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INTRODUCTION

Climate variability has emerged as a global 
challenge with profound impacts on agricul-
tural systems, water resources, and ecosystems 
worldwide. The Mekong River Basin, spanning 
six countries across Southeast Asia and China, 
is particularly vulnerable to climate variability 
and extreme weather events, including prolonged 
droughts that threaten food security and economic 
stability (Commission, 2020). Within this region, 
the Srepok River Basin in Vietnam represents a 
critical agricultural area where drought research 
and forecasting have become increasingly essen-
tial for sustainable resource management and di-
saster risk reduction (Khoi and Nhi, 2021).

Technologies for drought detection and early 
warning have significantly improved through the 
integration of remote sensing and modern data 

processing approaches. The vegetation health 
index (VHI), derived from the vegetation condi-
tion index (VCI) and temperature condition index 
(TCI), has proven effective in assessing vegeta-
tion stress and drought impacts on agricultural 
systems (Kogan, 2002; Kogan, 1997). Unlike tra-
ditional meteorological drought indices that fo-
cus solely on precipitation deficits, VHI provides 
a more comprehensive assessment of vegetation 
response to temperature and moisture condi-
tions, thereby enhancing its value for agricultural 
drought monitoring and crop yield forecasting 
(Liu et al., 2020; Wan et al., 2004).

The integration of multiple drought indices 
has shown considerable potential for improving 
forecast accuracy and reliability. The standard-
ized precipitation index (SPI) (McKee et al., 
1993) and standardized streamflow index (SSI) 
(Modarres, 2007) are among the most frequently 
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used indices to characterize meteorological and 
hydrological droughts, respectively. Previous 
studies have revealed distinct temporal linkages 
between these drought categories. Typically, 
meteorological drought emerges several months 
before agricultural drought (approximately 1–3 
months), while hydrological drought tends to de-
velop more slowly, reflecting delayed responses 
within the catchment system (Sam et al., 2019; 
Tram et al., 2021). Moreover, vegetation respons-
es to deficits in rainfall and streamflow vary nota-
bly according to growth phase and season (Praj-
apati et al., 2021). The extent of climatic influence 
on vegetation also depends on regional conditions 
and environmental characteristics, including land 
cover, soil type, and vegetation composition (Us-
man et al., 2013).

In recent years, advances in machine learning 
(ML) and artificial intelligence (AI) have signifi-
cantly improved the capacity for drought predic-
tion and assessment. While traditional statistical 
techniques remain widely used, they often fail to 
capture the nonlinear relationships and complex 
interdependencies among multiple environmen-
tal variables that influence forecast outcomes 
(Narmilan et al., 2022). Various ML algorithms, 
including random forest (RF) (Mokhtari and Ak-
hoondzadeh, 2021), artificial neural networks 
(ANN) (Kafy et al., 2023), stepwise quadratic 
regression (SQR) (Rahman et al., 2025), mul-
tiple linear regression (MLR), eXtreme gradient 
boosting (xGBoost), and support vector machines 
(SVM), have demonstrated strong performance 
in environmental modeling tasks owing to their 
ability to process large, multidimensional datas-
ets with improved accuracy and efficiency (Feng 
et al., 2019; Luong and Bui, 2024). Nevertheless, 
the effectiveness of each algorithm depends on 
the characteristics of the dataset, emphasizing the 
importance of selecting the most suitable model 
for the specific environmental conditions of the 
study region.

The Srepok River Basin, covering approxi-
mately 18.600 km² in the Central Highlands, 
experiences a tropical monsoon climate with 
distinct dry (November–April) and rainy (May-
October) seasons, making the region susceptible 
to seasonal drought that strongly affects agricul-
tural productivity (Sam et al., 2019). The area 
features diverse land use types including peren-
nial crops, annual crops, rice, and natural forests, 
each responding differently to drought impacts 
and requiring appropriate monitoring approaches. 

Previous studies in the region have demonstrated 
strong relationships between drought indices and 
vegetation health, particularly emphasizing crop 
sensitivity to climate variability (Luong and Bui, 
2023; Van Viet and Thuy, 2023). Nevertheless, 
studies that simultaneously examine the com-
bined influence of meteorological and hydro-
logical factors on VHI prediction remain scarce, 
particularly in relation to the differences in sensi-
tivity among vegetation types and across various 
forecasting lead times.

Given these considerations, this study was 
conducted with the primary objective of develop-
ing and evaluating machine learning approaches 
for early prediction of the vegetation health index 
(VHI) within the Srepok Basin in Vietnam. Spe-
cifically, the research aims to (1) identify optimal 
timescales and lag times for input variables (SSI, 
SPI, and lagged VHI) to improve VHI forecasting 
accuracy; (2) comparatively evaluate the perfor-
mance of three machine learning models (ANN, 
RF, SQR) across different forecast lead times; (3) 
analyze forecast quality variability by month to 
identify periods of optimal model performance; 
and (4) quantify the relative contribution of pre-
dictor variables to overall accuracy under different 
temporal conditions. Through integrating multi-
index drought indicators and advanced machine 
learning techniques, this study seeks to develop a 
reliable VHI forecasting system, contributing to 
enhanced early warning capabilities for drought 
and supporting sustainable agricultural manage-
ment in the region.

DATA AND METHODOLOGY

Research framework

The methodological framework of this study 
integrates multi-source datasets from satellite re-
mote sensing, ground-based meteorological ob-
servations, and hydrological records into a uni-
fied monthly system with a spatial resolution of 
463 m. The objective is to develop and evaluate 
machine learning models for forecasting the VHI 
across the Srepok River Basin (Figure 1).

The workflow consists of five main compo-
nents: (i) data acquisition and harmonization; 
(ii) computation of drought-related indices (SPI 
and SSI) and vegetation-temperature indices 
(VCI, TCI, and VHI); (iii) correlation analysis to 
identify the most influential predictors and their 
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optimal temporal lags; and (iv) model training 
and validation using three algorithms –  SQR, 
RF, and ANN.

Data

Data utilized in this study comprised precipi-
tation, streamflow, normalized difference vegeta-
tion index (NDVI), and land surface temperature 
(LST). Precipitation data were obtained from 
stations on and around the Srepok Basin. A total 
of 14 precipitation stations were included in the 
analysis, with 5 stations within the Srepok area 
and 9 stations in surrounding regions. Streamflow 
information was obtained from the Ban Don hy-
drological station, which is situated in the down-
stream portion of the Srepok Basin (Figure 2). 
This station monitors 92% of the Srepok Basin 
area. Data were collected from 2000 to 2022 as 
monthly averages.

NDVI and LST were employed to compute 
the VHI. This index was adopted in the study 
based on the works (Hiep et al., 2023; Van Viet 
and Thuy, 2023; Luong and Bui, 2023), which 
confirmed its strong responsiveness to drought 

stress and its usefulness for predicting crop pro-
ductivity in the Central Highlands region.

The NDVI and LST datasets were acquired 
from MODIS products available through the 
USGS EarthExplorer portal (https://earthex-
plorer.usgs.gov/). NDVI data were extracted 
from the MOD13A1 product, offering a spa-
tial resolution of 463 m and a 16-day compos-
ite period, while LST data originated from the 
MOD11A2 product, which provides a 927 m 
spatial resolution and an 8-day temporal resolu-
tion. To ensure comparability between vegeta-
tion and drought indicators, all variables were 
resampled to a monthly time step. The month-
ly mean LST was computed from the 8-day 
MOD11A2 composites and then resampled to 
match the NDVI grid resolution of 463 m using 
the bilinear interpolation method. Meanwhile, 
monthly NDVI composites were produced from 
the 16-day MOD13A1 data using the maximum 
value composite (MVC) approach, which effec-
tively minimizes the impact of cloud contami-
nation and atmospheric interference (Chu et al., 
2019; Holben, 1986; Li et al., 2016).

Figure 1. Workflow for developing machine learning models
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Methodology

Determination of VHI

The VHI is designed to quantify vegetation 
health by combining two sub-indices: the vegeta-
tion condition index (VCI) and the temperature 
condition index (TCI). This integration enables 
VHI to capture both vegetation vitality and the 
thermal stress influencing plant growth under 
drought conditions (Kogan, 1997; Kogan, 2002).
Mathematically, VHI is expressed as:

	 𝑉𝑉𝑉𝑉𝑉𝑉 =∝ 𝑉𝑉𝑉𝑉𝑉𝑉 + (1−∝)𝑇𝑇𝑇𝑇𝑇𝑇 

 

𝑉𝑉𝑉𝑉𝑉𝑉 = 100 𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑖𝑖−𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑚𝑚𝑚𝑚𝑚𝑚
𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑚𝑚𝑚𝑚𝑚𝑚−𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑚𝑚𝑚𝑚𝑚𝑚

  (1) 
 
 
 𝑇𝑇𝑇𝑇𝑇𝑇 = 100 𝐿𝐿𝐿𝐿𝐿𝐿𝑚𝑚𝑚𝑚𝑚𝑚−𝐿𝐿𝐿𝐿𝐿𝐿𝑖𝑖

𝐿𝐿𝐿𝐿𝐿𝐿𝑚𝑚𝑚𝑚𝑚𝑚−𝐿𝐿𝐿𝐿𝐿𝐿𝑚𝑚𝑚𝑚𝑚𝑚
  (2) 

 
 
 
𝛽𝛽 = 1+√1+4𝑈𝑈/3

4𝑈𝑈 , (3) 
 
 
  𝛼𝛼 = 𝑋̄𝑋

𝛽𝛽, (4) 
 

𝑈𝑈 = 𝑙𝑙𝑙𝑙( 𝑋̄𝑋) −
∑ 𝑙𝑙𝑙𝑙( 𝑋𝑋)

𝑛𝑛  
 

𝐺𝐺(𝑥𝑥) =
∫ 𝑥𝑥𝛼𝛼−1𝑥𝑥

0 𝑒𝑒
−𝑥𝑥
𝛽𝛽 𝑑𝑑𝑑𝑑

𝛽𝛽𝛼𝛼𝛤𝛤(𝛼𝛼)  

 
 

𝐻𝐻(𝑥𝑥) = 𝑞𝑞 + (1 − 𝑞𝑞)𝐺𝐺(𝑥𝑥) 
 
 

𝑆𝑆𝑆𝑆𝑆𝑆 = 2.515517+0.802583𝑡𝑡+0.010328𝑡𝑡2

1+1.432788𝑡𝑡+0.189269𝑡𝑡2+0.001308𝑡𝑡3 − 
−𝑡𝑡 0 < 𝐻𝐻(𝑥𝑥) ≤ 0.5 

𝑆𝑆𝑆𝑆𝑆𝑆 = 𝑡𝑡 − 2.515517 + 0.802583𝑡𝑡 + 0.010328𝑡𝑡2

1 + 1.432788𝑡𝑡 + 0.189269𝑡𝑡2 + 0.001308𝑡𝑡3 
0.5 < 𝐻𝐻(𝑥𝑥) ≤ 1 

 
 

𝑡𝑡 = √𝑙𝑙𝑙𝑙 ( 1
𝐻𝐻(𝑥𝑥)2) 0 < 𝐻𝐻(𝑥𝑥) ≤ 0. 

