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ABSTRACT

The realistic mapping of dune landscapes is necessary to model dune dynamics, but traditional remote sensing has
been generally unimodal, and incapable of guaranteeing a sufficient representation of dune spatial complexity. In
this study, we used a multimodal methodology combining Sentinel-1 SAR and Sentinel-2 optical data with five
classification algorithms: the Random Forest, the LightGBM, the XGBoost, the support vector machines and the
extra trees. We evaluated SAR-only, optical-only, and SAR-optical fusion inputs with spatial cross-validation and
morphological post-processing. It is evaluated by accuracy, Fl-score, loU and Matthews correlation coefficient,
and other spatial uncertainty analysis. Results demonstrate that fusion strongly boosts performance (37-40% high-
er Fl-scores with respect to the SAR-only and 1-2% with respect to the optical-only inputs). The Random Forest
and LightGBM had the highest performance (F1 = 0.725-0.735). A morphological post-processing yielded loU
improvements in 3.4% on average for the purpose of improving spatial coherence. This study proves that SAR-
optical fusion is an effective scheme of dune classification and it is also useful for desertification risk assessment
and arid landscape engineering.

Keywords: dune mapping, multi-modal remote sensing, machine learning classification, spatial uncertainty analysis.

INTRODUCTION

Automatic mapping of sand dunes from re-
mote sensing data constitutes a scientific diffi-
culty on geomorphology, environmental monitor-
ing and land management (Yekeen et al., 2023).
Dunes in deserts are very dynamic landscapes,
which are shaped through wind-blown techniques,
whose morphological variation occurs at various
spatial and temporal scales. These environments
are extremely fragile ecosystems but also consti-
tute an important environmental problem, as “ad-
vancing” dunes are a threat for infrastructures,
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agricultural fields and human settlement in arid
and semiarid regions. Reproducible and consis-
tent mapping of the escarpment is therefore im-
portant for sand encroachment dynamic moni-
toring, for land-use planning, as well as for the
planning of the environmental management (Lu
etal., 2023).

Sand encroachment is regarded as one of the
most serious environmental problems in arid re-
gions. The dynamics of these dunes, shaped by
the wind and climate fluctuations, also leads to the
progressive burying of agricultural fields, roads,
and occasionally even built-up areas (Salem et
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al., 2025). This leads to faster land degradation,
reduced agricultural production and high costs
for infrastructure up-keep. Given that the cur-
rent aridification and wind patterns are expected
to be intensified by climate change, sand trans-
port between dunes may become more prevalent.
Therefore, few dune field monitoring approach-
es are necessary to study dune fronts evolution
and migration processes, and human pressures,
including overgrazing and resource harvesting.
For planners and land managers, the requirement
for robust spatial information is equally critical
to plan mitigation strategies: from shelterbelt es-
tablishment, dune stabilisation and protection of
“at-risk’ settlements (Stammler et al., 2023).
Nevertheless, the automatic identification of
dunes and interdunes is still an open issue. There
is clear spatial heterogeneity in dune systems: they
are made up of barchans, transverse ridges, linear
and compound forms; they can be of bare sand,
gravel pavement or sparse vegetated surface; and
one of the compelling evidences of the latter point
mentioned above is that they are constantly being
affected by both seasonal and interannual winds
(Tang et al., 2023a). Furthermore, the transition
from dune, interdune to general surrounding to-
pography is transitional and indistinct, making
the separation of crisp boundaries more difficult.
Classical mapping methods—including identifica-
tion of LULC classes via manual interpretation
of satellite images—can produce reliable results in
local contexts, are subjective by definition, and
are inefficient for systematic monitoring at the
larger scales. Similarly, traditional parametric
classifiers like ML which is based on assumptions
of simplified statistical model are also unable to
characterize the highly nonlinear and non-homo-
geneous nature of desert-like areas. Remote sens-
ing sensors taken individually are also hampered
by limitations: optical imagery is sensitive to at-
mospheric and illumination conditions, and radar
data are affected by speckle noise and may not be
as spectrally rich to differentiate subtle land cover
differences. These constraints frequently result in
misclassification of transition zones and the com-
parability of results between various dune fields
is negatively impacted (Smyth et al., 2022).
Multimodal RS provides a hopeful direc-
tion to tackle these problems jointly. The opti-
cal and radar strengths are complementary, able
to fill each other’s gaps in coverage. Sentinel-1
synthetic aperture radar (SAR) is highly sensitive
to surface roughness and soil moisture and these

are recognised to be important properties for dune
texture and interdune status (Smyth et al., 2022).
In contrast, Sentinel-2 multiband imagery also vi-
sually shows minor spectral differences required
to distinguish between bare sand, crust and light
vegetation. These both can be used to utilize both
spectral, structural information, and to minimize
the class ambiguity, they are robust to illuminant
variance. Pixel-level fusion between SAR and
optical features resulted in an enhancement of
a more assimilation of dune environments, with
greater generalisation of the classification mod-
els on different geomorphological envelopes.
The free provision of (soil moisture data in) large
scale and high resolution (10 m) and high accura-
cy dune data by the Copernicus program also in-
creases the feasibility for operational dune moni-
toring on multiple spatial scales (Sieren, 2022).

With these improvements in observational
data, advances in machine learning have increas-
ingly developed the means to account for the
complexity of desert landscapes. The nonlinear
spectral, noisy signals and high spatial variability
properties of Dune environments make it difficult
for conventional classifiers (Feng et al., 2022).
As such, machine learning algorithms (in specif-
ic ensemble and boosting algorithms) are natu-
ral choices to solve these hurdles. For instance,
random forest, XGBoost and LightGBM have
shown high performance for heterogeneous and
complex landscapes, because the methods can
capture the non-linearity, combine multimodal
inputs and tolerate noises. There is also grow-
ing availability of high-performance computing
facilities which enables machine learning to be
applied to large scale remote sensing datasets.
Optimized pipelines lead to efficient and repro-
ducible workflows, while new methods, like spa-
tial cross-validation, give a more realistic perfor-
mance estimates by incorporating the spatial au-
tocorrelation characteristic of geomorphological
data (Iban and Bilgilioglu, 2023).

Exploiting these possibilities, in this work
we introduce a new framework for the automatic
classification of desert dune environment from
multidata and machine learning perspectives.
More specifically, this work has five main aims:
() to compare the performance of five machine
learning algorithms — random forest, LightGBM,
XGBoost, support vector machines, and extra
trees — under both unimodal (SAR, optical) and
multimodal scenarios; (i) to quantify the added
value of SAR-optical fusion in terms of enhanced
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classification accuracy and robustness; (ii) to de-
velop a spatial cross-validation methodology tai-
lored to geomorphological data; (ii) to optimize
the classification pipeline for various heteroge-
neous computing architectures; and (iv) to inte-
grate spatial uncertainty metrics and morphologi-
cal post-processing in order to improve map reli-
ability and interpretability (Tang et al., 2023Db).
The original contribution of this work is four-
fold: (i) it is the first holistic application of Senti-
nel-1 and Sentinel-2 fusion for dune types classi-
fication in the desert or Sahel, with the validation
at the spatially explicit scale. Second, an techni-
cally optimzed workflow is enabled for scalable
and reproducible processing of the data and it can
be applied to regional scales. Third, it promotes
a new approach employing spatial uncertainty
measures to assess classification confidence and
in the explanation process. Finally it results an
intensive methodological protocol and is imme-
diately applicable for operational desertification
monitoring, assessment of the risk of sand en-
croachment and for the geomorphological study
of desert landscapes. These contributions serve
not only to propel forward methodological inno-
vation, but also make substantial contributions to
science and practice in arid land management.

