially varying characteristics of dune systems.

Case study results

The five cases demonstrate a range of local 
classification problems. The case study of active 
dune migration showed the maximum uncertainty 
(0.807) and local accuracy (0.714). In these re-
gions, partial model disagreement was observed, 
as a result of mixed spectral signatures, how-
ever the fusion modality in conjunction with RF 
achieved the best local performance. For the tran-
sitional dune-interdune classes, a moderate accu-
racy (0.645) was observed with high uncertainty 
(0.634) and little agreement between the models 
(0.449) suggesting indecision of the models on 
the spectral patterns combinations. Again, the 
combination of fusion method and RF (fusion + 
RF) yielded the highest prediction accuracy.

The last case study concentrated on sites that 
were characterized by widespread bias in classi-
fication, such as biocrusts and mixed surfaces. In 
the latter scenario, the accuracy and uncertainty 
fell down to 0.595 and 0.594, respectively, evi-
dencing, complex surface conditions are deemed 
to make the feature challenging. Although some 

misclassifications still remained, in comparison 
with other modalities and models, fusion nd RF 
were better. The fourth case, characterized by 
fragmented boundaries and active aeolian ero-
sion, showed the lowest local accuracy (0.479) 
and intermediate uncertainty (0.486), highlight-
ing the sensitivity of the classification results to 
model and data type. With the exception of ma-
ture landscape landforms defined by case study 
5, which are also well-predicted in local accuracy 
(0.829), uncertainty (0.244), and confidence sta-
tistic (0.752), and good (0.833) Agreement be-
tween models, hence adequate remote sensing 
based classification.

A synthesis of the five regional case studies 
highlighted a strong link between local classifica-
tion accurracy and geomorphological complexity. 
Transitional and dynamic zones are more uncer-
tain and less accurate than stable landforms which 
are typically are classification consistent and reli-
able. Figure 20 shows again the best within all the 
400 × 400 pixels window and also demonstrate 
the contribution of local geomorphologyfor the 
classification quality.

In summary, the analyses at a local scale 
emphasize the need of including environmental 

Figure 19. Comprehensive local scale analysis showing local accuracy by case study, uncertainty patterns,
model agreement, modality performance, model performance, and case study performance heatmap.
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Figure 20. Patial uncertainty maps across five representative regions: (a) high-uncertainty zone,
(b) model disagreement region, (c) classification error zone, (d) complex dune–interdune boundary,

(e) well-classified area. Colors represent uncertainty levels from low (blue) to high (red), as indicated by the 
color scale. Blue areas correspond to high classification confidence, while red areas highlight pixels with high 

uncertainty, typically located at dune–interdune transition zones or regions of classifier disagreement.
SAR-optical fusion consistently reduces uncertainty compared to unimodal classifications.
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context to better understand classification results. 
It demonstrates the spatial variations of dune sys-
tems and the need for site-specific planning in 
complex geomorphological units, as well as con-
firms the accord of the fusion approach and the 
RF model to extract patterns at a fine scale.

DISCUSSION

Key contributions

The present work advances the classification 
of dunes combining Sentinel-1 (SAR) and Senti-
nel-2 (optical) data within a strong multi-modal 
framework (Hu et al., 2021). The combination of 
the both complementary datasets improves the dis-
crimination power between dunes and interdunes 
by the average improvement of 20% as opposed 
to single modality approaches (Figure 21). Map 
coherence and classification noise are addition-
ally reduced by morphological post-processing. 
Through a paid add-on parallel implementation 
of regularizing spatial cross-validation, these im-
provements are true model generalization across 
the study area, and we present an reproducible 
large scale dune mapping procedure (Figure 22).

Critical assessment of results

The synergy offered by SAR and optical data 
is instrumental for its success. SAR can capture 

surface roughness and moisture, whereas the op-
tical data have high spectral resolution that allows 
accurate classification even in complex transition 
zones. Uncertainty and model agreement analy-
ses indicate focuses of geomorphological activ-
ity and reveal where classifications are robust or 
speculative (Figure 23).

For example, with a 10m resolution the analy-
sis is not able to resolve fine scale features, such as 
the small dunes, or local variations in the texture, 
and the binary disjoint model of dunes and inter-
dunes fail to describe smooth transformations in 
the geomorphology, resulting in larger uncertain-
ties in these areas. Environmental influence, such 
as seasonal effects, and atmospheric conditions, 
also affect data quality, and extensibility to di-
verse dune systems is untested (Figure 24).

These results suggest that although SAR-opti-
cal fusion indeed contributes to better estimation 
accuracy and reliability, its applicability in other 
geomorphological settings needs further verifica-
tion for dune fields with fairly complicated mor-
phology and mixed land cover conditions.