 𝑡𝑡 = √𝑙𝑙𝑙𝑙 ( 1
(1−𝐻𝐻(𝑥𝑥))2) 0.5 < 𝐻𝐻(𝑥𝑥) ≤ 1 

 

 

𝑌𝑌𝑌𝑌 = 𝑎𝑎 + 𝑏𝑏𝑏𝑏 + ∑ 𝑐𝑐𝑖𝑖 𝑥𝑥𝑖𝑖 + ∑ 𝑑𝑑𝑖𝑖 𝑥𝑥𝑖𝑖
2 

	 (1)

where:	α is a weighting coefficient commonly as-
signed a value of 0.5. Both VCI and TCI 
represent the normalized temporal varia-
tions of NDVI and LST, respectively. 
These indices are computed according to 
the following formulations:

	

𝑉𝑉𝑉𝑉𝑉𝑉 =∝ 𝑉𝑉𝑉𝑉𝑉𝑉 + (1−∝)𝑇𝑇𝑇𝑇𝑇𝑇 
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𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑚𝑚𝑚𝑚𝑚𝑚−𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑚𝑚𝑚𝑚𝑚𝑚

  (1) 
 
 
 𝑇𝑇𝑇𝑇𝑇𝑇 = 100 𝐿𝐿𝐿𝐿𝐿𝐿𝑚𝑚𝑚𝑚𝑚𝑚−𝐿𝐿𝐿𝐿𝐿𝐿𝑖𝑖

𝐿𝐿𝐿𝐿𝐿𝐿𝑚𝑚𝑚𝑚𝑚𝑚−𝐿𝐿𝐿𝐿𝐿𝐿𝑚𝑚𝑚𝑚𝑚𝑚
  (2) 

 
 
 
𝛽𝛽 = 1+√1+4𝑈𝑈/3

4𝑈𝑈 , (3) 
 
 
  𝛼𝛼 = 𝑋̄𝑋

𝛽𝛽, (4) 
 

𝑈𝑈 = 𝑙𝑙𝑙𝑙( 𝑋̄𝑋) −
∑ 𝑙𝑙𝑙𝑙( 𝑋𝑋)

𝑛𝑛  
 

𝐺𝐺(𝑥𝑥) =
∫ 𝑥𝑥𝛼𝛼−1𝑥𝑥

0 𝑒𝑒
−𝑥𝑥
𝛽𝛽 𝑑𝑑𝑑𝑑

𝛽𝛽𝛼𝛼𝛤𝛤(𝛼𝛼)  

 
 

𝐻𝐻(𝑥𝑥) = 𝑞𝑞 + (1 − 𝑞𝑞)𝐺𝐺(𝑥𝑥) 
 
 

𝑆𝑆𝑆𝑆𝑆𝑆 = 2.515517+0.802583𝑡𝑡+0.010328𝑡𝑡2

1+1.432788𝑡𝑡+0.189269𝑡𝑡2+0.001308𝑡𝑡3 − 
−𝑡𝑡 0 < 𝐻𝐻(𝑥𝑥) ≤ 0.5 

𝑆𝑆𝑆𝑆𝑆𝑆 = 𝑡𝑡 − 2.515517 + 0.802583𝑡𝑡 + 0.010328𝑡𝑡2

1 + 1.432788𝑡𝑡 + 0.189269𝑡𝑡2 + 0.001308𝑡𝑡3 
0.5 < 𝐻𝐻(𝑥𝑥) ≤ 1 

 
 

𝑡𝑡 = √𝑙𝑙𝑙𝑙 ( 1
𝐻𝐻(𝑥𝑥)2) 0 < 𝐻𝐻(𝑥𝑥) ≤ 0. 

 𝑡𝑡 = √𝑙𝑙𝑙𝑙 ( 1
(1−𝐻𝐻(𝑥𝑥))2) 0.5 < 𝐻𝐻(𝑥𝑥) ≤ 1 

 

 

𝑌𝑌𝑌𝑌 = 𝑎𝑎 + 𝑏𝑏𝑏𝑏 + ∑ 𝑐𝑐𝑖𝑖 𝑥𝑥𝑖𝑖 + ∑ 𝑑𝑑𝑖𝑖 𝑥𝑥𝑖𝑖
2 

	 (2)

	

𝑉𝑉𝑉𝑉𝑉𝑉 =∝ 𝑉𝑉𝑉𝑉𝑉𝑉 + (1−∝)𝑇𝑇𝑇𝑇𝑇𝑇 

 

𝑉𝑉𝑉𝑉𝑉𝑉 = 100 𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑖𝑖−𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑚𝑚𝑚𝑚𝑚𝑚
𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑚𝑚𝑚𝑚𝑚𝑚−𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑚𝑚𝑚𝑚𝑚𝑚

  (1) 
 
 
 𝑇𝑇𝑇𝑇𝑇𝑇 = 100 𝐿𝐿𝐿𝐿𝐿𝐿𝑚𝑚𝑚𝑚𝑚𝑚−𝐿𝐿𝐿𝐿𝐿𝐿𝑖𝑖

𝐿𝐿𝐿𝐿𝐿𝐿𝑚𝑚𝑚𝑚𝑚𝑚−𝐿𝐿𝐿𝐿𝐿𝐿𝑚𝑚𝑚𝑚𝑚𝑚
  (2) 

 
 
 
𝛽𝛽 = 1+√1+4𝑈𝑈/3

4𝑈𝑈 , (3) 
 
 
  𝛼𝛼 = 𝑋̄𝑋

𝛽𝛽, (4) 
 

𝑈𝑈 = 𝑙𝑙𝑙𝑙( 𝑋̄𝑋) −
∑ 𝑙𝑙𝑙𝑙( 𝑋𝑋)

𝑛𝑛  
 

𝐺𝐺(𝑥𝑥) =
∫ 𝑥𝑥𝛼𝛼−1𝑥𝑥

0 𝑒𝑒
−𝑥𝑥
𝛽𝛽 𝑑𝑑𝑑𝑑

𝛽𝛽𝛼𝛼𝛤𝛤(𝛼𝛼)  

 
 

𝐻𝐻(𝑥𝑥) = 𝑞𝑞 + (1 − 𝑞𝑞)𝐺𝐺(𝑥𝑥) 
 
 

𝑆𝑆𝑆𝑆𝑆𝑆 = 2.515517+0.802583𝑡𝑡+0.010328𝑡𝑡2

1+1.432788𝑡𝑡+0.189269𝑡𝑡2+0.001308𝑡𝑡3 − 
−𝑡𝑡 0 < 𝐻𝐻(𝑥𝑥) ≤ 0.5 

𝑆𝑆𝑆𝑆𝑆𝑆 = 𝑡𝑡 − 2.515517 + 0.802583𝑡𝑡 + 0.010328𝑡𝑡2

1 + 1.432788𝑡𝑡 + 0.189269𝑡𝑡2 + 0.001308𝑡𝑡3 
0.5 < 𝐻𝐻(𝑥𝑥) ≤ 1 

 
 

𝑡𝑡 = √𝑙𝑙𝑙𝑙 ( 1
𝐻𝐻(𝑥𝑥)2) 0 < 𝐻𝐻(𝑥𝑥) ≤ 0. 

 𝑡𝑡 = √𝑙𝑙𝑙𝑙 ( 1
(1−𝐻𝐻(𝑥𝑥))2) 0.5 < 𝐻𝐻(𝑥𝑥) ≤ 1 

 

 

𝑌𝑌𝑌𝑌 = 𝑎𝑎 + 𝑏𝑏𝑏𝑏 + ∑ 𝑐𝑐𝑖𝑖 𝑥𝑥𝑖𝑖 + ∑ 𝑑𝑑𝑖𝑖 𝑥𝑥𝑖𝑖
2 

	 (3)

where:	NDVIi denotes the NDVI value of a giv-
en pixel at time i during the study year; 
NDVImax and NDVImin correspond to the 

maximum and minimum NDVI values 
identified throughout the analysis period; 
LSTi represents the LST value of a specific 
pixel at time i for the same period; LST-
max and LSTmin indicate the maximum and 
minimum LST values observed across the 
temporal span used for computation.