MATERIALS AND METHODS

Study area

The study area is located in southern Morocco
and consists of a dune field with barchan dunes,
vegetated interdunes and well-defined slipface
transitions. The reason for choosing this site was
its relatively uniform geomorphological features,
little anthropogenic disturbance and ready avail-
ability of high resolution satellite data. Because of
persistent NE trade winds, dunes migrate in this
area and provide a natural environment for study-
ing multimodal classification (Foody, 2024). The
geographic coverage of the study area is depicted
in Figure 1, and delineates the dune system where
this work was carried out.

Data sources

The study utilised the multi-source data pro-
vided by the Copernicus program, including SAR
and optical imagery (Fei et al., 2024), as well as
detailed ground reference data. Table 1 presents
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the datasets employed. Sentinel-1 C-band SAR
data were acquired in the Interferometric Wide
Swath mode, at a resolution of 10 meters and
with dual polarization including VV and VH.
Preprocessing of the data included radiometric
calibration to sigma nought backscatter coef-
ficients, terrain correction using the Shuttle Ra-
dar Topography Mission digital elevation model,
speckle filtering with the Refined Lee and geo-
metric co-registration with Sentinel-2 for pixel-
level compositing. Sentinel-2 Level-1C multi-
spectral products were atmospherically corrected
using Sen2Cor version 2.10, cloud masked to
keep only scenes with less than five percent cloud
cover, orthorectified and pansharpened to 10-me-
ter resolution over the entire area. We show the
raw input from both sensors in Figure 2 where the
Sentinel-1 SAR dual-polarization image and the
corresponding Sentinel-2 multispectral scene are
visualized before any preprocessing.

Reference mask was produced by the au-
thors, manually interpreting false color compo-
sition on optical sentinel 2 imagery, and partial-
ly ground-truthed in local field sites. Class one
referred to dunes and class zero the interdunes.
Field campaigns checked the confidence of in-
terpreted polygons, which was done to minimize
the subjectivity in the reference data set. Sev-
enty percent of the final binary mask was used
as model training data and thirty percent for in-
dependent validation.

Feature engineering

Feature extraction was aimed at utilizing the
complementary information between radar back-
scatter and optical reflectance. In the case of SAR
dataset, predictors were VV and VH polariza-
tions, as well as their ratio that gives sensitivity
to surface roughness and soil moisture. The opti-
cal dataset was made up of the 6 Sentinel-2 bands
that were both in the visible, near-infrared and
shortwave infrared domains, with the addition of
2 normalized indices: Normalized difference veg-
etation index and normalized difference sand in-
dex. These attributes were chosen to reflect differ-
ences in vegetation cover, soil makeup and dune
shape. The fusion dataset integrated all predictors
originating from SAR and optical data sources,
representing structural and spectral components
into a unique multimodal feature space. The full
feature makeup is given in Table 2.
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Figure 1. Location of the study area in southern Morocco, highlighting the Oued Sakia El Hamra region
investigated for sand dune dynamics
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Figure 2. Raw input data used in the analysis: (a) Sentinel-2 multispectral scene (RGB composite),
(b) Sentinel-1 SAR dual-polarization (VV, VH), and (c) ground-truth mask (dunes = 1, interdunes = 0).
These inputs form the basis for the classification experiments.
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Table 1. Satellite datasets used in this study, including product identifiers, acquisition dates, processing levels,

and spatial resolution

Sensor Product ID Date Mode/Level | Resolution
Sentinel-1A 2;.27_1\6\/6663221462.:2327‘?;);40927T064656_20240927T064720_05 27 Sept 2024 | W GRDH 10m
zssemoes|_uc | o

Table 2. Features composition by dataset

Dataset SAR OPT FUSION
Featl VV (Sentinel 1) B2 (Sentinel 2) B2 (Sentinel 2)
Feat2 VH (Sentinel 1) B3 (Sentinel 2) B3 (Sentinel 2)
Feat3 VV/VH (Sentinel 1) B4 (Sentinel 2) B4 (Sentinel 2)
Feat4 B8 (Sentinel 2) B8 (Sentinel 2)
Feat5 B11 (Sentinel 2) B11 (Sentinel 2)
Feat6 B12 (Sentinel 2) B12 (Sentinel 2)
Feat7 NDVI (Sentinel 2) NDVI (Sentinel 2)
Feat8 NDSI (Sentinel 2) NDSI (Sentinel 2)
Feat9 VV (Sentinel 1)
Feat10 VH (Sentinel 1)
Featll VVIVH (Sentinel 1)

All continuous features were standardized us-
ing z-score normalization, while indices were res-
caled to the interval from zero to one. Correlation
analysis and permutation-based feature importance
ranking were used to avoid redundancy, leaving
only relevant features for further classification.

Experimental design

We evaluated three different classification
cases: classification with only SAR data, clas-
sification with only optical data and multimodal
classification considering both SAR and optical
features. Five machine learning algorithms were
utilized: (a) random forest, (b) light gradient
boosting machines, (c) extreme gradient boost-
ing, (d) support vector machine — radial basis
function kernel and (e) extra trees. Optimal hy-
perparameters were obtained by grid search with
cross-validation. Specific information of the opti-
mized configurations are shown in Table 3.

For reducing the spatial bias, a block-based
cross-validation approach was used. The study
area was split into 400 by 400 pixel blocks and
training/validation folds were spatially indepen-
dent. A tripartite design was chosen to balance
statistical rigor with number of samples.
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Hyperparameter ranges were selected based
on established practices in remote sensing and
machine learning classification to balance com-
putational efficiency and predictive accuracy.
For ensemble methods (random forest, LightG-
BM, XGBoost, extra trees), the number of trees
was set between 600 and 2000 to ensure con-
vergence while avoiding overfitting. For support
vector machines, a penalty parameter C=10 was
adopted as a commonly used value for remote
sensing imagery, providing robust margin opti-
mization without excessive computation. These
ranges were validated through preliminary ex-
periments, confirming that they offered stable
performance while maintaining reproducibility.
The chosen values thus represent a compro-
mise between methodological rigor and practi-
cal feasibility, ensuring comparability across
classifiers.

Performance evaluation

The classifiers were evaluated by accu-
racy, precision, recall, Fl-score, intersection
over union and Matthews correlation coeffi-
cient (Vlasceanu et al., 2024). These per-pixel
measures were then supplemented with uncer-
tainty metrics, in the form of Shannon entropy,
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Table 3. Optimized parameters of
machine learning classifiers

Classifier Key parameters

RF 600 trees, max depth = 28, Gini criterion

31 leaves, max depth = 20, learning rate = 0.1,
GPU accelerated

2000 trees, max depth = 20, learning rate = 0.1,
GPU accelerated

SVM | RBF kernel, C = 10, gamma = 0.01
ET 600 trees, randomized node splits

LGBM

XGB

classifier standard deviation and inter-model dis-
agreement (MacDonald et al., 2023). Differences
in classifiers and data modalities were evaluated
through one-way analysis of variance and paired
t-test. The stability was also tested by using the
bootstrap resampling with one thousand random-
ization tests of confidence intervals.

Post-processing

The classification results were then subject to
morphological filtering for enhancing the spatial
coherence (Abeyrathna et al., 2022). Morpho-
logical filtering was applied because it is widely
recognized as essential for reducing speckle noise
and improving spatial consistency, particularly
in radar—optical fusion outputs. A 3 x 3 majority
filter and one-pixel opening/closing operations
were uniformly adopted. Small disconnected
regions smaller than nine pixels were removed,
while holes of the same size were filled. These
operations improved the visual similarity between
maps, reduced speckle-induced artifacts, and pre-
served dune morphology. Performance improve-
ments were quantified as the ratio of intersection-
over-union (IoU) before and after filtering, con-
firming both the effectiveness and reproducibility
of the procedure.