Comparison with literature

Compared to recent works (Table 8), the pro-
posed method outperforms them in various eval-
uation measures. The accuracy, F1-score, IoU, 
and Kappa were 12–15% higher than those of 
the state-of arts, which proved the effectiveness 

Figure 21. Performance gains from SAR-optical fusion for each classifier compared to unimodal methods. 
Fusion improves accuracy and F1-scores consistently across models, confirming complementarity of radar

and optical data
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of multi-modal fusion and spatial aware valida-
tion. Beyond the enhanced performances, this 
work also penetrates deeper by incorporating 
multi-scale analysis and a systematic treatment 

of the uncertainty that had only sporadically 
been treated in the past. In this way, it over-
comes the deficiencies of the previous practice 

Figure 22. Impact of morphological post-processing by modality. Fusion and optical modalities show stronger 
accuracy gains compared to SAR-only, confirming the added value of spatial cleaning procedures

in multimodal classification pipelines

Figure 23. SAR-optical complementarity analysis showing feature detection capabilities, performance by feature 
type, temporal data availability, and resolution impact limitation remain
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of machine learning and multi-source data for 
dune classification.

Geomorphological implications

Performance of dune systems: uncertainty 
analyses Performance and uncertainty analysis is 
another important approach to interpret the evolu-
tion of dune systems. While active or transition 
areas they are high uncertain, in stable regions, 
different models are classified the same because 
there is unitariness. These patterns serve as a 
stand-in for biogeomorphological activity and 
a potential method for tracking dune migration 
and other surface process. The understanding that 

performance indicators can be integrated into un-
certainty maps offers decision support tools for 
applied conservation and management, which 
can then prioritize conservation, development or 
monitoring requirement.

Limitations and future directions

One of the limitations in developing a clas-
sifier is that our model is binary-based (dune vs 
interdune). Although this simplification decreas-
es the ambiguity and increases interpretability, it 
is oversimplified from the natural variability of 
dune field characteristics. Future studies may thus 
consider multi-class or hierarchical classification 

Figure 24. Critical analysis of limitations showing spatial resolution impact, temporal coverage gaps,
validation complexity trade-offs, and model robustness across environmental conditions

Table 8. Comparison with representative literature studies
Study Methodology Data source Accuracy F1-Score Limitations

(Chowdhury et al., 
2011) SAR classification Sentinel-1 0.61 - Single modality, limited validation

(Tang et al., 2023c) Optical 
classification Landsat-8 0.78 0.68 Weather dependent, no SAR data

(Li et al., 2022) Simple fusion HJ-2A data + GF-3 
data 0.88 - Basic fusion, limited ML models, 

Classic validation process

Our Study (2025) Multi-modal ML 
fusion Sentinel-1 + Sentinel-2 0.85 0.82 10 m resolution, binary 

classification
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(e.g., active dunes, stabilized dunes, vegetated in-
terdunes) so as to better reproduce a realistic geo-
morphological complexity. Another limitation is 
the overall homogeneity of the study area, serv-
ing for a controlled environment yet also limiting 
generalisability. Future applications are required 
to validate the model in contrasting dune systems 
with a more diverse range of morphologies and 
human influences.

This model attempt to better categorize cells 
and patterns and give more interpretations but 
this framework is challenging: we still do not 
have spatial-resolution, binary classification of 
”obvious cells” and ”obvious pattern”, temporal 
variation to consider and man-hostile task that 
these models cannot apply to new types of cells. 
We intend to consider deep learning structures, 
such as convolutional and attention network, in 
future to learn more complex spatial-temporal de-
pendency patterns. Combining hyperspectral and 
LiDAR data could lead to better material discrim-
ination and validation of dune morphology in 3D. 
Multi-temporal analyses would be able to follow 
the seasonal and short-term aeolian processes, 
whereas operational platforms would allow for 
automatic monitoring and management. xplain-
able AI techniques would also enhance interpret-
ability and the confidence of the coverage. While 
collective data sharing beyond international bor-
ders and extended, standardized datasets would 
improve the generalizability of the method and be 
useful in addressing dune environments that are 
present in other parts of the world.

CONCLUSIONS

This study clearly shows the enhanced quality 
of dune classification using SAR-optical fusion, 
confirming its superiority to unimodal techniques, 
particularly in complex transition boundaries. In-
tegration of radar backscatter with optical reflec-
tance produced gains of 37–40% over SAR-only 
and 1–2% over optical-only data. Beyond accura-
cy, the inclusion of spatial cross-validation, post-
processing, and uncertainty analysis provided a 
reproducible and robust dune mapping approach. 
The novelty lies in explicitly linking classifica-
tion accuracy with spatial confidence measures, 
contributing to more reliable dune monitoring 
and desertification risk assessment.

Despite these advances, limitations remain, 
including the binary classification scheme, the 

relative homogeneity of the study area, and the 
reliance on synchronous acquisitions. Future 
work should extend the framework to heteroge-
neous dune systems, integrate hyperspectral and 
LiDAR data, and explore predictive modeling of 
dune dynamics.

Overall, this study establishes a reproducible, 
scalable framework that sets a new standard for 
remote sensing-based dune classification and pro-
vides practical tools for sustainable land manage-
ment in arid regions.
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