Calculation of the standardized precipitation 
index (SPI)

The SPI introduced by McKee et al. (1993), 
is one of the most widely adopted drought in-
dicators used globally. SPI quantifies precipita-
tion anomalies by fitting observed rainfall to a 
probability distribution function, which is then 
normalized to produce standardized values rep-
resenting wet and dry conditions. It can be com-
puted for various timescales, typically ranging 
from 1 to several months, depending on the pur-
pose of the analysis.

Let x denote the accumulated precipitation for 
a specific timescale and month. The SPI computa-
tion involves the following steps:

	• Estimate the parameters of the Gamma 
distribution:
The shape (β) and scale (α) parameters are de-

termined as:

Figure 2. The Srepok River Basin and meteorological and hydrological stations
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𝑉𝑉𝑉𝑉𝑉𝑉 =∝ 𝑉𝑉𝑉𝑉𝑉𝑉 + (1−∝)𝑇𝑇𝑇𝑇𝑇𝑇 

 

𝑉𝑉𝑉𝑉𝑉𝑉 = 100 𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑖𝑖−𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑚𝑚𝑚𝑚𝑚𝑚
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 𝑇𝑇𝑇𝑇𝑇𝑇 = 100 𝐿𝐿𝐿𝐿𝐿𝐿𝑚𝑚𝑚𝑚𝑚𝑚−𝐿𝐿𝐿𝐿𝐿𝐿𝑖𝑖

𝐿𝐿𝐿𝐿𝐿𝐿𝑚𝑚𝑚𝑚𝑚𝑚−𝐿𝐿𝐿𝐿𝐿𝐿𝑚𝑚𝑚𝑚𝑚𝑚
  (2) 

 
 
 
𝛽𝛽 = 1+√1+4𝑈𝑈/3

4𝑈𝑈 , (3) 
 
 
  𝛼𝛼 = 𝑋̄𝑋

𝛽𝛽, (4) 
 

𝑈𝑈 = 𝑙𝑙𝑙𝑙( 𝑋̄𝑋) −
∑ 𝑙𝑙𝑙𝑙( 𝑋𝑋)

𝑛𝑛  
 

𝐺𝐺(𝑥𝑥) =
∫ 𝑥𝑥𝛼𝛼−1𝑥𝑥

0 𝑒𝑒
−𝑥𝑥
𝛽𝛽 𝑑𝑑𝑑𝑑

𝛽𝛽𝛼𝛼𝛤𝛤(𝛼𝛼)  

 
 

𝐻𝐻(𝑥𝑥) = 𝑞𝑞 + (1 − 𝑞𝑞)𝐺𝐺(𝑥𝑥) 
 
 

𝑆𝑆𝑆𝑆𝑆𝑆 = 2.515517+0.802583𝑡𝑡+0.010328𝑡𝑡2

1+1.432788𝑡𝑡+0.189269𝑡𝑡2+0.001308𝑡𝑡3 − 
−𝑡𝑡 0 < 𝐻𝐻(𝑥𝑥) ≤ 0.5 

𝑆𝑆𝑆𝑆𝑆𝑆 = 𝑡𝑡 − 2.515517 + 0.802583𝑡𝑡 + 0.010328𝑡𝑡2

1 + 1.432788𝑡𝑡 + 0.189269𝑡𝑡2 + 0.001308𝑡𝑡3 
0.5 < 𝐻𝐻(𝑥𝑥) ≤ 1 

 
 

𝑡𝑡 = √𝑙𝑙𝑙𝑙 ( 1
𝐻𝐻(𝑥𝑥)2) 0 < 𝐻𝐻(𝑥𝑥) ≤ 0. 

 𝑡𝑡 = √𝑙𝑙𝑙𝑙 ( 1
(1−𝐻𝐻(𝑥𝑥))2) 0.5 < 𝐻𝐻(𝑥𝑥) ≤ 1 

 

 

𝑌𝑌𝑌𝑌 = 𝑎𝑎 + 𝑏𝑏𝑏𝑏 + ∑ 𝑐𝑐𝑖𝑖 𝑥𝑥𝑖𝑖 + ∑ 𝑑𝑑𝑖𝑖 𝑥𝑥𝑖𝑖
2 

	 (4)

	

𝑉𝑉𝑉𝑉𝑉𝑉 =∝ 𝑉𝑉𝑉𝑉𝑉𝑉 + (1−∝)𝑇𝑇𝑇𝑇𝑇𝑇 

 

𝑉𝑉𝑉𝑉𝑉𝑉 = 100 𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑖𝑖−𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑚𝑚𝑚𝑚𝑚𝑚
𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑚𝑚𝑚𝑚𝑚𝑚−𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑚𝑚𝑚𝑚𝑚𝑚

  (1) 
 
 
 𝑇𝑇𝑇𝑇𝑇𝑇 = 100 𝐿𝐿𝐿𝐿𝐿𝐿𝑚𝑚𝑚𝑚𝑚𝑚−𝐿𝐿𝐿𝐿𝐿𝐿𝑖𝑖

𝐿𝐿𝐿𝐿𝐿𝐿𝑚𝑚𝑚𝑚𝑚𝑚−𝐿𝐿𝐿𝐿𝐿𝐿𝑚𝑚𝑚𝑚𝑚𝑚
  (2) 

 
 
 
𝛽𝛽 = 1+√1+4𝑈𝑈/3

4𝑈𝑈 , (3) 
 
 
  𝛼𝛼 = 𝑋̄𝑋

𝛽𝛽, (4) 
 

𝑈𝑈 = 𝑙𝑙𝑙𝑙( 𝑋̄𝑋) −
∑ 𝑙𝑙𝑙𝑙( 𝑋𝑋)

𝑛𝑛  
 

𝐺𝐺(𝑥𝑥) =
∫ 𝑥𝑥𝛼𝛼−1𝑥𝑥

0 𝑒𝑒
−𝑥𝑥
𝛽𝛽 𝑑𝑑𝑑𝑑

𝛽𝛽𝛼𝛼𝛤𝛤(𝛼𝛼)  

 
 

𝐻𝐻(𝑥𝑥) = 𝑞𝑞 + (1 − 𝑞𝑞)𝐺𝐺(𝑥𝑥) 
 
 

𝑆𝑆𝑆𝑆𝑆𝑆 = 2.515517+0.802583𝑡𝑡+0.010328𝑡𝑡2

1+1.432788𝑡𝑡+0.189269𝑡𝑡2+0.001308𝑡𝑡3 − 
−𝑡𝑡 0 < 𝐻𝐻(𝑥𝑥) ≤ 0.5 

𝑆𝑆𝑆𝑆𝑆𝑆 = 𝑡𝑡 − 2.515517 + 0.802583𝑡𝑡 + 0.010328𝑡𝑡2

1 + 1.432788𝑡𝑡 + 0.189269𝑡𝑡2 + 0.001308𝑡𝑡3 
0.5 < 𝐻𝐻(𝑥𝑥) ≤ 1 

 
 

𝑡𝑡 = √𝑙𝑙𝑙𝑙 ( 1
𝐻𝐻(𝑥𝑥)2) 0 < 𝐻𝐻(𝑥𝑥) ≤ 0. 

 𝑡𝑡 = √𝑙𝑙𝑙𝑙 ( 1
(1−𝐻𝐻(𝑥𝑥))2) 0.5 < 𝐻𝐻(𝑥𝑥) ≤ 1 

 

 

𝑌𝑌𝑌𝑌 = 𝑎𝑎 + 𝑏𝑏𝑏𝑏 + ∑ 𝑐𝑐𝑖𝑖 𝑥𝑥𝑖𝑖 + ∑ 𝑑𝑑𝑖𝑖 𝑥𝑥𝑖𝑖
2 

	 (5)

where U is given by:

	

𝑉𝑉𝑉𝑉𝑉𝑉 =∝ 𝑉𝑉𝑉𝑉𝑉𝑉 + (1−∝)𝑇𝑇𝑇𝑇𝑇𝑇 

 

𝑉𝑉𝑉𝑉𝑉𝑉 = 100 𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑖𝑖−𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑚𝑚𝑚𝑚𝑚𝑚
𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑚𝑚𝑚𝑚𝑚𝑚−𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑚𝑚𝑚𝑚𝑚𝑚

  (1) 
 
 
 𝑇𝑇𝑇𝑇𝑇𝑇 = 100 𝐿𝐿𝐿𝐿𝐿𝐿𝑚𝑚𝑚𝑚𝑚𝑚−𝐿𝐿𝐿𝐿𝐿𝐿𝑖𝑖

𝐿𝐿𝐿𝐿𝐿𝐿𝑚𝑚𝑚𝑚𝑚𝑚−𝐿𝐿𝐿𝐿𝐿𝐿𝑚𝑚𝑚𝑚𝑚𝑚
  (2) 

 
 
 
𝛽𝛽 = 1+√1+4𝑈𝑈/3

4𝑈𝑈 , (3) 
 
 
  𝛼𝛼 = 𝑋̄𝑋

𝛽𝛽, (4) 
 

𝑈𝑈 = 𝑙𝑙𝑙𝑙( 𝑋̄𝑋) −
∑ 𝑙𝑙𝑙𝑙( 𝑋𝑋)

𝑛𝑛  
 

𝐺𝐺(𝑥𝑥) =
∫ 𝑥𝑥𝛼𝛼−1𝑥𝑥

0 𝑒𝑒
−𝑥𝑥
𝛽𝛽 𝑑𝑑𝑑𝑑

𝛽𝛽𝛼𝛼𝛤𝛤(𝛼𝛼)  

 
 

𝐻𝐻(𝑥𝑥) = 𝑞𝑞 + (1 − 𝑞𝑞)𝐺𝐺(𝑥𝑥) 
 
 

𝑆𝑆𝑆𝑆𝑆𝑆 = 2.515517+0.802583𝑡𝑡+0.010328𝑡𝑡2

1+1.432788𝑡𝑡+0.189269𝑡𝑡2+0.001308𝑡𝑡3 − 
−𝑡𝑡 0 < 𝐻𝐻(𝑥𝑥) ≤ 0.5 

𝑆𝑆𝑆𝑆𝑆𝑆 = 𝑡𝑡 − 2.515517 + 0.802583𝑡𝑡 + 0.010328𝑡𝑡2

1 + 1.432788𝑡𝑡 + 0.189269𝑡𝑡2 + 0.001308𝑡𝑡3 
0.5 < 𝐻𝐻(𝑥𝑥) ≤ 1 

 
 

𝑡𝑡 = √𝑙𝑙𝑙𝑙 ( 1
𝐻𝐻(𝑥𝑥)2) 0 < 𝐻𝐻(𝑥𝑥) ≤ 0. 