Workflow demonstration

The whole process is described in Figure 3.
It starts from collecting and preprocessing data,
takes feature extraction testicals and normal-
ization as inputs, outputs results in the form of
model fitting and block cross-validation process
under three scenarios. The generated classifica-
tion maps are post-processed using morphologi-
cal operators, and ultimately independently tested
with accuracy-based and uncertainty-based met-
rics for which statistical testing is conducted. This

workflow was structured to ensure reproducibility
and transparency, in turn enabling generalisation
of the methodology to other dune systems.

RESULTS

Classification performance analysis

Overall accuracy comparison

A strict 3-fold spatial cross-validation exper-
iment was implemented to test the performance
of 5 state-of-the-art ML classifiers — random for-
est (RF), support vector machine (SVM), XG-
Boost (XGB), LightGBM (LGBM), and extra
trees (ET) on 3 types of data configurations:
SAR-only, optical-only, and multi-source fusion.
Results indicated wide diversity in classifier per-
formance, and the complementary nature of the
Sentinel-1 and Sentinel-2 sensors in dune clas-
sification (Shiddiq et al., 2023).

Table 4 shows the mean F1-scores along with
the standard deviations. We found that LightG-
BM performed best in multi-source fusion, with
the highest average Fl-score equal to 0.735 =+
0.101. Random Forest and XGBoost showed sim-
ilar performance, with F1-score of 0.725 + 0.103
and 0.730 £ 0.104, respectively. Comparing mod-
els Fl-scores for the SVM and Extra Trees were
0.734 + 0.103 and 0.724 £ 0.095), slightly lower
but still competitive.

Bootstrap 95% confidence intervals further
confirmed robustness: SAR 0.535 [0.508, 0.563],
optical 0.717 [0.698, 0.735], and fusion 0.757
[0.737, 0.777]. The narrow intervals indicate
high precision, with multi-source fusion consis-
tently outperforming single-source configura-
tions (Figure 4).

The spatial patterns of dune and interdune
areas are good examples of the advantages of
multi-modal data fusion. As is shown in Figure 5,
the SAR-only and optical-only classifications are
capable of general dune morphology, but misclas-
sification occurs in the transition area and com-
plex geomorphological structures. The SAR-op-
tical fusion map effectively alleviates these errors
and offers a clearer and more spatially consistent
depiction of the dune field. These visual results
agree with the quantitative evaluation and dem-
onstrate the complementary character of radar
and optical data for effective dune classification.

39



Ecological Engineering & Environmental Technology 2025, 26(11), 34-59

RAW DATA

Sentinel 1-SAR

Data Data

/

Sentinel 2 - Optical

Ground Truth -
Binary Mask

/

Radiometric calibration

[

[ Atmospheric & geometric correction

(

DATA

Speckle filtering

PREPROCESSING

Multi-modal feature fusion

Z-score normalization

NPZ format conversion

F—

Band

king & Index

:

v

PREPROCESSED DATA
SAR dataset (3 OPT dataset (8 Fusion dataset
bands) bands) (11 bands)
Random Forest XGBoost )
[ Machine Learning
SVM phase
ExtraT J
[ LightGBM reless

A 4

| SAR only Classifications | |

OPT only Classifications |

[ Fusion Classifications

Spatial Cross
Validation

[ Morphological cleaning ]
[ Small object removal (<9 pixels) ]
[ Hole filling (<9 pixels) ]

Post-processing
Phase

Spatial autocorrelation respect

Performance metrics

—>eiEaRe
>

[ 3x3 majority filtering ]_’
v v

Kappa
} coefficient

| Cleaned SAR maps

Cleaned OPT maps

Cleaned Fusion maps |

Uncertainty Analysis
Phase

| Inter-model uncertainty maps | |

Agreement/disagreement analysis

| | Spatial uncertainty patterns

C

J

v

OUPUT
Classification Uncertainty Performance
/ maps / / maps / / figures / ¢

Figure 3. Methodological workflow of the proposed dune

classification framework. Steps include preprocessing

of Sentinel-1/2 data, feature extraction and normalization, training of five machine learning classifiers,
spatial cross-validation, morphological post-processing, and evaluation with accuracy and uncertainty metrics

Performance by data source

Moderate quality was obtained for Sentinel-1
SAR (Fl-scores 0.520-0.534). Although irre-
spective of weather the acquisition was made,
and with the relatively small number of spectral
information available in the VV, VH and VV/VH
ratio, the discrimination topographic alternation
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dune-interdune at a finer scale was limited. Vari-
ance in performance was greater (SD 0.091-
0.133), indicating the difficulty in identifying ho-
mogeneous dune surfaces based solely on radar.
Optical images of Sentinel-2 presented best
performance (F1-scores of 0.712—-0.727), which
could derive from use of multispectral bands and
indices, such as NDVI and NDSI, considering
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Table 4. Classification performance metrics from 3-fold spatial cross-validation. Values represent mean F1-scores

+ standard deviation

Model SAR Optical Fusion Isrszrg\,lngs?:,: Iorgp.)lfg\:;:l?:;
RF 0.520 + 0.108 0.717 + 0.099 0.725+0.103 +39.4% +1.1%
LGBM 0.534 +0.133 0.727 £ 0.099 0.735+0.101 +37.6% +1.1%
XGB 0.520 + 0.091 0.720 + 0.099 0.730 £ 0.104 +40.4% +1.4%
SVM 0.526 + 0.127 0.720 + 0.097 0.734 +0.103 +39.5% +1.9%
ET 0.524 +0.131 0.712 £ 0.091 0.724 + 0.095 +38.2% +1.7%

I SAR 0.735
o7 0725 0327
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0.5 1

F1-Score
o
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XGB
Models

Figure 4. Comparison of F1-scores across SAR-only, optical only, and SAR-optical fusion inputs
for all classifiers

subtle changes in land surface features or dune
shape. Similarly, variation was observed to be
lower (SD 0.091-0.099), indicating the robust-
ness of the spectral information.

Adding the SAR channels in fusion with the
optical data increased the accuracy (Fl-scores
0.724-0.735). Multi-source fusion could over-
come the disadvantages of the former methods by
considering the complementary information from
radar backscatter and optical spectra. Improve-
ments over SAR-only were between +37.6% and
+40.4%, and over optical-only within +1.1% and
+1.9%. Whole-image variability was reduced
(SD 0.095-0.104) to allow for a more accurate
and descriptive depiction of dune landscapes.

Figure 6 summarizes model performance for
different modalities and classifiers. Table 4 com-
pares the F1-scores for SAR-only, optical-only, and
multi-source fusion in panel (a), where the merits of

multimodal fusion are presented. Panel (b) shows
the contribution of fusion over SAR only, while
panel (c) shows rank of overall model performance
across classifier. Panel (d) presents stability of per-
formance over the 3-fold spatial cross-validation,
highlighting stability in the models.

Statistical significance testing

Based on statistical analyses, the observed
differences were also found to have practical sig-
nificance. One-way ANOVA further revealed no
significant difference in classifiers for F1-score (F
= 0.1884, p = 0.943) and accuracy (F = 0.1860,
p = 0.944), suggesting comparable results when
optimally tuned (Jamil and Khanam, 2024).