 𝑡𝑡 = √𝑙𝑙𝑙𝑙 ( 1
(1−𝐻𝐻(𝑥𝑥))2) 0.5 < 𝐻𝐻(𝑥𝑥) ≤ 1 

 

 

𝑌𝑌𝑌𝑌 = 𝑎𝑎 + 𝑏𝑏𝑏𝑏 + ∑ 𝑐𝑐𝑖𝑖 𝑥𝑥𝑖𝑖 + ∑ 𝑑𝑑𝑖𝑖 𝑥𝑥𝑖𝑖
2 

	 (6)

and 

𝑉𝑉𝑉𝑉𝑉𝑉 =∝ 𝑉𝑉𝑉𝑉𝑉𝑉 + (1−∝)𝑇𝑇𝑇𝑇𝑇𝑇 

 

𝑉𝑉𝑉𝑉𝑉𝑉 = 100 𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑖𝑖−𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑚𝑚𝑚𝑚𝑚𝑚
𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑚𝑚𝑚𝑚𝑚𝑚−𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑚𝑚𝑚𝑚𝑚𝑚

  (1) 
 
 
 𝑇𝑇𝑇𝑇𝑇𝑇 = 100 𝐿𝐿𝐿𝐿𝐿𝐿𝑚𝑚𝑚𝑚𝑚𝑚−𝐿𝐿𝐿𝐿𝐿𝐿𝑖𝑖

𝐿𝐿𝐿𝐿𝐿𝐿𝑚𝑚𝑚𝑚𝑚𝑚−𝐿𝐿𝐿𝐿𝐿𝐿𝑚𝑚𝑚𝑚𝑚𝑚
  (2) 

 
 
 
𝛽𝛽 = 1+√1+4𝑈𝑈/3

4𝑈𝑈 , (3) 
 
 
  𝛼𝛼 = 𝑋̄𝑋

𝛽𝛽, (4) 
 

𝑈𝑈 = 𝑙𝑙𝑙𝑙( 𝑋̄𝑋) −
∑ 𝑙𝑙𝑙𝑙( 𝑋𝑋)

𝑛𝑛  
 

𝐺𝐺(𝑥𝑥) =
∫ 𝑥𝑥𝛼𝛼−1𝑥𝑥

0 𝑒𝑒
−𝑥𝑥
𝛽𝛽 𝑑𝑑𝑑𝑑

𝛽𝛽𝛼𝛼𝛤𝛤(𝛼𝛼)  

 
 

𝐻𝐻(𝑥𝑥) = 𝑞𝑞 + (1 − 𝑞𝑞)𝐺𝐺(𝑥𝑥) 
 
 

𝑆𝑆𝑆𝑆𝑆𝑆 = 2.515517+0.802583𝑡𝑡+0.010328𝑡𝑡2

1+1.432788𝑡𝑡+0.189269𝑡𝑡2+0.001308𝑡𝑡3 − 
−𝑡𝑡 0 < 𝐻𝐻(𝑥𝑥) ≤ 0.5 

𝑆𝑆𝑆𝑆𝑆𝑆 = 𝑡𝑡 − 2.515517 + 0.802583𝑡𝑡 + 0.010328𝑡𝑡2

1 + 1.432788𝑡𝑡 + 0.189269𝑡𝑡2 + 0.001308𝑡𝑡3 
0.5 < 𝐻𝐻(𝑥𝑥) ≤ 1 

 
 

𝑡𝑡 = √𝑙𝑙𝑙𝑙 ( 1
𝐻𝐻(𝑥𝑥)2) 0 < 𝐻𝐻(𝑥𝑥) ≤ 0. 

 𝑡𝑡 = √𝑙𝑙𝑙𝑙 ( 1
(1−𝐻𝐻(𝑥𝑥))2) 0.5 < 𝐻𝐻(𝑥𝑥) ≤ 1 

 

 

𝑌𝑌𝑌𝑌 = 𝑎𝑎 + 𝑏𝑏𝑏𝑏 + ∑ 𝑐𝑐𝑖𝑖 𝑥𝑥𝑖𝑖 + ∑ 𝑑𝑑𝑖𝑖 𝑥𝑥𝑖𝑖
2 

 represents the mean precipitation for the 
selected period.

	• Compute the cumulative probability of the 
Gamma distribution:

	

𝑉𝑉𝑉𝑉𝑉𝑉 =∝ 𝑉𝑉𝑉𝑉𝑉𝑉 + (1−∝)𝑇𝑇𝑇𝑇𝑇𝑇 

 

𝑉𝑉𝑉𝑉𝑉𝑉 = 100 𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑖𝑖−𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑚𝑚𝑚𝑚𝑚𝑚
𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑚𝑚𝑚𝑚𝑚𝑚−𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑚𝑚𝑚𝑚𝑚𝑚

  (1) 
 
 
 𝑇𝑇𝑇𝑇𝑇𝑇 = 100 𝐿𝐿𝐿𝐿𝐿𝐿𝑚𝑚𝑚𝑚𝑚𝑚−𝐿𝐿𝐿𝐿𝐿𝐿𝑖𝑖

𝐿𝐿𝐿𝐿𝐿𝐿𝑚𝑚𝑚𝑚𝑚𝑚−𝐿𝐿𝐿𝐿𝐿𝐿𝑚𝑚𝑚𝑚𝑚𝑚
  (2) 

 
 
 
𝛽𝛽 = 1+√1+4𝑈𝑈/3

4𝑈𝑈 , (3) 
 
 
  𝛼𝛼 = 𝑋̄𝑋

𝛽𝛽, (4) 
 

𝑈𝑈 = 𝑙𝑙𝑙𝑙( 𝑋̄𝑋) −
∑ 𝑙𝑙𝑙𝑙( 𝑋𝑋)

𝑛𝑛  
 

𝐺𝐺(𝑥𝑥) =
∫ 𝑥𝑥𝛼𝛼−1𝑥𝑥

0 𝑒𝑒
−𝑥𝑥
𝛽𝛽 𝑑𝑑𝑑𝑑

𝛽𝛽𝛼𝛼𝛤𝛤(𝛼𝛼)  

 
 

𝐻𝐻(𝑥𝑥) = 𝑞𝑞 + (1 − 𝑞𝑞)𝐺𝐺(𝑥𝑥) 
 
 

𝑆𝑆𝑆𝑆𝑆𝑆 = 2.515517+0.802583𝑡𝑡+0.010328𝑡𝑡2

1+1.432788𝑡𝑡+0.189269𝑡𝑡2+0.001308𝑡𝑡3 − 
−𝑡𝑡 0 < 𝐻𝐻(𝑥𝑥) ≤ 0.5 

𝑆𝑆𝑆𝑆𝑆𝑆 = 𝑡𝑡 − 2.515517 + 0.802583𝑡𝑡 + 0.010328𝑡𝑡2

1 + 1.432788𝑡𝑡 + 0.189269𝑡𝑡2 + 0.001308𝑡𝑡3 
0.5 < 𝐻𝐻(𝑥𝑥) ≤ 1 

 
 

𝑡𝑡 = √𝑙𝑙𝑙𝑙 ( 1
𝐻𝐻(𝑥𝑥)2) 0 < 𝐻𝐻(𝑥𝑥) ≤ 0. 

 𝑡𝑡 = √𝑙𝑙𝑙𝑙 ( 1
(1−𝐻𝐻(𝑥𝑥))2) 0.5 < 𝐻𝐻(𝑥𝑥) ≤ 1 

 

 

𝑌𝑌𝑌𝑌 = 𝑎𝑎 + 𝑏𝑏𝑏𝑏 + ∑ 𝑐𝑐𝑖𝑖 𝑥𝑥𝑖𝑖 + ∑ 𝑑𝑑𝑖𝑖 𝑥𝑥𝑖𝑖
2 

	 (7)

where:	Γ(α) = (α - 1)!, is the Gamma function. 
Because the gamma function is undefined 
at x = 0, the cumulative probability H(x) 
is adjusted as:

	

𝑉𝑉𝑉𝑉𝑉𝑉 =∝ 𝑉𝑉𝑉𝑉𝑉𝑉 + (1−∝)𝑇𝑇𝑇𝑇𝑇𝑇 

 

𝑉𝑉𝑉𝑉𝑉𝑉 = 100 𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑖𝑖−𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑚𝑚𝑚𝑚𝑚𝑚
𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑚𝑚𝑚𝑚𝑚𝑚−𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑚𝑚𝑚𝑚𝑚𝑚

  (1) 
 
 
 𝑇𝑇𝑇𝑇𝑇𝑇 = 100 𝐿𝐿𝐿𝐿𝐿𝐿𝑚𝑚𝑚𝑚𝑚𝑚−𝐿𝐿𝐿𝐿𝐿𝐿𝑖𝑖

𝐿𝐿𝐿𝐿𝐿𝐿𝑚𝑚𝑚𝑚𝑚𝑚−𝐿𝐿𝐿𝐿𝐿𝐿𝑚𝑚𝑚𝑚𝑚𝑚
  (2) 

 
 
 
𝛽𝛽 = 1+√1+4𝑈𝑈/3

4𝑈𝑈 , (3) 
 
 
  𝛼𝛼 = 𝑋̄𝑋

𝛽𝛽, (4) 
 

𝑈𝑈 = 𝑙𝑙𝑙𝑙( 𝑋̄𝑋) −
∑ 𝑙𝑙𝑙𝑙( 𝑋𝑋)

𝑛𝑛  
 

𝐺𝐺(𝑥𝑥) =
∫ 𝑥𝑥𝛼𝛼−1𝑥𝑥

0 𝑒𝑒
−𝑥𝑥
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with q being the probability of zero precipitation. 
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standardized variable with mean 0 and variance 
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SPI was calculated for each station and sub-
sequently interpolated using the inverse distance 
weighting (IDW) method to generate raster layers 
at a spatial resolution of 463 × 463 m, consistent 
with the VHI data.

Calculation of the standardized streamflow 
index (SSI)

The SSI was first proposed by (Modarres, 
2007) and later refined by (Telesca et al., 2012). 
It was developed using monthly streamflow val-
ues and standardization procedures analogous to 
those employed for SPI.

Similar to SPI, SSI quantifies hydrological 
drought conditions, but it substitutes precipitation 
data with streamflow observations as input. The 
calculation procedure follows the same statisti-
cal framework based on the Gamma probability 
distribution, allowing for both observed and fore-
casted streamflow datasets to be evaluated. The 
SSI provides valuable insight into streamflow 
variability, identifying periods of low discharge 
(drought) and high discharge (flood) events with-
in river systems. In this study, SSI was computed 
at multiple temporal aggregation scales ranging 
from 1 to several months, to capture the differ-
ent hydrological response times associated with 
basin storage and runoff processes.

Machine learning models

Machine learning approaches were employed 
to predict VHI values using a set of explanatory 
variables, including SPI, SSI, and antecedent VHI 
at different aggregation scales representing sever-
al months prior to the target month. Additionally, 
a temporal variable (t) was incorporated into each 
model to capture long-term trends throughout the 
study period. This temporal component was de-
fined as the number of months elapsed from the 
beginning of the available dataset. To minimize 
the potential influence of seasonal vegetation dy-
namics, separate predictive models were devel-
oped for each month individually. This approach 
ensures that inter-month variability due to phe-
nological changes is isolated from the effects of 
meteorological and hydrological factors. 

	• Stepwise quadratic regression (SQR) model
The SQR approach was applied to forecast the 

VHI, and its predictive performance was evaluated 
using independent test datasets. The input predic-
tors included SSI, SPI, and antecedent VHI values.

With the stepwise quadratic regression tech-
nique, predictor variables are added or removed 
through statistical significance testing at each itera-
tion. The VHI forecasting equation is expressed as:
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where:	 t is a temporal variable employed to re-
move trend influences from the simula-
tion results, and xi represents the predictor 
variables.

	• Random forest (RF) model
Random forest (RF) is a machine learning 

algorithm based on ensemble learning princi-
ples, constructed from multiple decision trees 
(CART – Classification and Regression Trees) 
to enhance forecasting accuracy and stability 
(Breiman, 2001). During the training process, 
each tree is developed from a random boot-
strap sample of the dataset, and at each split-
ting node, only a random subset of predictor 
variables is selected to determine the optimal 
splitting threshold. This dual randomization 
mechanism enables RF to overcome common 
limitations of individual decision trees, such 
as overfitting and sensitivity to training sam-
ple distribution. The same set of predictor vari-
ables used in the SQR model was employed for 
RF model development.

	• Artificial neural network (ANN) model
The ANN approach represents a deep learn-

ing framework composed of multiple inter-
connected layers, each containing a series of 
neurons that process and transmit information. 
The training process utilized the backpropaga-
tion algorithm to minimize prediction errors 
and optimize the network’s internal weights 
(Mas and Flores, 2008). In this study, a sys-
tematic optimization strategy was adopted to 
determine the most suitable network architec-
ture, including the type of activation function, 
number of hidden layers, neurons per layer, 
and hyperparameters such as epoch count and 
batch size. The same predictor variables used 
in SQR and RF models were also employed for 
ANN development.

The random forest (RF) and artificial neu-
ral network (ANN) models were implemented 
in the Python programming environment using 
the scikit-learn (sklearn) and TensorFlow/Keras 
libraries, respectively. The stepwise quadratic 
regression (SQR) model was developed in the 
Fortran programming environment to ensure 
computational efficiency and maintain method-
ological consistency with previous hydrological 
and statistical studies.

Evaluation of forecast results and 		
variable contribution

The performance of the VHI forecasting 
models was quantitatively assessed using three 
statistical indicators: the Pearson correlation co-
efficient (R), RMSE, and Willmott’s index of 
agreement (d). These metrics were employed to 
measure the accuracy, reliability, and consistency 
of the model predictions. Their formulations are 
expressed as follows:

	 𝑅𝑅 = ∑ (𝑌𝑌𝑖𝑖−𝑌̄𝑌)(𝑌𝑌𝑌𝑌𝑖𝑖−𝑌𝑌𝑌𝑌̅̅̅̅ )𝑛𝑛
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𝑖𝑖=1 √∑ (𝑌𝑌𝑌𝑌𝑖𝑖−𝑌𝑌𝑌𝑌̅̅̅̅ )2𝑛𝑛

𝑖𝑖=1
   (1) 

 
 

𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 = √1
𝑛𝑛∑ (𝑌𝑌𝑌𝑌𝑖𝑖 − 𝑌𝑌𝑖𝑖)2𝑛𝑛

𝑖𝑖=1
   (2) 
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𝑖𝑖=1

∑ (|𝑌𝑌𝑠𝑠𝑖𝑖−𝑌𝑌|+|𝑌𝑌𝑖𝑖−𝑌𝑌|)
2𝑛𝑛
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	 (14)

where:	n is the total number of observations, 	
Y and Ys represent the observed and pre-
dicted VHI values, respectively, and Ȳ de-
note their mean values.

To improve the robustness of the forecast, a 
variable selection procedure was applied before 
model training. The preliminary selection was 
guided by correlation analysis, ensuring that only 
predictors exhibiting strong relationships with 
the target variable were retained. The predic-
tive performance was further validated using the 
leave-one-out cross-validation (LOOCV) meth-
od, which minimizes bias in small datasets. Spe-
cifically, LOOCV was applied during the variable 
selection phase to identify the optimal subset of 
predictors for each month and forecast lead time. 

The relative contribution of each predictor 
variable to the model’s predictive capability was 
evaluated through a variable exclusion approach, 
in which the decline in the adjusted coefficient of 
determination (R²) was examined when a specific 
variable was excluded from the model.

RESULTS AND DISCUSSION

Preliminary selection of predictor variables 
and forecast lead time

An excessive number of predictor variables 
can degrade the accuracy and generalization abil-
ity of forecasting models (Mehraein et al., 2022). 
Therefore, it is essential to select only variables 
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that provide meaningful and complementary in-
formation about the target variable. A predictor’s 
informational relevance is considered high when 
it exhibits a strong correlation with the variable 
being predicted. Accordingly, the preliminary 
screening of predictor variables in this study 
was conducted based on the Pearson correlation 
analysis between each potential predictor and the 
forecasted VHI values.

Correlation coefficient between VHI and SPI 

This analysis aims to determine the optimal 
timescale of the SPI index and the appropriate 
forecast lead time for the VHI index based on 
these indices. For SPI timescales (from 1 to 6 
months), average correlation coefficients between 
SPI and VHI were analyzed from two perspec-
tives: variation by month, and variation by lag 
time. Analysis results are presented in Figure 3.

The correlation analysis between SPI and 
VHI (Figure 3) exhibited the following char-
acteristics: (1) Monthly analysis (Figure 3a) 
showed correlation coefficients varied markedly 
by season, reaching highest values from January 
to July. SPI4 and SPI5 timescales demonstrated 
high stability with correlation coefficients main-
tained in the range of 0.5–0.8 throughout this 
period. SPI4 for January is calculated from rain-
fall accumulation from October to February, and 
SPI4 for July is calculated from March to July 
rainfall. Due to this calculation method, SPI4 
and SPI5 during this period incorporate precipi-
tation from late rainy season of the previous year 
through early rainy season of the current year 
(October to July). This represents a critical peri-
od that captures water deficit conditions affecting 

crop growth. During months 8–12, correlation 
coefficients decreased significantly, reflecting 
that vegetation becomes less sensitive when wa-
ter is abundant; (2) According to Figure 3b, at 
lag times of 1 to 3 months, the correlation coef-
ficients between SPI and VHI remain relatively 
strong. The combined analysis of lag time infor-
mation indicated that SPI4 and SPI5 could be 
used to forecast VHI at lead times of 1–3 months 
ahead, corresponding to the forecast period from 
January to July.

Correlation coefficient between VHI and SSI

The correlation analysis between SSI and 
VHI (Figure 4) revealed patterns generally con-
sistent with those obtained for SPI, though with 
several notable differences. (1) Monthly varia-
tion: As illustrated in Figure 4a, correlation co-
efficients between VHI and SSI were highest 
during February–July. However, short-term SSI 
timescales (SSI1–SSI3) produced significantly 
higher correlations than the longer timescales 
(SSI4–SSI6). This finding suggests that stream-
flow variations exert a more immediate influ-
ence on vegetation health, whereas the effects 
of precipitation tend to accumulate over longer 
periods. (2) Lag-time variation: As shown in 
Figure 4b, correlations generally decreased with 
increasing lag time. The SSI1, SSI2, and SSI3 
timescales exhibited similar declining trends, 
indicating a short response time of vegetation to 
hydrological changes. Overall, the results indi-
cate that SSI1–SSI3 are the most suitable indi-
ces for evaluating and forecasting hydrological 
drought impacts on vegetation dynamics within 
the Srepok Basin.