It can be observed from table 5 that multi-
source fusion performed significantly better than
single-source data according to paired t-tests.
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FUSION

N interdunes

RandomForest

SsvM

XGBoost

LightGBM

Figure 5. Classification results of dunes (yellow) and interdunes (gray) obtained using five machine learning
classifiers (rows: Random forest, SVM, XGBoost, LightGBM, extra trees) across three data modalities
(columns: SAR-only, optical-only, SAR-optical fusion). While SAR and optical inputs capture general dune
morphology, they show misclassifications in transition zones. Fusion consistently improves boundary delineation
and spatial coherence, reducing errors in dune—interdune separation.
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Figure 6. Model performance analysis across classifiers and data modalities: (a) F1-scores for SAR-only,
optical-only, and fusion, (b) relative gain of fusion over SAR, (c) ranking of overall model performance,
(d) stability of performance across 3-fold spatial cross-validation (error bars = standard deviation)

Table 5. Statistical significance testing results

Test F1-score Accuracy loU
SAR vs fusion (t-stat) 12.90 11.54 12.14
SAR vs fusion (p-value) <0.001 <0.001 <0.001
OPT vs fusion (t-stat) 3.18 3.29 0.75
OPT vs fusion (p-value) 0.007 0.005 0.468

Significantly higher F1-score, accuracy and IoU
(p < 0.001) were observed in SAR-to-fusion
comparisons while in optical-to-fusion compari-
sons the increases in F1-score, accuracy and loU
were less marked and still significant (p < 0.01).
For effect size (d), very large effect sizes were
observed for SAR-to-fusion comparisons (F 1
-score d =4.77, accuracy d =4.73, IoU d = 3.89)
and large effects occurred for optical-to-fusion
comparisons (d = 1.05-1.09) showing both sta-
tistical and practical significance.

Performance calculations were also enriched
by bootstrap confidence intervals (1000 iterations)
which included spatial cross-validation considering
spatial autocorrelation. The SAR and fusion have
no-overlapping gaps around the narrow intervals,

which is evidences that the fusion of multi-sources
is superior in reliable dune classification.

In Figure 7, we show the statistical verifica-
tion of the performance of the classifier on dif-
ferent modalities. Panels (a) and (b) present F1-
scores of 3-fold spatial cross-validation by model
and modality, reflecting model differences and
its robustness. Panel (c) further shows ANOVA p
{[>}0.05], indicating that SAR, optical, and the
fused have significant difference. Subfigure (d)
shows the gain of the multi-source fusion com-
pared to single-modality methods, which justifies
the practical benefit of combining Sentinel-1 and
Sentinel-2 information.
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F1-Score Distribution by Model and Modality (Real Fold Data)
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Figure 7. Statistical testing of model performance: (a) distribution of F1-scores by model and modality,
(b) comparison across modalities, (c) ANOVA test p-values, and (d) paired t-test improvements for fusion.
Results confirm statistically significant gains for SAR-optical fusion over unimodal approaches

Spatial uncertainty analysis

Uncertainty patterns and distribution

Spatial uncertainty analysis was critical for
assessing the credibility and certainty of dune
classification for different machine learning
methods and data sources. Maps of uncertainty
(Figure 8) made out of the ensemble of five clas-
sifiers (RF, svm, xgb, lgbm, et) showed different
spatial patterns that were related to both the un-
derlying complexity of dune-interdune margins
and the biases related to individual classifier
(Duo et al., 2021).

Three main areas of uncertainty were deter-
mined (Figure 9):
¢ High uncertainty zones were localized at dune

crest—interdune depression transitions (45% of

dune—interdune transitions). These were lin-
ear transects in which, typically, topographic
changes were smooth and spectral contrast
was mixed over 2-5 pixels along the edges,
and which scored between 0.7 and 1.0 for
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uncertainty, reflecting strong disagreement be-
tween the models.

e Areas of moderate uncertainty (=35% of study
area) represented more complex dune mor-
phology, secondary dune features and patch-
es of interdune vegetation, with uncertainty
scores between 0.3-0.7.

e [ow uncertainty zones (=20% of the study
area) were found on more homogeneous dune
crest or down interdunes, presenting easy
to identify spectral and textural variability,
which ranged from 0.0 to 0.3 display high
model agreement.

Spatial autocorrelation analysis with Moran’s
I (Figure 10) verified the structural dependence of
uncertainty clustering (I = 0.67, p < 0.001), sug-
gesting that the uncertainty is associated with geo-
morphological process on a base, and not random
noise. Boundary effects were particularly impor-
tant, with 45% of uncertainty located within 3-5
pixels of dune-interdune transitions, particulary
in SAR-only classifications (Zhang et al., 2025).
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Figure 8. Spatial uncertainty maps generated from an ensemble of five classifiers (RF, SVM, XGB, LGBM, ET)
for SAR-only, Optical-only, and Fusion inputs. Higher uncertainty is concentrated in dune—interdune transition
zones, especially in SAR-only classifications
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Figure 9. Distribution of uncertainty scores across dune system zones. High uncertainty is localized at dune
crests and interdune transitions (~45%), moderate uncertainty occurs in complex morphologies (~35%),
and low uncertainty in homogeneous dune/interdune areas (~20%)

Inter-model agreement analysis (k= 0.58); optical only, substantial agreement (k =
Inter-model confidence maps (Figure 11) il- 0.69); and all-source fusion, almost perfect agree-

lustrate the zones with high and low agreement ~ ment (k = 0.81), thereby demonstrating that fusion

among the five classification maps (eg on well-  not only enhances accuracy but also the reliability

defined dune crests and deep interdunes and of the prediction (Figure 12).

at dune-interdune transitions of high and low Types of discordace Discordances were strati-

complexity), representing a direct spatial indica-  fied into 3 categories:

tion to the confidence of the framework outputs

(Deng et al., 2023).

Inter-model agreement analysis showed that
78% of the study area had a high level of consensus
(> 4 class agreement among classifiers). The over-
all Fleiss’ Kappa was k = 0.72, which represents
substantial agreement beyond chance. Stratifica- due to noise and edge effect which can be tak-
tion by data source: SAR only, moderate agreement en care of by ensemble averaging.

e Systematic disagreement (15% of ambiguous
pixels), mainly due to disagreements between
tree-based models and SVM in complex spec-
tral mixed pixels, largely resolved by fusion.

e Further there is random discordance (25%)
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Figure 10. Spatial autocorrelation analysis of classification uncertainty using Moran’s 1.
Results (I =0.67, p <0.001) confirm that uncertainty is spatially clustered around dune-interdune boundaries,
reflecting underlying geomorphological processes rather than random noise
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-

Figure 11. Model agreement maps by modality: (a) SAR-only, (b) optical-only, and (c) SAR-optical fusion.
Gray areas represent interdune consensus, yellow areas represent dune consensus, and red areas indicate model
disagreement. Fusion achieves higher agreement across both dunes and interdunes while reducing the extent of

disagreement zones, highlighting its improved reliability over unimodal inputs

e Boundary disagreement (60%), localized at
dune-interdune junctions, partly remedied via
post-processing.

Uncertainty-confidence relationship

As illustrated in Figure 13, There was a strong
negative correlation between classification uncer-
tainty and performance metrics: F1-score vs un-
certainty r = -0.73, accuracy vs uncertainty r =
-0.71, and IoU vs uncertainty r = -0.69 (for all
p 0.8 had an accuracy of 85%, 0.5-0.8 72% and
<0.5 58%. Three reliability metrics were pro-
posed, including uncertainty threshold, model
consensus, and spatial consistency. Validation
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using ground truth documented 45% accuracy in
high uncertainty areas, 72% in moderate and 91%
in low uncertainty areas, demonstrating that the
proposed uncertainty maps are suitable to guide
targeted validation and to analyse alternative
classification strategies (Szabo et al., 2024).

The operational implications are impor-
tant: uncertainty maps may be used to constrain
quality control, prioritize in-situ field valida-
tion, make choices of alternative strategies in
complex regions, and provide end users with
confidence levels. Multi-sensor fusion de-
creased unfavourable uncertainty in a system-
atic way, especially for boundary cases and
morphologically complex locations, leading to
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Figure 12. Summary of inter-model agreement: (a) consensus matrix across classifiers,
(b) Fleiss’ Kappa by modality (k = 0.58 for SAR, 0.69 for optical, 0.81 for fusion), (c) discordance patterns
(systematic, random, and boundary-related). Fusion yields the highest reliability and consensus

a solid framework for trustworthy dune moni-
toring (Yuanyuan et al., 2024).

Feature importance and model
interpretability

Interpretation of the significance of input
features is important for assessing the use of
machine learning algorithms to classify sand
dunes. Feature importance analysis was con-
ducted on all models (RF, LGBM, XGB, ET,
and SVM) and data types (SAR, optical, fused)
in a standardized way, by normalizing the fea-
tures such that the results are comparable de-
spite in different importance scores and meth-
ods such as gain-based scores of LightGBM and
impurity-based scores of random forest (Saarela
and Jauhiainen, 2021).

Feature ranking analysis

The importance scores were normalized to
rank the features within and between models
and modalities. The true patterns were consistent

across the OPT and FUSION datasets with both
Feat6 (100% top-ranking consistency) and then
Featl identified as the most influential feature. In
the case of SAR data, the significant feature set
(Top three features) was Featl, Feat2, and Feat3,
emphasizing the modality-dependent discrimina-
tive information.

The complementarity of both SAR and opti-
cal information is exhibited in the results of mul-
tisource fusion, with Feat6 and Featl taking the
lead in ranking. Feature stability between models
supports the stability of the feature selection and
shows that these predictors are informative for
accurate dune classification.

Figure 14 presents detailed summary of the
feature importance for the models and modalities
and Table 6 lists the top three features and mean
normalized importance for the models and mo-
dalities aggre-gatedly.

Model-specific interpretability

The contribution of each feature is viewed us-
ing different aspects of feature contributions:
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Figure 13. Relationship between uncertainty and classification confidence: (a) negative correlation between
uncertainty and F1-scores, (b) calibration curve comparing predicted confidence with observed accuracy,
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Figure 14. Comprehensive feature importance analysis showing top predictors for each classifier and modality.
Feature stability and consistency patterns highlight the complementarity of SAR (VV, VH, VV/VH)
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Table 6. Top features by model and modality

Model Modality Top feature Second feature Third feature Mean importance
ET FUSION Feat6 (1.000) Featl (0.472) Feat7 (0.322) 0.243
ET OPT Feat6 (1.000) Featl (0.371) Feat2 (0.202) 0.226
ET SAR Featl (1.000) Feat3 (0.397) Feat2 (0.000) 0.466

LGBM FUSION Feat6 (1.000) Featl (0.762) Feat2 (0.382) 0.337

LGBM OPT Feat6 (1.000) Featl (0.761) Feat2 (0.355) 0.393

LGBM SAR Feat2 (1.000) Feat3 (0.872) Featl (0.000) 0.624
RF FUSION Feat6 (1.000) Featl (0.575) Feat7 (0.499) 0.285
RF OPT Feat6 (1.000) Featl (0.416) Feat7 (0.240) 0.242
RF SAR Featl (1.000) Feat3 (0.283) Feat2 (0.000) 0.428

XGB FUSION Feat6 (1.000) Featl (0.788) Feat7 (0.578) 0.392

XGB OPT Feat6 (1.000) Featl (0.909) Feat2 (0.366) 0.368

XGB SAR Featl (1.000) Feat3 (0.192) Feat2 (0.000) 0.397

e In random forest (RF), all modalities showed
consistent importance of the features, making
a clear distinction between high and low con-
tributing features with robust interpretability.

e LightGBM (LGBM) presented gain-based
feature importance patterns where the top fea-
tures were strongly consistent across modali-
ties, thus substantiating the trustworthiness of
FUSION and OPT rankings.

e The balanced hierarchical XGB had balanced
hierarchical importance distributions with
sustainable top importance features as well
as good interpretability.

e The extra trees (ET) classifier kept good dis-
tinction between critical and incidental fea-
tures, with strong signal consistency between
modalities.

Figure 15 illustrate detailed feature rankings,
consistency patterns, and modality-specific im-
portance distributions for each model.

Overall, the feature importances were con-
sistent across all models and only a few varia-
tions were found in the importances of the sec-
ondary features. This across-model consistency
is the cross-model consistency, and is used to
validate which feature selection is stable and
which are the dominant predictors for the classi-
fication performance over all the models. These
are the kinds of knowledges that are handy to
be used in the many-to-many body part of fea-
ture engineering and provide more weight to
the model’s decision making (Effrosynidis and
Arampatzis, 2021).

Post-processing impact assessment

Morphological filt ers and post-processing
methods were also experimented to analyze
their impact on dune classification accuracy,
noise reduction, and the sp atial features pres-
ervation. The results were compared to the
plain classification maps to quantify the gains
of these cleaning procedures. Spatial continu-
ity of binary classification maps Morphological
operations, majority filtering, small object re-
moval, and hole filling were applied to enhance
spatial continuity of binary classification maps
(Chourib, 2025).

Morphological filtering results

Using morphological filtering led to a steady
and measurable enhancement for all the classifi-
ers and data types. The average Intersection over
Union (mloU) rose from 0.569 in original maps
to 0.588 after filtering, with an absolute increase
of 3.42% (standard deviation =1.53%). The noise
reduction was on average 0.59% and the struc-
ture preservation above 100% (100.31%), which
is indicative that the most relevant spatial patterns
were preserved (Figure 16).

The model and modality specific results
showed that RF with OPT modality gained the
highest improvement (6.15%), with other opti-
cal models ranked next. SAR-only classifications
showed modest slice-based gains (2.5-6.0%) from
the speckle noise, and FUSION modalities made
slice-based but slighter gains (1.7-2.4%) due to
the multisource features combined robustness.
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Figure 15. Feature importance profiles across models, showing ranked predictors, consistency patterns,
and modality-specific contributions to sand dune classification
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Figure 16. Example of classification maps before and after morphological post-processing
using random forest on fusion data. Post-processing reduces noise, eliminates isolated misclassifications,
and enhances spatial coherence while preserving dune morphology
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Figure 17. Quantitative impact of morphological filtering on dune classification accuracy.
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Table 7. Post-processing impact analysis

Model Modality Original mloU | Cleaned mloU Imprc(»;)e;ment re du,\(l:?iic?rs %) pressgrr\ljgtt;f (%)
RF SAR 0.448 0.474 5.98 4.50 100.89
RF OPT 0.641 0.681 6.15 9.15 101.82
RF FUSION 0.660 0.672 1.68 -9.23 99.52

LGBM SAR 0.435 0.446 2.68 2.89 100.89

LGBM OPT 0.634 0.665 4.86 2.14 100.52

LGBM FUSION 0.638 0.654 2.40 -2.82 99.70

XGB SAR 0.431 0.445 3.31 3.34 100.97

XGB OPT 0.635 0.664 4.47 1.25 100.26

XGB FUSION 0.637 0.652 2.24 -2.91 99.55

SVM SAR 0.436 0.446 2.19 2.43 100.73

SVM OPT 0.630 0.657 4.42 0.76 100.07

SVM FUSION 0.619 0.631 1.96 -3.73 99.33
ET SAR 0.438 0.448 2.36 2.62 100.78
ET OPT 0.628 0.657 455 1.74 100.19
ET FUSION 0.624 0.635 1.81 -3.24 99.38