Figure 3. a) Time-lagged correlation between VHI and SPI, and b) maximum correlation at lags 0–7 months
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The results indicate that SPI4-SPI5 and 
SSI1-SSI3 can be combined for VHI forecasting 
during January to July with forecast lead times of 
1 to 3 months.

VHI autocorrelation coefficient

The autocorrelation coefficient represents 
the ability to forecast VHI based on vegetation 
health status at previous time steps. Results of 
the VHI autocorrelation coefficient calculation 
for the Srepok Basin are presented in detail in 
Figures 4c and 4d.

Monthly analysis (Figure 5c) showed auto-
correlation coefficients varied strongly by season 
with clear patterns, reaching highest values dur-
ing March-July. This indicates high forecasting 
capability during the transition from the late dry 
season to the early rainy season, when vegeta-
tion is particularly vulnerable to moisture stress. 
Lag time analysis (Figure 5d) provides detailed 
information about VHI forecasting capability 
across different time intervals. At 1-month lag, 
autocorrelation coefficients remained high, indi-
cating good forecasting capability. At 2–3 month 
lags, correlation coefficients remained moderate, 
indicating that VHI forecasting based on lagged 
VHI can extend to 2–3 months. In other words, 
autocorrelation can be used to forecast VHI for 
months 3–7 with 1–3 month lead times.

Based on the magnitude of correlation co-
efficients and lag times, VHI for March and 
April (late dry season) shows high forecasting 
capability for VHI from April to July (transition 
period). January and February have the lowest 
precipitation amounts in the year (Figure 5a), 
and March and April are months with minimum 

streamflow (Figure 5b); accumulated water 
stress during these months affects vegetation 
health in subsequent months.

Results from Figures 2, 3, and 4c-d show that 
the period from March to May is when correla-
tion coefficients are highest for all index types. 
This characteristic indicates this is the period 
when vegetation is most sensitive to meteoro-
logical and hydrological drought conditions, and 
also the period with optimal forecasting capabil-
ity. Additionally, the distribution of correlation 
coefficients reflects progressively increasing cu-
mulative time impacts from January to July, then 
decreasing during the rainy season, reflecting the 
physiological cycle of vegetation under tropical 
monsoon climate conditions.

Dataset preparation and model development

As established above, the period from Janu-
ary to July was identified as the most suitable for 
VHI forecasting; therefore, subsequent analyses 
focused exclusively on these seven months, with 
forecast lead times of one to three months. The 
selected predictor variables included lagged VHI 
values, SPI4, SPI5, SSI1, SSI2, and SSI3, extract-
ed for one to five months preceding each target 
forecast month. In total, 31 predictor variables 
were incorporated into the initial variable pool, 
including a temporal trend variable (t).

To improve the accuracy and reliability 
of monthly forecast models, all grid-cell data 
across the study area were aggregated into a 
single continuous time-series dataset. The study 
area encompassed 55,610 grid cells, and with 23 
years of monthly data (2000–2022), the result-
ing dataset consisted of 1,279,030 individual 

Figure 4. a) Time-lagged correlation between VHI and SSI, and b) maximum correlation at lags 0–7 months
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records. The data were partitioned temporally, 
with the period from 2000–2014 (approximately 
two-thirds of the temporal span) used for model 
training and calibration, while the remaining pe-
riod from 2015–2022 (approximately one-third) 
served as an independent test set for model vali-
dation. This temporal splitting approach ensures 
that models are evaluated on completely unseen 
future data, thereby providing a realistic assess-
ment of forecast performance.

Given the diversity of crop types and vegeta-
tion responses across the basin, standardization 
was necessary to harmonize the data. Accord-
ingly, VHI values at each grid cell were normal-
ized to a mean of 0 and a standard deviation of 1 
using the training period statistics, ensuring com-
parability across space and time while preventing 
data leakage from the test set. This preprocessing 
step enhanced model convergence and allowed 
the machine learning algorithms to efficiently 
capture spatio-temporal patterns in vegetation 
health dynamics.

For each calendar month and forecast lead 
time, the stepwise variable selection procedure 
(for SQR), hyperparameter tuning (for RF and 
ANN), and model training were performed ex-
clusively using the training dataset. The final 
models were then applied to the independent 
test set to generate the performance metrics re-
ported in subsequent sections.

Model performance evaluation

This section presents the performance eval-
uation results for the three machine learning 
models (SQR, RF, and ANN) across different 
forecast lead times (1–3 months) and calendar 
months (January-July). Model performance 
was assessed using three statistical metrics: 
Pearson correlation coefficient (R), Willmott’s 
index of agreement (d), and root mean square 
error (RMSE), calculated on the independent 
test dataset (2015–2022).

Figure 5. a) Precipitation over Srepok Basin; b) Streamflow observed at Ban Don station;
c) Time-lagged autocorrelation of VHI, and d) maximum autocorrelation at lags 0–7 months
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Models using SQR

In the stepwise quadratic regression (SQR) 
models, predictor variables for VHI forecasting 
were selected through a sequential regression 
process, as summarized in Table 1. The resulting 
coefficients confirmed that the constructed mod-
els were statistically robust across all months and 
forecast lead times. Table 2 presents the model 
coefficients for April with a one-month lead time. 
In Table 1, variables are organized according to 
their order of entry into the model, and the numer-
ical suffixes indicate the lag time associated with 
each predictor (e.g., VHI.1 represents VHI lagged 
by 1 month, SSI1.2 represents SSI at 1-month 
timescale lagged by 2 months). Typically, three to 
five variables were retained in each model, rep-
resenting the most influential predictors after the 
stepwise selection procedure. For the one-month 
lead time, the lagged VHI (VHI.1) consistently 
emerged as the most significant predictor, empha-
sizing the strong temporal persistence of vegeta-
tion health conditions. As the lead time increased 
to two or three months, the SSI and SPI indices 
gradually gained greater influence, reflecting the 
growing role of short- and medium-term hydro-
meteorological variability in explaining vegeta-
tion response dynamics. 

Forecast accuracy differed among months, 
as reflected by the variations in correlation coef-
ficient (R) and Willmott’s index of agreement (d) 
shown in Figure 6. According to this figure, the 
forecasting performance varied notably among 

individual months, and forecast accuracy tended 
to decline as the lead time increased. The best 
prediction skill was observed during the late dry 
season and the onset of the rainy season (Febru-
ary–May). The period from February to April, 
which includes the final months of the dry season, 
exhibited the highest forecast quality. This period 
also coincides with the time when severe drought 
events commonly occur in the region (Luong and 
Bui, 2024; Sam et al., 2019). June and July had 
comparatively lower prediction accuracy, likely 
due to abundant rainfall and sufficient soil mois-
ture, conditions under which vegetation health 
remains stable and VHI fluctuations are minimal. 
For all three forecast lead times, RMSE showed 
minimal variation and maintained low values 
during the early rainy season months, which are 
characterized by low VHI variability (Figure 7).

Models using RF

The RF model was implemented to exploit 
nonlinear learning capabilities and reduce over-
fitting commonly encountered in single deci-
sion trees. RF hyperparameters were determined 
through a grid search procedure with the objec-
tive of optimizing prediction accuracy, specifi-
cally minimizing RMSE while maximizing cor-
relation coefficient (R) and Willmott index (d). 
The final hyperparameter set selected included: 
n_estimators = 200 (number of decision trees), 
max_depth = 10 (maximum tree depth), min_
samples_split = 2 (minimum samples to split a 

Table 1. Variables participating in forecast equations in the SQR model
Forecast lead time Jan Feb Mar Apr May Jun Jul

1 month

VHI.1 VHI.1 VHI.1 VHI.1 VHI.1 VHI.1 VHI.1

SSI1.1 SSI2.2 SSI2.2 SSI3.4 SPI4.4 SPI5.3 SPI4.3

SPI4.1 SPI4.4 SPI5.3 SPI5.4 SSI1.4 SPI5.2 SPI5.3

VHI.2 SPI4.1 VHI.4 VHI.3 SPI5.4 SPI4.4

VHI.4 SSI2.4 VHI.2 VHI.4

2 months

SPI4.5 SSI2.2 VHI.2 VHI.3 VHI.2 VHI.3 SPI4.3

SSI1.2 SSI3.5 SSI2.2 SSI3.4 SSI1.4 SPI4.4 VHI.2.5

VHI.4 SPI5.2 SSI1.5 SPI4.5 SPI4.3 SPI5.5 SSI2.4

SSI2.5 VHI.2 SSI3.5 SSI1.3 VHI.3 VHI.4 VHI.5

VHI.5 VHI.4 SSI3.3

3 months

SPI5.5 SSI3.5 SSI1.3 VHI.3 SPI4.3 SPI4.4 SPI4.3

SPI4.5 SPI4.3 VHI.3 SSI3.4 SSI1.4 VHI.3 SSI1.5

SSI2.3 SPI5.5 SPI5.5 SSI1.3 VHI.3 SPI5.5 VHI.3

VHI.3 VHI.3 SSI1.5 SPI4.5 VHI.4 VHI.5 VHI.5

SPI4.3 SSI1.3 SSI3.5
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Table 2. Coefficients of the SQR model with 1-month forecast time for April with standardized data 
R Adjusted R square Standard error F Significance F

0.88 0.78 0.51 15665.4 0.00E+00

Parameter Coefficients Standard Error t Stat P-value

Intercept -0.005 0.004 -1.4 1.5E-01

VHI1 0.768 0.004 174.6 0.0E+00

SSI3.4 0.154 0.005 29.4 4.1E-186

SPI5.4 -0.121 0.006 -18.9 7.7E-79

Figure 6. Model performance metrics (R, d, RMSE) for 1-month (a-c), 2-month (d-f), and 3-month (g-i)
lead time forecasts
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node), and min_samples_leaf = 1 (minimum 
samples at each leaf) node.

VHI forecasting performance evaluation re-
sults for 1–3 month lead times are shown in Fig-
ures 6 and 7. Overall, RF forecast quality was 
lower compared to both SQR and ANN models. 
R and d values tended to be highest during dry 
season and early rainy season months (February–
May) when VHI fluctuated strongly, and notice-
ably lower for late rainy season months (June–
July). This reflects the basin’s climate-hydrology 
characteristics: during the dry season, water defi-
cits increase VHI sensitivity to meteorological and 
hydrological drought. Figure 7 also shows a close 
relationship between VHI standard deviation and 
RF forecast quality: months with large VHI varia-
tion (dry season) typically had higher R and dval-
ues; conversely, the rainy season with low VHI 
variation resulted in reduced forecast quality.

Despite the hyperparameter optimization, the 
RF model consistently underperformed compared 
to SQR and ANN across all months and forecast 
lead times. This may be attributed to the relatively 
limited size of the training dataset for each month-
specific model, or to the inherent characteristics of 
vegetation-drought relationships in the study area, 
which may not align well with the ensemble tree-
based approach. The detailed performance metrics 
are presented in Figure 6 and Table 3.

Models using ANN

The ANN model was established to capture 
complex nonlinear relationships between drought 

indices and vegetation health status. Configura-
tion parameters were determined through system-
atic experimentation, with optimization criteria 
of minimum RMSE and maximum R and d val-
ues. Results indicated that the sigmoid activation 
function provided the most suitable performance 
for this study. The model architecture included 
two hidden layers, in which the first layer con-
tained 20 neurons and the second layer consisted 
of 10 neurons. Training was performed using 
backpropagation with a learning rate of 0.01, 
batch size of 500, and 128 epochs. Due to the 
large number of weights and adjustment coeffi-
cients in the network, detailed parameter values 
are not presented here.

 Figure 8 illustrates the distribution between 
actual and predicted VHI values for April. The 
results revealed that when observed VHI values 
were relatively low, the predicted values tended 
to be slightly higher, whereas when VHI values 
were high, predictions were slightly lower. The 
smallest errors occurred when VHI values were 
near the median.

The evaluation of VHI forecasting accuracy 
for each month, based on the independent test 
dataset (2015–2022), is summarized in Table 3 
and Figure 6.

For 1-month lead time (Figure 6a-c): ANN 
recorded the highest statistical indices among 
the three models. April achieved R = 0.87, d = 
0.93, and RMSE = 11.5, which was equivalent 
to SQR in correlation coefficient (0.87) but supe-
rior in d index and RMSE values. In months 2–3 

Figure 7. R and d values between actual and predicted results using RF model for 1-month forecast
and VHI standard deviation by month
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(February–March), ANN continued to achieve 
R = 0.79–0.81 and d = 0.86–0.88, reflecting 
high sensitivity in detecting VHI variation dur-
ing drought periods. According to Table 3 which 
summarizes the percentage of months each model 
achieved best values for R, RMSE, and d, the 
ANN model outperformed the other models in 
57.1% of months for R, 42.9% for RMSE, and 
100% for d index. This demonstrates that ANN 
is the optimal choice for 1-month lead time fore-
casting, due to its ability to accurately and stably 
reproduce VHI variation, although SQR some-
times produced lower absolute errors.

For 2-month lead time (Figure 6d-f): ANN 
continued to show good forecast quality. March 
achieved R = 0.74, d = 0.82, and RMSE = 16.5, 
higher than SQR (R = 0.73, d = 0.72) and RF (R 
= 0.69, d = 0.80). In April, SQR had a slightly 
higher R (0.75 vs. ANN’s 0.73), but ANN still 
achieved higher d (0.83 vs. 0.74), confirming 
stability in model agreement with observations. 
Across all months, ANN led in R for 57.1% of 
months and d for 85.7% of months, while SQR 
dominated in RMSE with 85.7% of months. Thus, 
ANN remains the appropriate choice for 2-month 
lead time forecasting, especially when the objec-
tive is maintaining ability to track VHI variation, 
while SQR is more suitable when prioritizing ab-
solute error reduction.

For 3-month lead time (Figure 6g-i): The 
performance of all three models declined signif-
icantly as expected for longer lead times. ANN 
still maintained lower RMSE and higher d than 
RF, while in some months having performance 
equivalent to or slightly better than SQR. For 
example, March achieved R = 0.56, d = 0.70, 

and RMSE = 20.6. However, in April and July, 
SQR recorded higher R (0.69 and 0.49 vs. ANN’s 
0.67 and 0.33). Across all months, SQR led in R 
(57.1%) and RMSE (85.7%), while ANN retained 
its advantage in d (71.4%). This shows that the 
relative advantage of ANN diminishes when lead 
time extends, and SQR becomes a more appro-
priate choice for 3-month lead time forecasting, 
particularly during periods of low VHI variation.

Monthly analysis showed that ANN was most 
suitable during the dry season and early rainy sea-
son (January-May), with R > 0.70, d > 0.80, and 
lower RMSE compared to both SQR and RF. For 
example, in April with 1-month lead time, ANN 
achieved R ≈ 0.87 and d ≈ 0.93, demonstrating 
high reliability during the period when vegetation 
is most sensitive to drought stress. Conversely, 
during the rainy season (June and July), ANN per-
formance decreased significantly, with R = 0.51–
0.53 and d = 0.62–0.63 for 1-month lead time, 
although RMSE remained at low levels (June ≈ 
14.4; July ≈ 13.8). During the rainy season, SQR 
achieved higher correlation coefficients, reflect-
ing more stable linear relationships when VHI 
fluctuation was minimal due to abundant water 
conditions. Meanwhile, RF exhibited the lowest 
forecast quality across all months and lead times, 
especially in July with 3-month lead time when 
the correlation coefficient only reached 0.25. The 
degree of performance decline when increasing 
lead time confirms that ANN is the most stable 
model, with an average decrease of 15–20% in 
R per additional month of lead time, lower than 
SQR (18–25%) and RF (25–35%). This stabil-
ity is particularly evident during the dry season, 

Figure 8. Model performance of ANN for April: (a) Relationship between observed and predicted VHI;
(b) Forecast error
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when ANN maintains high accuracy even with 
2–3 month lead times.

Thus, results show ANN is the optimal model 
for 1–2 month lead time forecasts, especially dur-
ing the dry season when VHI variation is large 
and drought impacts are evident. SQR is more 
suitable for longer 3-month lead time forecasts or 
during the rainy season, when linear relationships 
between predictor variables and VHI dominate. 
In contrast, RF had the lowest forecast quality 
and poor stability across all conditions, and there-
fore is not recommended for VHI forecasting in 
the Srepok Basin. 

Spatial performance analysis revealed clear 
differences in ANN forecasting accuracy among 
land-cover types (Figure 9). Overall, the ANN 
model exhibited strong predictive skill across 
most of the basin, with R > 0.8, Willmott’s d = 
0.85–0.95, and RMSE < 15. The highest accuracy 
was observed in agricultural regions (40.9% of 
the basin), including perennial crops, paddy rice, 
and annual croplands, where vegetation responds 
rapidly to rainfall and streamflow variability. 
These regions showed strong agreement between 
observed and predicted VHI values. In contrast, 
forest-dominated areas (44.3% of the basin), com-
prising protection, special-use, and production 
forests, displayed moderately lower performance 
(R = 0.6–0.8 and RMSE > 18), particularly in the 
southern and western uplands. This difference 
primarily reflects ecological characteristics: for-
est ecosystems with dense canopies and deep root 
systems maintain soil moisture and physiological 
stability, resulting in weaker and slower vegeta-
tion responses to short-term hydroclimatic fluctua-
tions. Meanwhile, agricultural crops with shallow 

roots and short growth cycles are more sensitive to 
water deficits, producing greater VHI variability 
that the ANN model captures more effectively. 

Spatially, the ANN performed best across the 
central and eastern agricultural plains, where veg-
etation dynamics are closely linked to rainfall and 
streamflow variability. These spatial patterns re-
affirm the model’s capability to capture nonlinear 
drought–vegetation interactions, particularly in 
cropland areas directly affected by seasonal water 
stress.

Role of variable groups in forecasting

The analysis presented above showed that 
ANN produced higher R values compared to RF 
and SQR; therefore, it was selected as the basis 
to determine the relative contribution of predictor 
variable groups, with results presented in Table 4. 
This table shows that variable contributions differ 
clearly between lead times and between months. 
For the 1-month lead time, lagged VHI made the 
largest contribution to model performance in most 
months. During January–April, when vegetation 
is most affected by drought stress, VHI contrib-
uted 74–88% to forecast accuracy. In subsequent 
months, the contribution declined to 54–63%. SPI 
ranked second in importance, reaching its highest 
values in June and July (44–46%), but dropped 
below 10% in March and April. Meanwhile, SSI 
exhibited greater influence in the early dry sea-
son, accounting for approximately 20% during 
January–March, and fell below 10% thereafter.