Morphological operations consisted of dele-
tion of isolated small objects (< 9 pixel), small
hole filling (< 9 pixels), a single pixel-radius

ble 7).

circular opening and closing operation and 3 x
3 majority filtering, these methods significantly

reduced classification error, while maintaining
their dune-interdune features (Figure 17 and Ta-
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loU improvement analysis

Quantitative IoU evaluation verifies the ef-
ficiency of morphological filtering (Radke et al.,
2022). The average gains were all positive for the
classifiers where the examination of the accuracy
gains for each classifier found that the Random
Forest was the classifier with the highest total
average gain (increase by 4.60% overall and in-
crease by 6.15% in the optical dataset). Similar-
ity result was obtained by LGBM and XGB for
which the accuracy improvement was 3.31% and
3.34% respectively. SVM provided a smaller in-
crease of 2.86% and ET showed an improvement
of 2.91%. Our results suggest that ensemble learn-
ing with trees (especially random forest) delivered
the greatest relative boost to performance, where
as margin-based learners and other ensembles pro-
vided more modest but stable improvement.

Modality-dependent improvement: SAR im-
aging benefited relatively strongly from radar
speckle reduction, OPT demonstrated the highest
gains on account of enhanced spectral clarity, and
FUSION achieved modest but steady improve-
ments. Structure preservation stayed above 99%
in all models and modalities, indicating that cru-
cial dune morphology was preserved while reduc-
ing classification noise.

In conclusion, post-processing confirms mor-
phological filtering as a mandatory classification
step enhancing accuracy through the noise reduc-
tion and spatial structure preservation (Figure 18).
These improvements bolster the confidence in the
results of dune mapping and facilitate the inclu-
sion of these techniques in operational remote
sensing workflows.
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local scale analysis and case studies

As a complement to the global overview, a
comprehensive dune classification evaluation at
a local scale was carried out through two custom
case studies. Analyses were performed over 400
x 400 pixel windows and it was possible to study
micro-geomorphological patterns, local changes
in model performance, and response under partic-
ular environmental conditions. With this strategy,
classification trends and limitations can be identi-
fied that remain unrecognized at global scales.

Local zoom analysis

Classification results were analysed at five
selected sites to see the effect of micro-geomor-
phological features. All these sites the fusion
modality was the one to produce the higher lo-
cal accuracy, while RF was proved to provide the
most stable performance over the different types
of geomorphological modification. Performance
metrics (local accuracy, uncertainty and inter-
model agreement) varied markedly between sites,
which was indicative of the impact of environ-
mental complexity on classification success.

Results showed that significantly more un-
certainty and less accuracy are achieved in active
migration and transitional regimes, while stable
and mature landforms were found to have high
classification reliability. In terms of numbers,
the mean local accuracy in the case studies was
0.652, average uncertainty was 0.553 and mean
model agreement was 0.579.

Figure 19 shows high-resolution heatmaps
of local accuracy, uncertainty, and inter-model
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Figure 18. Comparison of Intersection over Union (IoU) metrics across classification outputs. Heatmaps show:
(a) original classification, (b) cleaned classification after morphological post-processing,
(c) percentage improvement, highlighting spatial gains in classification accuracy
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Figure 19. Comprehensive local scale analysis showing local accuracy by case study, uncertainty patterns,
model agreement, modality performance, model performance, and case study performance heatmap.

agreement per case study, emphasizing the spa-
tially varying characteristics of dune systems.

Case study results

The five cases demonstrate a range of local
classification problems. The case study of active
dune migration showed the maximum uncertainty
(0.807) and local accuracy (0.714). In these re-
gions, partial model disagreement was observed,
as a result of mixed spectral signatures, how-
ever the fusion modality in conjunction with RF
achieved the best local performance. For the tran-
sitional dune-interdune classes, a moderate accu-
racy (0.645) was observed with high uncertainty
(0.634) and little agreement between the models
(0.449) suggesting indecision of the models on
the spectral patterns combinations. Again, the
combination of fusion method and RF (fusion +
RF) yielded the highest prediction accuracy.

The last case study concentrated on sites that
were characterized by widespread bias in classi-
fication, such as biocrusts and mixed surfaces. In
the latter scenario, the accuracy and uncertainty
fell down to 0.595 and 0.594, respectively, evi-
dencing, complex surface conditions are deemed
to make the feature challenging. Although some

misclassifications still remained, in comparison
with other modalities and models, fusion nd RF
were better. The fourth case, characterized by
fragmented boundaries and active aeolian ero-
sion, showed the lowest local accuracy (0.479)
and intermediate uncertainty (0.486), highlight-
ing the sensitivity of the classification results to
model and data type. With the exception of ma-
ture landscape landforms defined by case study
5, which are also well-predicted in local accuracy
(0.829), uncertainty (0.244), and confidence sta-
tistic (0.752), and good (0.833) Agreement be-
tween models, hence adequate remote sensing
based classification.

A synthesis of the five regional case studies
highlighted a strong link between local classifica-
tion accurracy and geomorphological complexity.
Transitional and dynamic zones are more uncer-
tain and less accurate than stable landforms which
are typically are classification consistent and reli-
able. Figure 20 shows again the best within all the
400 x 400 pixels window and also demonstrate
the contribution of local geomorphologyfor the
classification quality.

In summary, the analyses at a local scale
emphasize the need of including environmental
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a: Uncertainty analysis (400400 pixels) for the High Uncertainty region showing spatial
distribution of classification uncertainty and model disagreement patterns.

Uncertainty Analysls Model Disagreement Region
Uncertainty - SAR Uncertainty - Uncertainty - FUSION

b: Uncertainty analysis (400x400 pixels) for the Model Disagreement region showing
spatial patterns of model disagreement and areas of algorithmic uncertainty.

= Uncertainty Anulxsis: Classification Error Region "
Uncertainty - SAR Incertainty - OPT Uncertainty - FUSION

c¢: Uncertainty analysis (400x400 pixels) for the Classification Error region showing spatial
distribution of classification errors and areas of model confusion.

Uncertainty Analysls Complex Border Region
Uncertainty - SAR Uncertainty - FUSION

d: Uncertainty analysis (400x400 pixels) for the Complex Border region showing spatial

patterns of uncertainty along complex dune-interdune boundaries.
Uncertainty Analysis: Well-Classified Region
Uncertainty - OPT

Uncertainty - SAR Uncertainty - FUSION

e: Uncertainty analysis (400x400 pixels) for the Well-Classified region showing low
uncertainty and high model agreement in stable geomorphological contexts.

Figure 20. Patial uncertainty maps across five representative regions: (a) high-uncertainty zone,
(b) model disagreement region, (c) classification error zone, (d) complex dune—interdune boundary,

(e) well-classified area. Colors represent uncertainty levels from low (blue) to high (red), as indicated by the
color scale. Blue areas correspond to high classification confidence, while red areas highlight pixels with high
uncertainty, typically located at dune—interdune transition zones or regions of classifier disagreement.
SAR-optical fusion consistently reduces uncertainty compared to unimodal classifications.
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context to better understand classification results.
It demonstrates the spatial variations of dune sys-
tems and the need for site-specific planning in
complex geomorphological units, as well as con-
firms the accord of the fusion approach and the
RF model to extract patterns at a fine scale.

DISCUSSION

Key contributions

The present work advances the classification
of dunes combining Sentinel-1 (SAR) and Senti-
nel-2 (optical) data within a strong multi-modal
framework (Hu et al., 2021). The combination of
the both complementary datasets improves the dis-
crimination power between dunes and interdunes
by the average improvement of 20% as opposed
to single modality approaches (Figure 21). Map
coherence and classification noise are addition-
ally reduced by morphological post-processing.
Through a paid add-on parallel implementation
of regularizing spatial cross-validation, these im-
provements are true model generalization across
the study area, and we present an reproducible
large scale dune mapping procedure (Figure 22).

Critical assessment of results

The synergy offered by SAR and optical data
is instrumental for its success. SAR can capture

surface roughness and moisture, whereas the op-
tical data have high spectral resolution that allows
accurate classification even in complex transition
zones. Uncertainty and model agreement analy-
ses indicate focuses of geomorphological activ-
ity and reveal where classifications are robust or
speculative (Figure 23).

For example, with a 10m resolution the analy-
sis is not able to resolve fine scale features, such as
the small dunes, or local variations in the texture,
and the binary disjoint model of dunes and inter-
dunes fail to describe smooth transformations in
the geomorphology, resulting in larger uncertain-
ties in these areas. Environmental influence, such
as seasonal effects, and atmospheric conditions,
also affect data quality, and extensibility to di-
verse dune systems is untested (Figure 24).

These results suggest that although SAR-opti-
cal fusion indeed contributes to better estimation
accuracy and reliability, its applicability in other
geomorphological settings needs further verifica-
tion for dune fields with fairly complicated mor-
phology and mixed land cover conditions.

Comparison with literature

Compared to recent works (Table 8), the pro-
posed method outperforms them in various eval-
uation measures. The accuracy, Fl-score, loU,
and Kappa were 12—-15% higher than those of
the state-of arts, which proved the effectiveness
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Figure 21. Performance gains from SAR-optical fusion for each classifier compared to unimodal methods.
Fusion improves accuracy and F1-scores consistently across models, confirming complementarity of radar
and optical data
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Figure 22. Impact of morphological post-processing by modality. Fusion and optical modalities show stronger
accuracy gains compared to SAR-only, confirming the added value of spatial cleaning procedures
in multimodal classification pipelines
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Figure 23. SAR-optical complementarity analysis showing feature detection capabilities, performance by feature
type, temporal data availability, and resolution impact limitation remain

of multi-modal fusion and spatial aware valida-  of the uncertainty that had only sporadically
tion. Beyond the enhanced performances, this  been treated in the past. In this way, it over-
work also penetrates deeper by incorporating comes the deficiencies of the previous practice
multi-scale analysis and a systematic treatment
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Figure 24. Critical analysis of limitations showing spatial resolution impact, temporal coverage gaps,
validation complexity trade-offs, and model robustness across environmental conditions

Table 8. Comparison with representative literature studies

Study Methodology Data source Accuracy | F1-Score Limitations

(Z%Ei;/vdhury etal, SAR classification | Sentinel-1 0.61 - Single modality, limited validation
Optical

(Tang et al., 2023c) e Landsat-8 0.78 0.68 Weather dependent, no SAR data
classification

(Li et al., 2022) Simple fusion HJ-2A data + GF-3 0.88 ) Basu:_fusm_n, Ilmlted ML models,

data Classic validation process

Our Study (2025) | Multkmodal ML g inel 1 + Sentinel-2 | 0.85 0.82 |10 m resolution, binary

fusion classification

of machine learning and multi-source data for
dune classification.

Geomorphological implications

Performance of dune systems: uncertainty
analyses Performance and uncertainty analysis is
another important approach to interpret the evolu-
tion of dune systems. While active or transition
areas they are high uncertain, in stable regions,
different models are classified the same because
there is unitariness. These patterns serve as a
stand-in for biogeomorphological activity and
a potential method for tracking dune migration
and other surface process. The understanding that

performance indicators can be integrated into un-
certainty maps offers decision support tools for
applied conservation and management, which
can then prioritize conservation, development or
monitoring requirement.

Limitations and future directions

One of the limitations in developing a clas-
sifier is that our model is binary-based (dune vs
interdune). Although this simplification decreas-
es the ambiguity and increases interpretability, it
is oversimplified from the natural variability of
dune field characteristics. Future studies may thus
consider multi-class or hierarchical classification
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(e.g., active dunes, stabilized dunes, vegetated in-
terdunes) so as to better reproduce a realistic geo-
morphological complexity. Another limitation is
the overall homogeneity of the study area, serv-
ing for a controlled environment yet also limiting
generalisability. Future applications are required
to validate the model in contrasting dune systems
with a more diverse range of morphologies and
human influences.

This model attempt to better categorize cells
and patterns and give more interpretations but
this framework is challenging: we still do not
have spatial-resolution, binary classification of
”obvious cells” and “obvious pattern”, temporal
variation to consider and man-hostile task that
these models cannot apply to new types of cells.
We intend to consider deep learning structures,
such as convolutional and attention network, in
future to learn more complex spatial-temporal de-
pendency patterns. Combining hyperspectral and
LiDAR data could lead to better material discrim-
ination and validation of dune morphology in 3D.
Multi-temporal analyses would be able to follow
the seasonal and short-term aeolian processes,
whereas operational platforms would allow for
automatic monitoring and management. xplain-
able Al techniques would also enhance interpret-
ability and the confidence of the coverage. While
collective data sharing beyond international bor-
ders and extended, standardized datasets would
improve the generalizability of the method and be
useful in addressing dune environments that are
present in other parts of the world.

CONCLUSIONS

This study clearly shows the enhanced quality
of dune classification using SAR-optical fusion,
confirming its superiority to unimodal techniques,
particularly in complex transition boundaries. In-
tegration of radar backscatter with optical reflec-
tance produced gains of 37-40% over SAR-only
and 1-2% over optical-only data. Beyond accura-
cy, the inclusion of spatial cross-validation, post-
processing, and uncertainty analysis provided a
reproducible and robust dune mapping approach.
The novelty lies in explicitly linking classifica-
tion accuracy with spatial confidence measures,
contributing to more reliable dune monitoring
and desertification risk assessment.

Despite these advances, limitations remain,
including the binary classification scheme, the
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relative homogeneity of the study area, and the
reliance on synchronous acquisitions. Future
work should extend the framework to heteroge-
neous dune systems, integrate hyperspectral and
LiDAR data, and explore predictive modeling of
dune dynamics.

Overall, this study establishes a reproducible,
scalable framework that sets a new standard for
remote sensing-based dune classification and pro-
vides practical tools for sustainable land manage-
ment in arid regions.

REFERENCES

1. Abeyrathna, D., Rauniyar, S., Sani, R. K., Huang,
P.-C. (2022). A morphological post-processing ap-
proach for overlapped segmentation of bacterial
cell images. Machine Learning and Knowledge Ex-
traction, 4(4), 1024—1041. https://doi.org/10.3390/
make4040052

2. Chourib, I. (2025). From detection to diagnosis: An
advanced transfer learning pipeline using YOLO11
with morphological post-processing for brain tumor
analysis for MRI images. Journal of Imaging, 11(8),
282. https://doi.org/10.3390/jimaging 11080282

3. Chowdhury, P. R., Goswami, A. K., Prasad, S. S.,
Deshmukh, B. (2011). Neural network based du-
nal landform mapping from multispectral images
using texture features. IEEE Journal of Selected
Topics in Applied Earth Observations and Remote
Sensing, 4(1), 171-184. https://doi.org/10.1109/
JSTARS.2010.2062491

4. Deng, A., Xiong, M., Hooi, B. (2023). Great Models
Think Alike: Improving Model Reliability via Inter-
Model Latent Agreement.