When the forecast time increased to two 
months, the relative importance of VHI, SPI, 
and SSI became more balanced, with alternating 

Table 3. Number of months each model achieved best values for R, RMSE, and d by forecast horizon 
Forecast lead time Index RF (months, %) ANN (months, %) SQR (months, %) Total (months, %)

1 month

R 0 (%) 4 (57.1 %) 3 (42.9%) 7 (100%)

RMSE 0 (%) 3 (42.9%) 4 (57.1 %) 7 (100%)

d 0 (%) 7 (100%) 0 (%) 7 (100%)

2 months

R 0 (%) 4 (57.1 %) 3 (42.9%) 7 (100%)

RMSE 0 (%) 1 (14.3%) 6 (85.7%) 7 (100%)

d 0 (%) 6 (85.7%) 1 (14.3%) 7 (100%)

3 months

R 0 (%) 3(43%) 4 (57 %) 7 (100%)

RMSE 0 (%) 1 (14.3%) 6 (85.7%) 7 (100%)

d 1 (14.3%) 5 (71.4%) 1 (14.3%) 7 (100%)

Total

R 0 (%) 11 (52.4%) 10 (47.6%) 21(100%)

RMSE 0 (%) 5 (23.8%) 16 (76.2%) 21(100%)

d 1 (4.8%) 18 (85.7%) 2 (9.5%) 21 (100%)
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dominance depending on the season. Lagged VHI 
played a major role in April and May, contribut-
ing 48–57%, while SPI became more dominant in 
June and July (59–67%), indicating its increasing 
importance under early rainy season conditions. 
Conversely, SSI showed a stronger influence 
from January to March (40–57%), reflecting its 
role in representing accumulated hydrological ef-
fects during the early dry season.

For the 3-month forecast, the importance of 
predictor variables shifted markedly. VHI contri-
bution peaked in April–June (24.8–45.6%), then 
decreased to around 5–15% in other months. SSI 
remained relatively stable but showed higher 
contributions from February to April (51–72%), 
while SPI was more influential from January to 
July (59–75%). As forecast lead time increased, 
the most notable changes were found in SPI (for 
months 1, 6, and 7) and in SSI (for months 2–4), 
reflecting each index’s sensitivity to lag effects in 
the forecasting process.

These results demonstrate that predictor vari-
able contribution depends strongly on both fore-
cast time and seasonal characteristics. VHI is the 
most important variable for short-term forecast-
ing, especially at the end of the dry season; SPI 
and SSI play more prominent roles when forecast 
time extends and depend on meteorological-hy-
drological conditions of each month.

DISCUSSION

The analysis results of relationships between 
drought indices and VHI showed that these rela-
tionships depend strongly on the calendar months 
of the year. During January-April (mid and late 

dry season), VHI was primarily affected by pre-
cipitation and streamflow from previous months, 
with precipitation maintained at low levels and 
streamflow reaching minimum during February-
April. From May-July (early rainy season), the 
impacts of cumulative rainfall and runoff from 
earlier periods became more pronounced. No-
tably, during the transition from the late dry to 
early rainy season, VHI exhibited joint sensitiv-
ity to both SPI and SSI, with the influence of SSI 
being more dominant during February-March. 
This finding aligns with those reported by (Sam 
et al., 2019) in the same basin, emphasizing the 
role of hydrological memory in vegetation re-
sponse. Autocorrelation analysis showed that 
VHI in March-April had significant influence on 
vegetation status during April-July, reflecting ac-
cumulated drought impacts after prolonged wa-
ter deficit periods. This result is consistent with 
recent studies in the Central Highlands, Vietnam 
by (Van Viet & Thuy, 2023).

Regarding predictor variable selection, the 
study applied a combination of correlation analy-
sis, autocorrelation, and lag time analysis to re-
move variables with minimal information content 
or causing noise, retaining only variables with 
high and seasonally stable correlations. Promi-
nent variables included lagged VHI, SPI4-SPI5, 
and SSI1-SSI3. This procedure helps optimize 
model performance and aligns with recommenda-
tions in research by (Hao et al., 2018) and (Prod-
han et al., 2022), who emphasized the importance 
of parsimonious variable selection in drought 
forecasting applications.

Regarding model effectiveness, results 
showed that ANN and SQR exhibited different 
strengths in early VHI forecasting in the Srepok 

Figure 9. Spatial performance of the ANN model for VHI forecasting across the Srepok Basin, showing (a) R, 
(b) d, and (c) RMSE, with agricultural and forest areas overlaid
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Basin - a region strongly affected by climate 
change and drought. The ANN model excelled 
in 1–2 month lead time forecasts, particularly 
during the late dry season (January–April) and 
the onset of the rainy season (May), when VHI 
exhibited strong fluctuations due to water stress 
associated with meteorological and hydrologi-
cal deficits. ANN achieved higher R and d val-
ues than SQR and RF in most months, reflect-
ing its capability to capture complex nonlinear 
relationships between drought indices and veg-
etation status (Luong and Bui, 2024; Mokhtari 
and Akhoondzadeh, 2021). Conversely, SQR 
showed advantages in longer 3-month lead 
time forecasting and during the rainy season 
(June-July), when relationships between pre-
dictor variables and VHI were more linear and 
temporal persistence was weaker. Based solely 
on RMSE, the SQR model had advantages for 
all three forecast lead times. RF generally per-
formed worse than the other two models, espe-
cially during rainy season months and at longer 
lead times, possibly due to insufficient training 
data for each month-specific model or subop-
timal interaction with the data structure in this 
application.

Regarding predictor variable contribu-
tion, for 1-month lead time forecasting, lagged 
VHI was the primary factor (especially during 
March-April, with contribution of 74–88%). 
When the lead time extended to 2–3 months, 
the contribution of lagged VHI gradually de-
creased and was replaced by SPI and SSI, re-
flecting that in short-term forecasting, current 
vegetation health status mainly determines 
the next month, while in longer-term forecast-
ing, factors related to water supply conditions 
become primary drivers. This shift in predic-
tor importance with increasing lead time is 

consistent with the cascading nature of drought 
propagation from meteorological to hydrologi-
cal to agricultural drought(Sam et al., 2019; 
Tram et al., 2021).

Research results have important practical 
significance by providing a scientific founda-
tion for optimizing model selection by month 
and forecast horizon, thereby enhancing agri-
cultural drought early warning system effec-
tiveness. Simultaneously, identifying dominant 
predictor variables at each stage allows stream-
lining input datasets, reducing data collection 
and processing costs while maintaining model 
accuracy. Moreover, the proposed multi-mod-
el comparison method can be applied to other 
basins with similar conditions to develop VHI 
forecasting systems appropriate for local con-
ditions, contributing to climate variability and 
change adaptation.

Despite the promising results, several limi-
tations should be acknowledged. First, the study 
focused on basin-wide aggregated forecasts 
without stratifying by land cover type, which 
may obscure vegetation-specific drought re-
sponses. Future work should examine whether 
separate models for different crop types (e.g., 
coffee, rice, rubber) could improve forecast 
accuracy. Second, the analysis was limited to 
linear and moderately nonlinear machine learn-
ing approaches; more advanced deep learning 
architectures such as long short-term memory 
(LSTM) networks or attention-based models 
may capture temporal dependencies more ef-
fectively. Third, the study period (2000–2022) 
may not encompass the full range of drought 
variability under future climate change sce-
narios, suggesting the need for periodic model 
recalibration as new data become available.

Table 4. Relative contribution (%) of VHI, SPI, and SSI to VHI forecasting at different forecast times 
Forecast lead time Variable Jan Feb Mar Apr May Jun Jul

1 month

VHI 59.6 60 74 88.1 63.2 54.2 56

SSI 20.4 19 17.4 8.4 10.6 0 0

SPI 20 21 8.6 3.5 26.2 45.8 44

2 months

VHI 23.1 23.6 45.3 57 48 40.7 22.8

SSI 40.3 57 54.7 32.1 35.3 0 10.7

SPI 36.6 19.4 0 10.9 16.7 59.3 66.5

3 months

VHI 15 5.3 16.3 45.6 30.4 24.8 15.3

SSI 26 59.3 73.7 51.4 34.9 0 17.6

SPI 59 35.4 10 3 34.7 75.2 67.1
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CONCLUSIONS

This study successfully selected influen-
tial variables, developed and evaluated machine 
learning models for early VHI forecasting in the 
Srepok River Basin, thereby making important 
contributions to drought monitoring and early 
warning in the context of climate change. Corre-
lation analysis identified lagged VHI values along 
with SPI4-SPI5 and SSI1-SSI3 as the most effec-
tive predictor variables, reflecting cumulative im-
pacts of meteorological and hydrological drought 
on vegetation health. The optimal forecast lead 
time range of 1–3 months, especially during Janu-
ary-July, demonstrates high application potential 
for agricultural and water resource management, 
consistent with crop growth cycles in the region.

Among the methods evaluated, ANN demon-
strated superior performance for 1–2 month lead 
time forecasts during the dry season, when non-
linear relationships between drought indices and 
VHI were clearly expressed. Conversely, SQR 
was more suitable for 3-month lead time forecasts 
and for rainy season forecasting, while RF yield-
ed the lowest performance across all conditions. 
Seasonal variability was also clearly recorded, 
with highest forecast quality during February-
May and decreasing forecast skill during June-Ju-
ly, reflecting characteristics of the region’s tropi-
cal monsoon climate with distinct rainy seasons. 
The combination of low RMSE from SQR and 
high d and R from ANN suggests potential for en-
semble approaches that combine them in future 
VHI simulation systems.

Predictor variable contribution analysis 
showed that lagged VHI played a dominant role 
in 1-month lead time forecasts, especially during 
the late dry season; when lead time extended to 
2–3 months, SPI and SSI gradually replaced this 
dominance, reflecting the shift from direct veg-
etation status influence to indirect water supply 
condition impacts.

Regarding scientific and application signifi-
cance, the study provides an integrated frame-
work of remote sensing and machine learning, 
enabling input variable optimization and model 
selection according to temporal-seasonal con-
ditions. However, the study also acknowledges 
certain limitations, particularly accuracy decline 
during the rainy season when VHI has low varia-
tion and drought manifestation is weak. There-
fore, future research needs to expand predictor 
variable scope while considering climate change 

impacts on drought-vegetation relationships, aim-
ing to maintain and enhance forecast model reli-
ability in the long term.
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