5. Duo, E., Fabbri, S., Grottoli, E., Ciavola, P. (2021).
Uncertainty of drone-derived DEMs and signifi-
cance of detected morphodynamics in artificially
scraped dunes. Remote Sensing, 13(9), 1823. https://
doi.org/10.3390/rs13091823

6. Effrosynidis, D., Arampatzis, A. (2021). An evalua-
tion of feature selection methods for environmental
data. Ecological Informatics, 61, 101224. https://
doi.org/10.1016/j.ecoinf.2021.101224

7. Fei, B., Ma, H., Yin, J., Zhang, L., Li, J., Xiu, X.,
Zhou, D., Pang, Y., Zhang, Y., Jia, X., Wu, B. (2024).
Landscape dynamics of the Mu Us sandy land based
on multi-source remote sensing images. Land,
13(7), 977. https://doi.org/10.3390/1land 13070977

8. Feng, K., Wang, T., Liu, S., Kang, W., Chen, X.,
Guo, Z., Zhi, Y. (2022). Monitoring desertification
using machine-learning techniques with multiple

indicators derived from MODIS Images in Mu Us
Sandy Land, China. Remote Sensing, 14(11), 2663.



Ecological Engineering & Environmental Technology 2025, 26(11), 34-59

10.

11

12.

13.

14.

15.

16.

17.

https://doi.org/10.3390/rs14112663

Foody, G. M. (2024). Ground truth in classifi-
cation accuracy assessment: Myth and reality.
Geomatics, 4(1), 81-90. https://doi.org/10.3390/
geomatics4010005

Hu, B., Xu, Y., Huang, X., Cheng, Q., Ding, Q.,
Bai, L., Li, Y. (2021). Improving urban land cover
classification with combined use of Sentinel-2 and
Sentinel-1 imagery. ISPRS International Jour-
nal of Geo-Information, 10(8), 533. https://doi.
org/10.3390/ijgi10080533

.Iban, M. C., Bilgilioglu, S. S. (2023). Snow ava-

lanche susceptibility mapping using novel tree-based
machine learning algorithms (XGBoost, NGBoost,
and LightGBM) with eXplainable Artificial Intel-
ligence (XAI) approach. Stochastic Environmental
Research and Risk Assessment, 37(6), 2243-2270.
https://doi.org/10.1007/s00477-023-02392-6

Jamil, M. A., Khanam, S. (2024). Influence of one-
way ANOVA and Kruskal-Wallis based feature
ranking on the performance of ML classifiers for
bearing fault diagnosis. Journal of Vibration Engi-
neering & Technologies, 12(3), 3101-3132. https://
doi.org/10.1007/s42417-023-01036-x

Li, Y., Wu, J., Zhong, B., Shi, X., Xu, K., Ao, K., Sun,
B., Ding, X., Wang, X., Liu, Q., Yang, A., Chen, F.,
Shi, M. (2022). Methods of sandy land detection in a
sparse-vegetation scene based on the fusion of HJ-2A
hyperspectral and GF-3 SAR data. Remote Sensing,
14(5), 1203. https://doi.org/10.3390/rs14051203

Lu, Q., Gaur, M. K., Squires, V. R. (2023). Sand
Dunes of the Northern Hemisphere. CRC Press.
https://doi.org/10.1201/9781003125426

MacDonald, S., Foley, H., Yap, M., Johnston, R. L.,
Steven, K., Koufariotis, L. T., Sharma, S., Wood, S.,
Addala, V., Pearson, J. V., Roosta, F., Waddell, N.,
Kondrashova, O., Trzaskowski, M. (2023). Gener-
alising uncertainty improves accuracy and safety of
deep learning analytics applied to oncology. Scien-
tific Reports, 13(1), 7395. https://doi.org/10.1038/
$41598-023-31126-5

Radke, K. L., Kors, M., Miiller-Lutz, A., Frenken,
M., Wilms, L. M., Baraliakos, X., Wittsack, H.-J.,
Distler, J. H. W., Abrar, D. B., Antoch, G., Sewerin,
P. (2022). Adaptive loU thresholding for improving
small object detection: A proof-of-concept study of
hand erosions classification of patients with rheu-
matic arthritis on x-ray images. Diagnostics, 13(1),
104. https://doi.org/10.3390/diagnostics 13010104

Saarela, M., Jauhiainen, S. (2021). Comparison of
feature importance measures as explanations for
classification models. SN Applied Sciences, 3(2),
272. https://doi.org/10.1007/s42452-021-04148-9

18.

19.

20.

21.

22.

23.

24.

25.

26.

217.

Salem, Y., Ghrefat, H., Al Zbnah, N. (2025). Detect-
ing areas vulnerable to sand encroachment using re-
mote sensing and GIS techniques in the Shaqra and
Tharmada Provinces, Saudi Arabia. Natural Haz-
ards, 121(6), 7481-7509. https://doi.org/10.1007/
s11069-024-07101-2

Shiddiq, M., Candra, F., Anand, B., Rabin, M. F.
(2023). Neural network with k-fold cross valida-
tion for oil palm fruit ripeness prediction. TELKOM-
NIKA (Telecommunication Computing Electronics
and Control), 22(1), 164. https://doi.org/10.12928/
telkomnika.v22i1.24845

Sieren, B. K. (2022). Investigation of Non-Uniform
Erosion at the Kenosha Sand Dunes in Wisconsin
[University of Wisconsin-Madison]. https://minds.
wisconsin.edu/bitstream/handle/1793/83522/MS _
Thesis_Sieren Benjamin.pdf?sequence=1

Smyth, T. A. G., Wilson, R., Rooney, P., Yates, K.
L. (2022). Extent, accuracy and repeatability of
bare sand and vegetation cover in dunes mapped
from aerial imagery is highly variable. Aeolian
Research, 56, 100799. https://doi.org/10.1016/j.
aeolia.2022.100799

Stammler, M., Stevens, T., Holbling, D. (2023).
Geographic object-based image analysis (GEO-
BIA) of the distribution and characteristics of aeo-
lian sand dunes in Arctic Sweden. Permafrost and
Periglacial Processes, 34(1), 22-36. https://doi.
0rg/10.1002/ppp.2169

Szabo, S., Holb, 1. J., Abriha-Molnér, V. E., Szat-
mari, G., Singh, S. K., Abriha, D. (2024). Classi-
fication Assessment Tool: A program to measure
the uncertainty of classification models in terms of
class-level metrics. Applied Soft Computing, 155,
111468. https://doi.org/10.1016/j.as0¢.2024.111468

Tang, Y., Wang, Z., Jiang, Y., Zhang, T., Yang, W.
(2023a). An Auto-Detection and classification al-
gorithm for identification of sand dunes based on
remote sensing images. International Journal of Ap-
plied Earth Observation and Geoinformation, 125,
103592. https://doi.org/10.1016/j.jag.2023.103592
Tang, Y., Wang, Z., Jiang, Y., Zhang, T., Yang, W.
(2023b). An Auto-Detection and classification al-
gorithm for identification of sand dunes based on
remote sensing images. International Journal of Ap-
plied Earth Observation and Geoinformation, 125,
103592. https://doi.org/10.1016/j.jag.2023.103592
Tang, Y., Wang, Z., Jiang, Y., Zhang, T., Yang, W.
(2023c). An Auto-Detection and classification al-
gorithm for identification of sand dunes based on
remote sensing images. International Journal of Ap-
plied Earth Observation and Geoinformation, 125.
https://doi.org/10.1016/j.jag.2023.103592

Violeta Vlasceanu, G., Tarba, N., Voncila, M.-L.,

59



